Properties

Label 62.3.b
Level $62$
Weight $3$
Character orbit 62.b
Rep. character $\chi_{62}(61,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 62.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(62, [\chi])\).

Total New Old
Modular forms 18 4 14
Cusp forms 14 4 10
Eisenstein series 4 0 4

Trace form

\( 4 q + 8 q^{4} - 12 q^{5} - 12 q^{7} - 20 q^{9} + 16 q^{10} + 8 q^{14} + 16 q^{16} + 16 q^{18} + 36 q^{19} - 24 q^{20} - 32 q^{25} - 24 q^{28} + 92 q^{31} - 144 q^{33} + 52 q^{35} - 40 q^{36} - 120 q^{38}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(62, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
62.3.b.a 62.b 31.b $4$ $1.689$ 4.0.48128.1 None 62.3.b.a \(0\) \(0\) \(-12\) \(-12\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+\beta _{2}q^{3}+2q^{4}+(-3+2\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(62, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(62, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)