Properties

Label 62.3.b.a
Level $62$
Weight $3$
Character orbit 62.b
Analytic conductor $1.689$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [62,3,Mod(61,62)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(62, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("62.61"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 62.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68937763903\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.48128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 14x^{2} + 47 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + \beta_{2} q^{3} + 2 q^{4} + (2 \beta_{3} - 3) q^{5} + \beta_1 q^{6} + (\beta_{3} - 3) q^{7} + 2 \beta_{3} q^{8} + (2 \beta_{3} - 5) q^{9} + ( - 3 \beta_{3} + 4) q^{10} + (2 \beta_{2} - 2 \beta_1) q^{11}+ \cdots + ( - 18 \beta_{2} + 14 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} - 12 q^{5} - 12 q^{7} - 20 q^{9} + 16 q^{10} + 8 q^{14} + 16 q^{16} + 16 q^{18} + 36 q^{19} - 24 q^{20} - 32 q^{25} - 24 q^{28} + 92 q^{31} - 144 q^{33} + 52 q^{35} - 40 q^{36} - 120 q^{38}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 14x^{2} + 47 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 7\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{2} - 7\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/62\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
61.1
2.90073i
2.90073i
2.36343i
2.36343i
−1.41421 4.10225i 2.00000 −5.82843 5.80145i −4.41421 −2.82843 −7.82843 8.24264
61.2 −1.41421 4.10225i 2.00000 −5.82843 5.80145i −4.41421 −2.82843 −7.82843 8.24264
61.3 1.41421 3.34239i 2.00000 −0.171573 4.72685i −1.58579 2.82843 −2.17157 −0.242641
61.4 1.41421 3.34239i 2.00000 −0.171573 4.72685i −1.58579 2.82843 −2.17157 −0.242641
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 62.3.b.a 4
3.b odd 2 1 558.3.d.a 4
4.b odd 2 1 496.3.e.d 4
5.b even 2 1 1550.3.c.a 4
5.c odd 4 2 1550.3.d.a 8
31.b odd 2 1 inner 62.3.b.a 4
93.c even 2 1 558.3.d.a 4
124.d even 2 1 496.3.e.d 4
155.c odd 2 1 1550.3.c.a 4
155.f even 4 2 1550.3.d.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.3.b.a 4 1.a even 1 1 trivial
62.3.b.a 4 31.b odd 2 1 inner
496.3.e.d 4 4.b odd 2 1
496.3.e.d 4 124.d even 2 1
558.3.d.a 4 3.b odd 2 1
558.3.d.a 4 93.c even 2 1
1550.3.c.a 4 5.b even 2 1
1550.3.c.a 4 155.c odd 2 1
1550.3.d.a 8 5.c odd 4 2
1550.3.d.a 8 155.f even 4 2

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(62, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 28T^{2} + 188 \) Copy content Toggle raw display
$5$ \( (T^{2} + 6 T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 6 T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 400T^{2} + 3008 \) Copy content Toggle raw display
$13$ \( T^{4} + 260T^{2} + 9212 \) Copy content Toggle raw display
$17$ \( T^{4} + 484 T^{2} + 54332 \) Copy content Toggle raw display
$19$ \( (T^{2} - 18 T - 369)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 860 T^{2} + 180668 \) Copy content Toggle raw display
$29$ \( T^{4} + 260T^{2} + 9212 \) Copy content Toggle raw display
$31$ \( T^{4} - 92 T^{3} + \cdots + 923521 \) Copy content Toggle raw display
$37$ \( T^{4} + 3600 T^{2} + 243648 \) Copy content Toggle raw display
$41$ \( (T^{2} - 22 T + 89)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 7900 T^{2} + 15485372 \) Copy content Toggle raw display
$47$ \( (T^{2} + 28 T - 2692)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 10976 T^{2} + 20225792 \) Copy content Toggle raw display
$59$ \( (T^{2} - 70 T + 775)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 4900 T^{2} + 99452 \) Copy content Toggle raw display
$67$ \( (T^{2} + 88 T - 2296)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 14 T + 31)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 6112 T^{2} + 3477248 \) Copy content Toggle raw display
$79$ \( T^{4} + 11900 T^{2} + 13806908 \) Copy content Toggle raw display
$83$ \( T^{4} + 37664 T^{2} + 311881472 \) Copy content Toggle raw display
$89$ \( T^{4} + 23044 T^{2} + 52213052 \) Copy content Toggle raw display
$97$ \( (T^{2} + 86 T - 3151)^{2} \) Copy content Toggle raw display
show more
show less