Properties

Label 1550.3.c.a
Level $1550$
Weight $3$
Character orbit 1550.c
Analytic conductor $42.234$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1550,3,Mod(1301,1550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1550, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1550.1301"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1550 = 2 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1550.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,8,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2344409758\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.48128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 14x^{2} + 47 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 62)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} + \beta_{2} q^{3} + 2 q^{4} - \beta_1 q^{6} + ( - \beta_{3} + 3) q^{7} - 2 \beta_{3} q^{8} + (2 \beta_{3} - 5) q^{9} + ( - 2 \beta_{2} + 2 \beta_1) q^{11} + 2 \beta_{2} q^{12} + ( - 3 \beta_{2} - \beta_1) q^{13}+ \cdots + (18 \beta_{2} - 14 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} + 12 q^{7} - 20 q^{9} + 8 q^{14} + 16 q^{16} - 16 q^{18} + 36 q^{19} + 24 q^{28} + 92 q^{31} + 144 q^{33} - 40 q^{36} + 120 q^{38} + 152 q^{39} + 44 q^{41} + 56 q^{47} - 152 q^{49} + 8 q^{51}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 14x^{2} + 47 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 7\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{2} - 7\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1550\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(1427\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1301.1
2.36343i
2.36343i
2.90073i
2.90073i
−1.41421 3.34239i 2.00000 0 4.72685i 1.58579 −2.82843 −2.17157 0
1301.2 −1.41421 3.34239i 2.00000 0 4.72685i 1.58579 −2.82843 −2.17157 0
1301.3 1.41421 4.10225i 2.00000 0 5.80145i 4.41421 2.82843 −7.82843 0
1301.4 1.41421 4.10225i 2.00000 0 5.80145i 4.41421 2.82843 −7.82843 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1550.3.c.a 4
5.b even 2 1 62.3.b.a 4
5.c odd 4 2 1550.3.d.a 8
15.d odd 2 1 558.3.d.a 4
20.d odd 2 1 496.3.e.d 4
31.b odd 2 1 inner 1550.3.c.a 4
155.c odd 2 1 62.3.b.a 4
155.f even 4 2 1550.3.d.a 8
465.g even 2 1 558.3.d.a 4
620.e even 2 1 496.3.e.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.3.b.a 4 5.b even 2 1
62.3.b.a 4 155.c odd 2 1
496.3.e.d 4 20.d odd 2 1
496.3.e.d 4 620.e even 2 1
558.3.d.a 4 15.d odd 2 1
558.3.d.a 4 465.g even 2 1
1550.3.c.a 4 1.a even 1 1 trivial
1550.3.c.a 4 31.b odd 2 1 inner
1550.3.d.a 8 5.c odd 4 2
1550.3.d.a 8 155.f even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1550, [\chi])\):

\( T_{3}^{4} + 28T_{3}^{2} + 188 \) Copy content Toggle raw display
\( T_{7}^{2} - 6T_{7} + 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 28T^{2} + 188 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 6 T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 400T^{2} + 3008 \) Copy content Toggle raw display
$13$ \( T^{4} + 260T^{2} + 9212 \) Copy content Toggle raw display
$17$ \( T^{4} + 484 T^{2} + 54332 \) Copy content Toggle raw display
$19$ \( (T^{2} - 18 T - 369)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 860 T^{2} + 180668 \) Copy content Toggle raw display
$29$ \( T^{4} + 260T^{2} + 9212 \) Copy content Toggle raw display
$31$ \( T^{4} - 92 T^{3} + \cdots + 923521 \) Copy content Toggle raw display
$37$ \( T^{4} + 3600 T^{2} + 243648 \) Copy content Toggle raw display
$41$ \( (T^{2} - 22 T + 89)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 7900 T^{2} + 15485372 \) Copy content Toggle raw display
$47$ \( (T^{2} - 28 T - 2692)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 10976 T^{2} + 20225792 \) Copy content Toggle raw display
$59$ \( (T^{2} - 70 T + 775)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 4900 T^{2} + 99452 \) Copy content Toggle raw display
$67$ \( (T^{2} - 88 T - 2296)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 14 T + 31)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 6112 T^{2} + 3477248 \) Copy content Toggle raw display
$79$ \( T^{4} + 11900 T^{2} + 13806908 \) Copy content Toggle raw display
$83$ \( T^{4} + 37664 T^{2} + 311881472 \) Copy content Toggle raw display
$89$ \( T^{4} + 23044 T^{2} + 52213052 \) Copy content Toggle raw display
$97$ \( (T^{2} - 86 T - 3151)^{2} \) Copy content Toggle raw display
show more
show less