L(s) = 1 | − 1.41·2-s − 4.10i·3-s + 2.00·4-s − 5.82·5-s + 5.80i·6-s − 4.41·7-s − 2.82·8-s − 7.82·9-s + 8.24·10-s − 19.8i·11-s − 8.20i·12-s + 6.50i·13-s + 6.24·14-s + 23.9i·15-s + 4.00·16-s − 13.3i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.36i·3-s + 0.500·4-s − 1.16·5-s + 0.966i·6-s − 0.630·7-s − 0.353·8-s − 0.869·9-s + 0.824·10-s − 1.80i·11-s − 0.683i·12-s + 0.500i·13-s + 0.445·14-s + 1.59i·15-s + 0.250·16-s − 0.782i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.787 + 0.616i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.787 + 0.616i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.187005 - 0.542450i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.187005 - 0.542450i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 1.41T \) |
| 31 | \( 1 + (-24.4 + 19.1i)T \) |
good | 3 | \( 1 + 4.10iT - 9T^{2} \) |
| 5 | \( 1 + 5.82T + 25T^{2} \) |
| 7 | \( 1 + 4.41T + 49T^{2} \) |
| 11 | \( 1 + 19.8iT - 121T^{2} \) |
| 13 | \( 1 - 6.50iT - 169T^{2} \) |
| 17 | \( 1 + 13.3iT - 289T^{2} \) |
| 19 | \( 1 - 30.2T + 361T^{2} \) |
| 23 | \( 1 - 19.1iT - 529T^{2} \) |
| 29 | \( 1 + 6.50iT - 841T^{2} \) |
| 37 | \( 1 + 59.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 16.6T + 1.68e3T^{2} \) |
| 43 | \( 1 - 65.5iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 67.7T + 2.20e3T^{2} \) |
| 53 | \( 1 - 48.4iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 56.2T + 3.48e3T^{2} \) |
| 61 | \( 1 - 4.51iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 21.0T + 4.48e3T^{2} \) |
| 71 | \( 1 - 11.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + 25.1iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 36.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 159. iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 143. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 27.7T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.09558527847465981708419388576, −13.15191099298942909054680472866, −11.75190787154576330088508748666, −11.39855552055676216446435319721, −9.409283162587213060680042154039, −8.063138948406369496430010864248, −7.34917933165867049137681106723, −6.08617506241363159642278533489, −3.21256513685453433484548821373, −0.68275419580956173288454684441,
3.46001567064025290659703948421, 4.82402789990281038419836873184, 7.01070514718768674965743759441, 8.295956691131380786643545650414, 9.744090012185641192625451458389, 10.22696530130259016811400663173, 11.60453533795933769517269544616, 12.61782999078207141927354309080, 14.74424739278741234944950296522, 15.53455766560669817251212949366