Properties

Label 496.3.e.d.433.1
Level $496$
Weight $3$
Character 496.433
Analytic conductor $13.515$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [496,3,Mod(433,496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("496.433"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 496 = 2^{4} \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 496.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5150211123\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.48128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 14x^{2} + 47 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 62)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 433.1
Root \(2.90073i\) of defining polynomial
Character \(\chi\) \(=\) 496.433
Dual form 496.3.e.d.433.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.10225i q^{3} -5.82843 q^{5} +4.41421 q^{7} -7.82843 q^{9} -19.8074i q^{11} -6.50529i q^{13} +23.9096i q^{15} +13.3021i q^{17} -30.2132 q^{19} -18.1082i q^{21} +19.1036i q^{23} +8.97056 q^{25} -4.80608i q^{27} +6.50529i q^{29} +(-24.4142 - 19.1036i) q^{31} -81.2548 q^{33} -25.7279 q^{35} +59.4222i q^{37} -26.6863 q^{39} +16.6569 q^{41} +65.5152i q^{43} +45.6274 q^{45} +67.7401 q^{47} -29.5147 q^{49} +54.5685 q^{51} -48.4024i q^{53} +115.446i q^{55} +123.942i q^{57} -56.2132 q^{59} -4.51454i q^{61} -34.5563 q^{63} +37.9156i q^{65} -21.0538 q^{67} +78.3675 q^{69} -11.2426 q^{71} +25.1966i q^{73} -36.7995i q^{75} -87.4341i q^{77} -36.0956i q^{79} -90.1716 q^{81} -159.284i q^{83} -77.5304i q^{85} +26.6863 q^{87} -143.166i q^{89} -28.7157i q^{91} +(-78.3675 + 100.153i) q^{93} +176.095 q^{95} +27.7107 q^{97} +155.061i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{5} + 12 q^{7} - 20 q^{9} - 36 q^{19} - 32 q^{25} - 92 q^{31} - 144 q^{33} - 52 q^{35} - 152 q^{39} + 44 q^{41} + 92 q^{45} + 56 q^{47} - 152 q^{49} - 8 q^{51} - 140 q^{59} - 76 q^{63} + 176 q^{67}+ \cdots - 172 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/496\mathbb{Z}\right)^\times\).

\(n\) \(63\) \(65\) \(373\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.10225i 1.36742i −0.729756 0.683708i \(-0.760366\pi\)
0.729756 0.683708i \(-0.239634\pi\)
\(4\) 0 0
\(5\) −5.82843 −1.16569 −0.582843 0.812585i \(-0.698060\pi\)
−0.582843 + 0.812585i \(0.698060\pi\)
\(6\) 0 0
\(7\) 4.41421 0.630602 0.315301 0.948992i \(-0.397895\pi\)
0.315301 + 0.948992i \(0.397895\pi\)
\(8\) 0 0
\(9\) −7.82843 −0.869825
\(10\) 0 0
\(11\) 19.8074i 1.80067i −0.435195 0.900336i \(-0.643321\pi\)
0.435195 0.900336i \(-0.356679\pi\)
\(12\) 0 0
\(13\) 6.50529i 0.500407i −0.968193 0.250203i \(-0.919503\pi\)
0.968193 0.250203i \(-0.0804975\pi\)
\(14\) 0 0
\(15\) 23.9096i 1.59398i
\(16\) 0 0
\(17\) 13.3021i 0.782477i 0.920289 + 0.391239i \(0.127953\pi\)
−0.920289 + 0.391239i \(0.872047\pi\)
\(18\) 0 0
\(19\) −30.2132 −1.59017 −0.795084 0.606499i \(-0.792573\pi\)
−0.795084 + 0.606499i \(0.792573\pi\)
\(20\) 0 0
\(21\) 18.1082i 0.862295i
\(22\) 0 0
\(23\) 19.1036i 0.830590i 0.909687 + 0.415295i \(0.136322\pi\)
−0.909687 + 0.415295i \(0.863678\pi\)
\(24\) 0 0
\(25\) 8.97056 0.358823
\(26\) 0 0
\(27\) 4.80608i 0.178003i
\(28\) 0 0
\(29\) 6.50529i 0.224320i 0.993690 + 0.112160i \(0.0357770\pi\)
−0.993690 + 0.112160i \(0.964223\pi\)
\(30\) 0 0
\(31\) −24.4142 19.1036i −0.787555 0.616244i
\(32\) 0 0
\(33\) −81.2548 −2.46227
\(34\) 0 0
\(35\) −25.7279 −0.735083
\(36\) 0 0
\(37\) 59.4222i 1.60601i 0.595975 + 0.803003i \(0.296766\pi\)
−0.595975 + 0.803003i \(0.703234\pi\)
\(38\) 0 0
\(39\) −26.6863 −0.684264
\(40\) 0 0
\(41\) 16.6569 0.406265 0.203132 0.979151i \(-0.434888\pi\)
0.203132 + 0.979151i \(0.434888\pi\)
\(42\) 0 0
\(43\) 65.5152i 1.52361i 0.647807 + 0.761804i \(0.275686\pi\)
−0.647807 + 0.761804i \(0.724314\pi\)
\(44\) 0 0
\(45\) 45.6274 1.01394
\(46\) 0 0
\(47\) 67.7401 1.44128 0.720640 0.693310i \(-0.243848\pi\)
0.720640 + 0.693310i \(0.243848\pi\)
\(48\) 0 0
\(49\) −29.5147 −0.602341
\(50\) 0 0
\(51\) 54.5685 1.06997
\(52\) 0 0
\(53\) 48.4024i 0.913252i −0.889659 0.456626i \(-0.849058\pi\)
0.889659 0.456626i \(-0.150942\pi\)
\(54\) 0 0
\(55\) 115.446i 2.09902i
\(56\) 0 0
\(57\) 123.942i 2.17442i
\(58\) 0 0
\(59\) −56.2132 −0.952766 −0.476383 0.879238i \(-0.658052\pi\)
−0.476383 + 0.879238i \(0.658052\pi\)
\(60\) 0 0
\(61\) 4.51454i 0.0740089i −0.999315 0.0370045i \(-0.988218\pi\)
0.999315 0.0370045i \(-0.0117816\pi\)
\(62\) 0 0
\(63\) −34.5563 −0.548513
\(64\) 0 0
\(65\) 37.9156i 0.583317i
\(66\) 0 0
\(67\) −21.0538 −0.314236 −0.157118 0.987580i \(-0.550220\pi\)
−0.157118 + 0.987580i \(0.550220\pi\)
\(68\) 0 0
\(69\) 78.3675 1.13576
\(70\) 0 0
\(71\) −11.2426 −0.158347 −0.0791735 0.996861i \(-0.525228\pi\)
−0.0791735 + 0.996861i \(0.525228\pi\)
\(72\) 0 0
\(73\) 25.1966i 0.345158i 0.984996 + 0.172579i \(0.0552101\pi\)
−0.984996 + 0.172579i \(0.944790\pi\)
\(74\) 0 0
\(75\) 36.7995i 0.490659i
\(76\) 0 0
\(77\) 87.4341i 1.13551i
\(78\) 0 0
\(79\) 36.0956i 0.456907i −0.973555 0.228453i \(-0.926633\pi\)
0.973555 0.228453i \(-0.0733668\pi\)
\(80\) 0 0
\(81\) −90.1716 −1.11323
\(82\) 0 0
\(83\) 159.284i 1.91908i −0.281569 0.959541i \(-0.590855\pi\)
0.281569 0.959541i \(-0.409145\pi\)
\(84\) 0 0
\(85\) 77.5304i 0.912122i
\(86\) 0 0
\(87\) 26.6863 0.306739
\(88\) 0 0
\(89\) 143.166i 1.60861i −0.594216 0.804305i \(-0.702538\pi\)
0.594216 0.804305i \(-0.297462\pi\)
\(90\) 0 0
\(91\) 28.7157i 0.315557i
\(92\) 0 0
\(93\) −78.3675 + 100.153i −0.842662 + 1.07692i
\(94\) 0 0
\(95\) 176.095 1.85364
\(96\) 0 0
\(97\) 27.7107 0.285677 0.142839 0.989746i \(-0.454377\pi\)
0.142839 + 0.989746i \(0.454377\pi\)
\(98\) 0 0
\(99\) 155.061i 1.56627i
\(100\) 0 0
\(101\) 81.7452 0.809358 0.404679 0.914459i \(-0.367383\pi\)
0.404679 + 0.914459i \(0.367383\pi\)
\(102\) 0 0
\(103\) −185.752 −1.80342 −0.901710 0.432341i \(-0.857688\pi\)
−0.901710 + 0.432341i \(0.857688\pi\)
\(104\) 0 0
\(105\) 105.542i 1.00516i
\(106\) 0 0
\(107\) −81.1838 −0.758727 −0.379363 0.925248i \(-0.623857\pi\)
−0.379363 + 0.925248i \(0.623857\pi\)
\(108\) 0 0
\(109\) −94.6812 −0.868635 −0.434318 0.900760i \(-0.643010\pi\)
−0.434318 + 0.900760i \(0.643010\pi\)
\(110\) 0 0
\(111\) 243.765 2.19608
\(112\) 0 0
\(113\) 6.14719 0.0543999 0.0271999 0.999630i \(-0.491341\pi\)
0.0271999 + 0.999630i \(0.491341\pi\)
\(114\) 0 0
\(115\) 111.344i 0.968206i
\(116\) 0 0
\(117\) 50.9262i 0.435266i
\(118\) 0 0
\(119\) 58.7184i 0.493432i
\(120\) 0 0
\(121\) −271.333 −2.24242
\(122\) 0 0
\(123\) 68.3305i 0.555533i
\(124\) 0 0
\(125\) 93.4264 0.747411
\(126\) 0 0
\(127\) 83.4526i 0.657107i −0.944485 0.328554i \(-0.893439\pi\)
0.944485 0.328554i \(-0.106561\pi\)
\(128\) 0 0
\(129\) 268.759 2.08341
\(130\) 0 0
\(131\) −197.848 −1.51029 −0.755144 0.655559i \(-0.772433\pi\)
−0.755144 + 0.655559i \(0.772433\pi\)
\(132\) 0 0
\(133\) −133.368 −1.00276
\(134\) 0 0
\(135\) 28.0119i 0.207495i
\(136\) 0 0
\(137\) 125.350i 0.914961i −0.889220 0.457481i \(-0.848752\pi\)
0.889220 0.457481i \(-0.151248\pi\)
\(138\) 0 0
\(139\) 62.8206i 0.451947i −0.974133 0.225973i \(-0.927444\pi\)
0.974133 0.225973i \(-0.0725562\pi\)
\(140\) 0 0
\(141\) 277.887i 1.97083i
\(142\) 0 0
\(143\) −128.853 −0.901069
\(144\) 0 0
\(145\) 37.9156i 0.261487i
\(146\) 0 0
\(147\) 121.077i 0.823651i
\(148\) 0 0
\(149\) 102.024 0.684727 0.342364 0.939568i \(-0.388773\pi\)
0.342364 + 0.939568i \(0.388773\pi\)
\(150\) 0 0
\(151\) 174.164i 1.15341i −0.816954 0.576703i \(-0.804339\pi\)
0.816954 0.576703i \(-0.195661\pi\)
\(152\) 0 0
\(153\) 104.135i 0.680618i
\(154\) 0 0
\(155\) 142.296 + 111.344i 0.918042 + 0.718347i
\(156\) 0 0
\(157\) 66.4315 0.423130 0.211565 0.977364i \(-0.432144\pi\)
0.211565 + 0.977364i \(0.432144\pi\)
\(158\) 0 0
\(159\) −198.558 −1.24880
\(160\) 0 0
\(161\) 84.3272i 0.523772i
\(162\) 0 0
\(163\) 157.718 0.967594 0.483797 0.875180i \(-0.339257\pi\)
0.483797 + 0.875180i \(0.339257\pi\)
\(164\) 0 0
\(165\) 473.588 2.87023
\(166\) 0 0
\(167\) 55.1992i 0.330534i −0.986249 0.165267i \(-0.947151\pi\)
0.986249 0.165267i \(-0.0528486\pi\)
\(168\) 0 0
\(169\) 126.681 0.749593
\(170\) 0 0
\(171\) 236.522 1.38317
\(172\) 0 0
\(173\) −6.71068 −0.0387900 −0.0193950 0.999812i \(-0.506174\pi\)
−0.0193950 + 0.999812i \(0.506174\pi\)
\(174\) 0 0
\(175\) 39.5980 0.226274
\(176\) 0 0
\(177\) 230.600i 1.30283i
\(178\) 0 0
\(179\) 63.1829i 0.352977i 0.984303 + 0.176489i \(0.0564738\pi\)
−0.984303 + 0.176489i \(0.943526\pi\)
\(180\) 0 0
\(181\) 2.04076i 0.0112749i −0.999984 0.00563747i \(-0.998206\pi\)
0.999984 0.00563747i \(-0.00179447\pi\)
\(182\) 0 0
\(183\) −18.5198 −0.101201
\(184\) 0 0
\(185\) 346.338i 1.87210i
\(186\) 0 0
\(187\) 263.480 1.40899
\(188\) 0 0
\(189\) 21.2151i 0.112249i
\(190\) 0 0
\(191\) 207.787 1.08789 0.543944 0.839121i \(-0.316930\pi\)
0.543944 + 0.839121i \(0.316930\pi\)
\(192\) 0 0
\(193\) 48.3970 0.250762 0.125381 0.992109i \(-0.459985\pi\)
0.125381 + 0.992109i \(0.459985\pi\)
\(194\) 0 0
\(195\) 155.539 0.797636
\(196\) 0 0
\(197\) 115.788i 0.587754i −0.955843 0.293877i \(-0.905054\pi\)
0.955843 0.293877i \(-0.0949456\pi\)
\(198\) 0 0
\(199\) 262.885i 1.32103i 0.750812 + 0.660516i \(0.229662\pi\)
−0.750812 + 0.660516i \(0.770338\pi\)
\(200\) 0 0
\(201\) 86.3680i 0.429691i
\(202\) 0 0
\(203\) 28.7157i 0.141457i
\(204\) 0 0
\(205\) −97.0833 −0.473577
\(206\) 0 0
\(207\) 149.551i 0.722468i
\(208\) 0 0
\(209\) 598.445i 2.86337i
\(210\) 0 0
\(211\) 170.983 0.810345 0.405172 0.914240i \(-0.367211\pi\)
0.405172 + 0.914240i \(0.367211\pi\)
\(212\) 0 0
\(213\) 46.1201i 0.216526i
\(214\) 0 0
\(215\) 381.850i 1.77605i
\(216\) 0 0
\(217\) −107.770 84.3272i −0.496634 0.388605i
\(218\) 0 0
\(219\) 103.362 0.471975
\(220\) 0 0
\(221\) 86.5341 0.391557
\(222\) 0 0
\(223\) 349.978i 1.56941i −0.619871 0.784704i \(-0.712815\pi\)
0.619871 0.784704i \(-0.287185\pi\)
\(224\) 0 0
\(225\) −70.2254 −0.312113
\(226\) 0 0
\(227\) 190.485 0.839142 0.419571 0.907722i \(-0.362180\pi\)
0.419571 + 0.907722i \(0.362180\pi\)
\(228\) 0 0
\(229\) 116.854i 0.510278i 0.966904 + 0.255139i \(0.0821212\pi\)
−0.966904 + 0.255139i \(0.917879\pi\)
\(230\) 0 0
\(231\) −358.676 −1.55271
\(232\) 0 0
\(233\) −226.019 −0.970040 −0.485020 0.874503i \(-0.661188\pi\)
−0.485020 + 0.874503i \(0.661188\pi\)
\(234\) 0 0
\(235\) −394.818 −1.68008
\(236\) 0 0
\(237\) −148.073 −0.624781
\(238\) 0 0
\(239\) 46.1908i 0.193267i 0.995320 + 0.0966335i \(0.0308075\pi\)
−0.995320 + 0.0966335i \(0.969193\pi\)
\(240\) 0 0
\(241\) 137.827i 0.571897i 0.958245 + 0.285949i \(0.0923086\pi\)
−0.958245 + 0.285949i \(0.907691\pi\)
\(242\) 0 0
\(243\) 326.651i 1.34424i
\(244\) 0 0
\(245\) 172.024 0.702140
\(246\) 0 0
\(247\) 196.546i 0.795731i
\(248\) 0 0
\(249\) −653.421 −2.62418
\(250\) 0 0
\(251\) 26.4835i 0.105512i 0.998607 + 0.0527559i \(0.0168005\pi\)
−0.998607 + 0.0527559i \(0.983199\pi\)
\(252\) 0 0
\(253\) 378.392 1.49562
\(254\) 0 0
\(255\) −318.049 −1.24725
\(256\) 0 0
\(257\) 17.8183 0.0693320 0.0346660 0.999399i \(-0.488963\pi\)
0.0346660 + 0.999399i \(0.488963\pi\)
\(258\) 0 0
\(259\) 262.302i 1.01275i
\(260\) 0 0
\(261\) 50.9262i 0.195119i
\(262\) 0 0
\(263\) 132.317i 0.503108i 0.967843 + 0.251554i \(0.0809415\pi\)
−0.967843 + 0.251554i \(0.919058\pi\)
\(264\) 0 0
\(265\) 282.110i 1.06456i
\(266\) 0 0
\(267\) −587.304 −2.19964
\(268\) 0 0
\(269\) 500.233i 1.85960i −0.368064 0.929800i \(-0.619979\pi\)
0.368064 0.929800i \(-0.380021\pi\)
\(270\) 0 0
\(271\) 13.7144i 0.0506067i 0.999680 + 0.0253033i \(0.00805516\pi\)
−0.999680 + 0.0253033i \(0.991945\pi\)
\(272\) 0 0
\(273\) −117.799 −0.431498
\(274\) 0 0
\(275\) 177.684i 0.646122i
\(276\) 0 0
\(277\) 174.235i 0.629008i −0.949256 0.314504i \(-0.898162\pi\)
0.949256 0.314504i \(-0.101838\pi\)
\(278\) 0 0
\(279\) 191.125 + 149.551i 0.685035 + 0.536025i
\(280\) 0 0
\(281\) −181.333 −0.645313 −0.322657 0.946516i \(-0.604576\pi\)
−0.322657 + 0.946516i \(0.604576\pi\)
\(282\) 0 0
\(283\) −87.7889 −0.310208 −0.155104 0.987898i \(-0.549571\pi\)
−0.155104 + 0.987898i \(0.549571\pi\)
\(284\) 0 0
\(285\) 722.387i 2.53469i
\(286\) 0 0
\(287\) 73.5269 0.256191
\(288\) 0 0
\(289\) 112.054 0.387729
\(290\) 0 0
\(291\) 113.676i 0.390639i
\(292\) 0 0
\(293\) 350.593 1.19656 0.598281 0.801286i \(-0.295850\pi\)
0.598281 + 0.801286i \(0.295850\pi\)
\(294\) 0 0
\(295\) 327.635 1.11063
\(296\) 0 0
\(297\) −95.1960 −0.320525
\(298\) 0 0
\(299\) 124.274 0.415633
\(300\) 0 0
\(301\) 289.198i 0.960791i
\(302\) 0 0
\(303\) 335.339i 1.10673i
\(304\) 0 0
\(305\) 26.3127i 0.0862711i
\(306\) 0 0
\(307\) −473.468 −1.54224 −0.771121 0.636689i \(-0.780303\pi\)
−0.771121 + 0.636689i \(0.780303\pi\)
\(308\) 0 0
\(309\) 762.002i 2.46603i
\(310\) 0 0
\(311\) −448.252 −1.44132 −0.720662 0.693286i \(-0.756162\pi\)
−0.720662 + 0.693286i \(0.756162\pi\)
\(312\) 0 0
\(313\) 362.114i 1.15691i −0.815713 0.578457i \(-0.803655\pi\)
0.815713 0.578457i \(-0.196345\pi\)
\(314\) 0 0
\(315\) 201.409 0.639394
\(316\) 0 0
\(317\) −226.470 −0.714417 −0.357208 0.934025i \(-0.616271\pi\)
−0.357208 + 0.934025i \(0.616271\pi\)
\(318\) 0 0
\(319\) 128.853 0.403927
\(320\) 0 0
\(321\) 333.036i 1.03749i
\(322\) 0 0
\(323\) 401.899i 1.24427i
\(324\) 0 0
\(325\) 58.3561i 0.179557i
\(326\) 0 0
\(327\) 388.406i 1.18779i
\(328\) 0 0
\(329\) 299.019 0.908873
\(330\) 0 0
\(331\) 124.575i 0.376360i 0.982135 + 0.188180i \(0.0602588\pi\)
−0.982135 + 0.188180i \(0.939741\pi\)
\(332\) 0 0
\(333\) 465.182i 1.39694i
\(334\) 0 0
\(335\) 122.711 0.366301
\(336\) 0 0
\(337\) 197.199i 0.585161i −0.956241 0.292581i \(-0.905486\pi\)
0.956241 0.292581i \(-0.0945140\pi\)
\(338\) 0 0
\(339\) 25.2173i 0.0743872i
\(340\) 0 0
\(341\) −378.392 + 483.582i −1.10965 + 1.41813i
\(342\) 0 0
\(343\) −346.581 −1.01044
\(344\) 0 0
\(345\) −456.759 −1.32394
\(346\) 0 0
\(347\) 381.026i 1.09806i −0.835804 0.549029i \(-0.814998\pi\)
0.835804 0.549029i \(-0.185002\pi\)
\(348\) 0 0
\(349\) −212.936 −0.610132 −0.305066 0.952331i \(-0.598679\pi\)
−0.305066 + 0.952331i \(0.598679\pi\)
\(350\) 0 0
\(351\) −31.2649 −0.0890739
\(352\) 0 0
\(353\) 193.368i 0.547785i −0.961760 0.273892i \(-0.911689\pi\)
0.961760 0.273892i \(-0.0883112\pi\)
\(354\) 0 0
\(355\) 65.5269 0.184583
\(356\) 0 0
\(357\) 240.877 0.674726
\(358\) 0 0
\(359\) −51.1939 −0.142601 −0.0713007 0.997455i \(-0.522715\pi\)
−0.0713007 + 0.997455i \(0.522715\pi\)
\(360\) 0 0
\(361\) 551.838 1.52864
\(362\) 0 0
\(363\) 1113.08i 3.06632i
\(364\) 0 0
\(365\) 146.856i 0.402346i
\(366\) 0 0
\(367\) 26.1212i 0.0711749i −0.999367 0.0355874i \(-0.988670\pi\)
0.999367 0.0355874i \(-0.0113302\pi\)
\(368\) 0 0
\(369\) −130.397 −0.353379
\(370\) 0 0
\(371\) 213.658i 0.575899i
\(372\) 0 0
\(373\) −570.539 −1.52960 −0.764798 0.644270i \(-0.777161\pi\)
−0.764798 + 0.644270i \(0.777161\pi\)
\(374\) 0 0
\(375\) 383.258i 1.02202i
\(376\) 0 0
\(377\) 42.3188 0.112251
\(378\) 0 0
\(379\) −67.2893 −0.177544 −0.0887722 0.996052i \(-0.528294\pi\)
−0.0887722 + 0.996052i \(0.528294\pi\)
\(380\) 0 0
\(381\) −342.343 −0.898538
\(382\) 0 0
\(383\) 252.832i 0.660135i 0.943957 + 0.330067i \(0.107071\pi\)
−0.943957 + 0.330067i \(0.892929\pi\)
\(384\) 0 0
\(385\) 509.603i 1.32364i
\(386\) 0 0
\(387\) 512.881i 1.32527i
\(388\) 0 0
\(389\) 726.077i 1.86652i 0.359199 + 0.933261i \(0.383050\pi\)
−0.359199 + 0.933261i \(0.616950\pi\)
\(390\) 0 0
\(391\) −254.118 −0.649918
\(392\) 0 0
\(393\) 811.620i 2.06519i
\(394\) 0 0
\(395\) 210.381i 0.532609i
\(396\) 0 0
\(397\) 250.696 0.631475 0.315737 0.948847i \(-0.397748\pi\)
0.315737 + 0.948847i \(0.397748\pi\)
\(398\) 0 0
\(399\) 547.107i 1.37119i
\(400\) 0 0
\(401\) 602.618i 1.50279i −0.659854 0.751394i \(-0.729382\pi\)
0.659854 0.751394i \(-0.270618\pi\)
\(402\) 0 0
\(403\) −124.274 + 158.821i −0.308373 + 0.394098i
\(404\) 0 0
\(405\) 525.558 1.29768
\(406\) 0 0
\(407\) 1177.00 2.89189
\(408\) 0 0
\(409\) 152.678i 0.373297i −0.982427 0.186648i \(-0.940237\pi\)
0.982427 0.186648i \(-0.0597625\pi\)
\(410\) 0 0
\(411\) −514.215 −1.25113
\(412\) 0 0
\(413\) −248.137 −0.600816
\(414\) 0 0
\(415\) 928.374i 2.23705i
\(416\) 0 0
\(417\) −257.706 −0.617999
\(418\) 0 0
\(419\) 275.963 0.658624 0.329312 0.944221i \(-0.393183\pi\)
0.329312 + 0.944221i \(0.393183\pi\)
\(420\) 0 0
\(421\) 38.1270 0.0905629 0.0452815 0.998974i \(-0.485582\pi\)
0.0452815 + 0.998974i \(0.485582\pi\)
\(422\) 0 0
\(423\) −530.299 −1.25366
\(424\) 0 0
\(425\) 119.327i 0.280770i
\(426\) 0 0
\(427\) 19.9282i 0.0466702i
\(428\) 0 0
\(429\) 528.586i 1.23214i
\(430\) 0 0
\(431\) 406.828 0.943917 0.471959 0.881621i \(-0.343547\pi\)
0.471959 + 0.881621i \(0.343547\pi\)
\(432\) 0 0
\(433\) 788.606i 1.82126i −0.413222 0.910630i \(-0.635597\pi\)
0.413222 0.910630i \(-0.364403\pi\)
\(434\) 0 0
\(435\) −155.539 −0.357561
\(436\) 0 0
\(437\) 577.180i 1.32078i
\(438\) 0 0
\(439\) 175.434 0.399621 0.199810 0.979835i \(-0.435967\pi\)
0.199810 + 0.979835i \(0.435967\pi\)
\(440\) 0 0
\(441\) 231.054 0.523932
\(442\) 0 0
\(443\) −395.115 −0.891907 −0.445953 0.895056i \(-0.647135\pi\)
−0.445953 + 0.895056i \(0.647135\pi\)
\(444\) 0 0
\(445\) 834.435i 1.87513i
\(446\) 0 0
\(447\) 418.529i 0.936307i
\(448\) 0 0
\(449\) 293.854i 0.654463i 0.944944 + 0.327232i \(0.106116\pi\)
−0.944944 + 0.327232i \(0.893884\pi\)
\(450\) 0 0
\(451\) 329.929i 0.731550i
\(452\) 0 0
\(453\) −714.465 −1.57719
\(454\) 0 0
\(455\) 167.368i 0.367841i
\(456\) 0 0
\(457\) 220.014i 0.481430i 0.970596 + 0.240715i \(0.0773819\pi\)
−0.970596 + 0.240715i \(0.922618\pi\)
\(458\) 0 0
\(459\) 63.9310 0.139283
\(460\) 0 0
\(461\) 319.492i 0.693042i 0.938042 + 0.346521i \(0.112637\pi\)
−0.938042 + 0.346521i \(0.887363\pi\)
\(462\) 0 0
\(463\) 261.136i 0.564009i 0.959413 + 0.282004i \(0.0909993\pi\)
−0.959413 + 0.282004i \(0.909001\pi\)
\(464\) 0 0
\(465\) 456.759 583.735i 0.982278 1.25534i
\(466\) 0 0
\(467\) 271.856 0.582132 0.291066 0.956703i \(-0.405990\pi\)
0.291066 + 0.956703i \(0.405990\pi\)
\(468\) 0 0
\(469\) −92.9361 −0.198158
\(470\) 0 0
\(471\) 272.518i 0.578595i
\(472\) 0 0
\(473\) 1297.69 2.74352
\(474\) 0 0
\(475\) −271.029 −0.570588
\(476\) 0 0
\(477\) 378.914i 0.794370i
\(478\) 0 0
\(479\) 192.335 0.401535 0.200767 0.979639i \(-0.435656\pi\)
0.200767 + 0.979639i \(0.435656\pi\)
\(480\) 0 0
\(481\) 386.558 0.803656
\(482\) 0 0
\(483\) 345.931 0.716213
\(484\) 0 0
\(485\) −161.510 −0.333010
\(486\) 0 0
\(487\) 653.665i 1.34223i 0.741354 + 0.671114i \(0.234184\pi\)
−0.741354 + 0.671114i \(0.765816\pi\)
\(488\) 0 0
\(489\) 646.997i 1.32310i
\(490\) 0 0
\(491\) 76.7558i 0.156325i −0.996941 0.0781627i \(-0.975095\pi\)
0.996941 0.0781627i \(-0.0249054\pi\)
\(492\) 0 0
\(493\) −86.5341 −0.175525
\(494\) 0 0
\(495\) 903.760i 1.82578i
\(496\) 0 0
\(497\) −49.6274 −0.0998540
\(498\) 0 0
\(499\) 668.304i 1.33929i −0.742683 0.669643i \(-0.766447\pi\)
0.742683 0.669643i \(-0.233553\pi\)
\(500\) 0 0
\(501\) −226.441 −0.451977
\(502\) 0 0
\(503\) −410.899 −0.816898 −0.408449 0.912781i \(-0.633930\pi\)
−0.408449 + 0.912781i \(0.633930\pi\)
\(504\) 0 0
\(505\) −476.446 −0.943457
\(506\) 0 0
\(507\) 519.678i 1.02501i
\(508\) 0 0
\(509\) 232.833i 0.457432i 0.973493 + 0.228716i \(0.0734527\pi\)
−0.973493 + 0.228716i \(0.926547\pi\)
\(510\) 0 0
\(511\) 111.223i 0.217657i
\(512\) 0 0
\(513\) 145.207i 0.283055i
\(514\) 0 0
\(515\) 1082.64 2.10222
\(516\) 0 0
\(517\) 1341.76i 2.59527i
\(518\) 0 0
\(519\) 27.5289i 0.0530421i
\(520\) 0 0
\(521\) −472.701 −0.907295 −0.453647 0.891181i \(-0.649877\pi\)
−0.453647 + 0.891181i \(0.649877\pi\)
\(522\) 0 0
\(523\) 352.814i 0.674596i −0.941398 0.337298i \(-0.890487\pi\)
0.941398 0.337298i \(-0.109513\pi\)
\(524\) 0 0
\(525\) 162.441i 0.309411i
\(526\) 0 0
\(527\) 254.118 324.761i 0.482197 0.616244i
\(528\) 0 0
\(529\) 164.054 0.310121
\(530\) 0 0
\(531\) 440.061 0.828740
\(532\) 0 0
\(533\) 108.358i 0.203298i
\(534\) 0 0
\(535\) 473.174 0.884437
\(536\) 0 0
\(537\) 259.192 0.482666
\(538\) 0 0
\(539\) 584.610i 1.08462i
\(540\) 0 0
\(541\) −685.337 −1.26680 −0.633399 0.773826i \(-0.718341\pi\)
−0.633399 + 0.773826i \(0.718341\pi\)
\(542\) 0 0
\(543\) −8.37172 −0.0154175
\(544\) 0 0
\(545\) 551.843 1.01256
\(546\) 0 0
\(547\) −839.947 −1.53555 −0.767776 0.640718i \(-0.778637\pi\)
−0.767776 + 0.640718i \(0.778637\pi\)
\(548\) 0 0
\(549\) 35.3418i 0.0643748i
\(550\) 0 0
\(551\) 196.546i 0.356707i
\(552\) 0 0
\(553\) 159.334i 0.288126i
\(554\) 0 0
\(555\) −1420.76 −2.55993
\(556\) 0 0
\(557\) 336.143i 0.603488i 0.953389 + 0.301744i \(0.0975688\pi\)
−0.953389 + 0.301744i \(0.902431\pi\)
\(558\) 0 0
\(559\) 426.195 0.762424
\(560\) 0 0
\(561\) 1080.86i 1.92667i
\(562\) 0 0
\(563\) 455.444 0.808959 0.404479 0.914547i \(-0.367453\pi\)
0.404479 + 0.914547i \(0.367453\pi\)
\(564\) 0 0
\(565\) −35.8284 −0.0634131
\(566\) 0 0
\(567\) −398.037 −0.702005
\(568\) 0 0
\(569\) 370.468i 0.651087i −0.945527 0.325543i \(-0.894453\pi\)
0.945527 0.325543i \(-0.105547\pi\)
\(570\) 0 0
\(571\) 558.126i 0.977454i 0.872437 + 0.488727i \(0.162539\pi\)
−0.872437 + 0.488727i \(0.837461\pi\)
\(572\) 0 0
\(573\) 852.393i 1.48760i
\(574\) 0 0
\(575\) 171.370i 0.298034i
\(576\) 0 0
\(577\) −49.6224 −0.0860006 −0.0430003 0.999075i \(-0.513692\pi\)
−0.0430003 + 0.999075i \(0.513692\pi\)
\(578\) 0 0
\(579\) 198.536i 0.342895i
\(580\) 0 0
\(581\) 703.113i 1.21018i
\(582\) 0 0
\(583\) −958.725 −1.64447
\(584\) 0 0
\(585\) 296.819i 0.507384i
\(586\) 0 0
\(587\) 608.882i 1.03728i −0.854994 0.518639i \(-0.826439\pi\)
0.854994 0.518639i \(-0.173561\pi\)
\(588\) 0 0
\(589\) 737.632 + 577.180i 1.25235 + 0.979932i
\(590\) 0 0
\(591\) −474.989 −0.803704
\(592\) 0 0
\(593\) 719.093 1.21264 0.606318 0.795222i \(-0.292646\pi\)
0.606318 + 0.795222i \(0.292646\pi\)
\(594\) 0 0
\(595\) 342.236i 0.575186i
\(596\) 0 0
\(597\) 1078.42 1.80640
\(598\) 0 0
\(599\) 199.090 0.332371 0.166186 0.986094i \(-0.446855\pi\)
0.166186 + 0.986094i \(0.446855\pi\)
\(600\) 0 0
\(601\) 797.535i 1.32701i 0.748170 + 0.663507i \(0.230933\pi\)
−0.748170 + 0.663507i \(0.769067\pi\)
\(602\) 0 0
\(603\) 164.818 0.273331
\(604\) 0 0
\(605\) 1581.44 2.61396
\(606\) 0 0
\(607\) 197.417 0.325234 0.162617 0.986689i \(-0.448006\pi\)
0.162617 + 0.986689i \(0.448006\pi\)
\(608\) 0 0
\(609\) 117.799 0.193430
\(610\) 0 0
\(611\) 440.669i 0.721226i
\(612\) 0 0
\(613\) 766.958i 1.25115i 0.780162 + 0.625577i \(0.215137\pi\)
−0.780162 + 0.625577i \(0.784863\pi\)
\(614\) 0 0
\(615\) 398.259i 0.647576i
\(616\) 0 0
\(617\) 314.975 0.510494 0.255247 0.966876i \(-0.417843\pi\)
0.255247 + 0.966876i \(0.417843\pi\)
\(618\) 0 0
\(619\) 6.67607i 0.0107852i 0.999985 + 0.00539262i \(0.00171653\pi\)
−0.999985 + 0.00539262i \(0.998283\pi\)
\(620\) 0 0
\(621\) 91.8133 0.147847
\(622\) 0 0
\(623\) 631.967i 1.01439i
\(624\) 0 0
\(625\) −768.793 −1.23007
\(626\) 0 0
\(627\) 2454.97 3.91542
\(628\) 0 0
\(629\) −790.441 −1.25666
\(630\) 0 0
\(631\) 1058.10i 1.67686i 0.545012 + 0.838428i \(0.316525\pi\)
−0.545012 + 0.838428i \(0.683475\pi\)
\(632\) 0 0
\(633\) 701.413i 1.10808i
\(634\) 0 0
\(635\) 486.397i 0.765980i
\(636\) 0 0
\(637\) 192.002i 0.301416i
\(638\) 0 0
\(639\) 88.0122 0.137734
\(640\) 0 0
\(641\) 796.861i 1.24315i −0.783354 0.621576i \(-0.786493\pi\)
0.783354 0.621576i \(-0.213507\pi\)
\(642\) 0 0
\(643\) 875.949i 1.36228i −0.732151 0.681142i \(-0.761484\pi\)
0.732151 0.681142i \(-0.238516\pi\)
\(644\) 0 0
\(645\) −1566.44 −2.42860
\(646\) 0 0
\(647\) 702.288i 1.08545i −0.839910 0.542726i \(-0.817392\pi\)
0.839910 0.542726i \(-0.182608\pi\)
\(648\) 0 0
\(649\) 1113.44i 1.71562i
\(650\) 0 0
\(651\) −345.931 + 442.097i −0.531384 + 0.679105i
\(652\) 0 0
\(653\) −139.653 −0.213863 −0.106932 0.994266i \(-0.534103\pi\)
−0.106932 + 0.994266i \(0.534103\pi\)
\(654\) 0 0
\(655\) 1153.14 1.76052
\(656\) 0 0
\(657\) 197.249i 0.300227i
\(658\) 0 0
\(659\) −1241.56 −1.88400 −0.942000 0.335614i \(-0.891056\pi\)
−0.942000 + 0.335614i \(0.891056\pi\)
\(660\) 0 0
\(661\) −520.200 −0.786990 −0.393495 0.919327i \(-0.628734\pi\)
−0.393495 + 0.919327i \(0.628734\pi\)
\(662\) 0 0
\(663\) 354.984i 0.535421i
\(664\) 0 0
\(665\) 777.323 1.16891
\(666\) 0 0
\(667\) −124.274 −0.186318
\(668\) 0 0
\(669\) −1435.70 −2.14603
\(670\) 0 0
\(671\) −89.4214 −0.133266
\(672\) 0 0
\(673\) 295.895i 0.439665i 0.975538 + 0.219833i \(0.0705511\pi\)
−0.975538 + 0.219833i \(0.929449\pi\)
\(674\) 0 0
\(675\) 43.1132i 0.0638715i
\(676\) 0 0
\(677\) 130.889i 0.193337i −0.995317 0.0966683i \(-0.969181\pi\)
0.995317 0.0966683i \(-0.0308186\pi\)
\(678\) 0 0
\(679\) 122.321 0.180149
\(680\) 0 0
\(681\) 781.418i 1.14746i
\(682\) 0 0
\(683\) −731.066 −1.07037 −0.535187 0.844733i \(-0.679759\pi\)
−0.535187 + 0.844733i \(0.679759\pi\)
\(684\) 0 0
\(685\) 730.591i 1.06656i
\(686\) 0 0
\(687\) 479.362 0.697762
\(688\) 0 0
\(689\) −314.871 −0.456998
\(690\) 0 0
\(691\) 287.247 0.415697 0.207849 0.978161i \(-0.433354\pi\)
0.207849 + 0.978161i \(0.433354\pi\)
\(692\) 0 0
\(693\) 684.471i 0.987693i
\(694\) 0 0
\(695\) 366.145i 0.526828i
\(696\) 0 0
\(697\) 221.571i 0.317893i
\(698\) 0 0
\(699\) 927.187i 1.32645i
\(700\) 0 0
\(701\) 379.382 0.541201 0.270600 0.962692i \(-0.412778\pi\)
0.270600 + 0.962692i \(0.412778\pi\)
\(702\) 0 0
\(703\) 1795.33i 2.55382i
\(704\) 0 0
\(705\) 1619.64i 2.29736i
\(706\) 0 0
\(707\) 360.841 0.510383
\(708\) 0 0
\(709\) 427.358i 0.602762i −0.953504 0.301381i \(-0.902552\pi\)
0.953504 0.301381i \(-0.0974476\pi\)
\(710\) 0 0
\(711\) 282.572i 0.397429i
\(712\) 0 0
\(713\) 364.946 466.399i 0.511846 0.654135i
\(714\) 0 0
\(715\) 751.009 1.05036
\(716\) 0 0
\(717\) 189.486 0.264276
\(718\) 0 0
\(719\) 165.377i 0.230009i 0.993365 + 0.115005i \(0.0366883\pi\)
−0.993365 + 0.115005i \(0.963312\pi\)
\(720\) 0 0
\(721\) −819.950 −1.13724
\(722\) 0 0
\(723\) 565.401 0.782021
\(724\) 0 0
\(725\) 58.3561i 0.0804912i
\(726\) 0 0
\(727\) 376.217 0.517493 0.258746 0.965945i \(-0.416691\pi\)
0.258746 + 0.965945i \(0.416691\pi\)
\(728\) 0 0
\(729\) 528.460 0.724911
\(730\) 0 0
\(731\) −871.490 −1.19219
\(732\) 0 0
\(733\) 389.965 0.532012 0.266006 0.963971i \(-0.414296\pi\)
0.266006 + 0.963971i \(0.414296\pi\)
\(734\) 0 0
\(735\) 705.686i 0.960118i
\(736\) 0 0
\(737\) 417.021i 0.565836i
\(738\) 0 0
\(739\) 1079.09i 1.46020i 0.683338 + 0.730102i \(0.260528\pi\)
−0.683338 + 0.730102i \(0.739472\pi\)
\(740\) 0 0
\(741\) 806.278 1.08809
\(742\) 0 0
\(743\) 1176.58i 1.58355i 0.610812 + 0.791776i \(0.290843\pi\)
−0.610812 + 0.791776i \(0.709157\pi\)
\(744\) 0 0
\(745\) −594.642 −0.798177
\(746\) 0 0
\(747\) 1246.94i 1.66927i
\(748\) 0 0
\(749\) −358.362 −0.478455
\(750\) 0 0
\(751\) 88.5421 0.117899 0.0589494 0.998261i \(-0.481225\pi\)
0.0589494 + 0.998261i \(0.481225\pi\)
\(752\) 0 0
\(753\) 108.642 0.144278
\(754\) 0 0
\(755\) 1015.10i 1.34451i
\(756\) 0 0
\(757\) 457.411i 0.604242i 0.953270 + 0.302121i \(0.0976946\pi\)
−0.953270 + 0.302121i \(0.902305\pi\)
\(758\) 0 0
\(759\) 1552.26i 2.04513i
\(760\) 0 0
\(761\) 878.422i 1.15430i −0.816638 0.577150i \(-0.804165\pi\)
0.816638 0.577150i \(-0.195835\pi\)
\(762\) 0 0
\(763\) −417.943 −0.547763
\(764\) 0 0
\(765\) 606.941i 0.793387i
\(766\) 0 0
\(767\) 365.683i 0.476771i
\(768\) 0 0
\(769\) 772.734 1.00486 0.502428 0.864619i \(-0.332440\pi\)
0.502428 + 0.864619i \(0.332440\pi\)
\(770\) 0 0
\(771\) 73.0952i 0.0948057i
\(772\) 0 0
\(773\) 243.752i 0.315333i −0.987492 0.157667i \(-0.949603\pi\)
0.987492 0.157667i \(-0.0503971\pi\)
\(774\) 0 0
\(775\) −219.009 171.370i −0.282593 0.221122i
\(776\) 0 0
\(777\) 1076.03 1.38485
\(778\) 0 0
\(779\) −503.257 −0.646029
\(780\) 0 0
\(781\) 222.687i 0.285131i
\(782\) 0 0
\(783\) 31.2649 0.0399297
\(784\) 0 0
\(785\) −387.191 −0.493237
\(786\) 0 0
\(787\) 210.039i 0.266886i −0.991056 0.133443i \(-0.957397\pi\)
0.991056 0.133443i \(-0.0426033\pi\)
\(788\) 0 0
\(789\) 542.798 0.687957
\(790\) 0 0
\(791\) 27.1350 0.0343047
\(792\) 0 0
\(793\) −29.3684 −0.0370346
\(794\) 0 0
\(795\) 1157.28 1.45570
\(796\) 0 0
\(797\) 451.447i 0.566433i 0.959056 + 0.283217i \(0.0914015\pi\)
−0.959056 + 0.283217i \(0.908598\pi\)
\(798\) 0 0
\(799\) 901.087i 1.12777i
\(800\) 0 0
\(801\) 1120.77i 1.39921i
\(802\) 0 0
\(803\) 499.078 0.621517
\(804\) 0 0
\(805\) 491.495i 0.610553i
\(806\) 0 0
\(807\) −2052.08 −2.54285
\(808\) 0 0
\(809\) 439.303i 0.543019i 0.962436 + 0.271510i \(0.0875229\pi\)
−0.962436 + 0.271510i \(0.912477\pi\)
\(810\) 0 0
\(811\) 1336.32 1.64774 0.823870 0.566779i \(-0.191811\pi\)
0.823870 + 0.566779i \(0.191811\pi\)
\(812\) 0 0
\(813\) 56.2599 0.0692004
\(814\) 0 0
\(815\) −919.247 −1.12791
\(816\) 0 0
\(817\) 1979.42i 2.42280i
\(818\) 0 0
\(819\) 224.799i 0.274480i
\(820\) 0 0
\(821\) 437.079i 0.532374i 0.963921 + 0.266187i \(0.0857639\pi\)
−0.963921 + 0.266187i \(0.914236\pi\)
\(822\) 0 0
\(823\) 405.739i 0.493001i −0.969143 0.246500i \(-0.920719\pi\)
0.969143 0.246500i \(-0.0792806\pi\)
\(824\) 0 0
\(825\) −728.902 −0.883517
\(826\) 0 0
\(827\) 729.979i 0.882683i −0.897339 0.441342i \(-0.854503\pi\)
0.897339 0.441342i \(-0.145497\pi\)
\(828\) 0 0
\(829\) 847.054i 1.02178i −0.859647 0.510889i \(-0.829316\pi\)
0.859647 0.510889i \(-0.170684\pi\)
\(830\) 0 0
\(831\) −714.755 −0.860115
\(832\) 0 0
\(833\) 392.608i 0.471318i
\(834\) 0 0
\(835\) 321.724i 0.385299i
\(836\) 0 0
\(837\) −91.8133 + 117.337i −0.109693 + 0.140187i
\(838\) 0 0
\(839\) −407.720 −0.485959 −0.242980 0.970031i \(-0.578125\pi\)
−0.242980 + 0.970031i \(0.578125\pi\)
\(840\) 0 0
\(841\) 798.681 0.949680
\(842\) 0 0
\(843\) 743.873i 0.882411i
\(844\) 0 0
\(845\) −738.352 −0.873790
\(846\) 0 0
\(847\) −1197.72 −1.41408
\(848\) 0 0
\(849\) 360.132i 0.424183i
\(850\) 0 0
\(851\) −1135.18 −1.33393
\(852\) 0 0
\(853\) −1231.52 −1.44376 −0.721878 0.692021i \(-0.756721\pi\)
−0.721878 + 0.692021i \(0.756721\pi\)
\(854\) 0 0
\(855\) −1378.55 −1.61234
\(856\) 0 0
\(857\) 563.750 0.657818 0.328909 0.944362i \(-0.393319\pi\)
0.328909 + 0.944362i \(0.393319\pi\)
\(858\) 0 0
\(859\) 1092.81i 1.27218i −0.771614 0.636092i \(-0.780550\pi\)
0.771614 0.636092i \(-0.219450\pi\)
\(860\) 0 0
\(861\) 301.626i 0.350320i
\(862\) 0 0
\(863\) 512.739i 0.594136i 0.954856 + 0.297068i \(0.0960088\pi\)
−0.954856 + 0.297068i \(0.903991\pi\)
\(864\) 0 0
\(865\) 39.1127 0.0452170
\(866\) 0 0
\(867\) 459.672i 0.530187i
\(868\) 0 0
\(869\) −714.960 −0.822739
\(870\) 0 0
\(871\) 136.961i 0.157246i
\(872\) 0 0
\(873\) −216.931 −0.248489
\(874\) 0 0
\(875\) 412.404 0.471319
\(876\) 0 0
\(877\) 1361.26 1.55218 0.776088 0.630625i \(-0.217201\pi\)
0.776088 + 0.630625i \(0.217201\pi\)
\(878\) 0 0
\(879\) 1438.22i 1.63620i
\(880\) 0 0
\(881\) 980.799i 1.11328i −0.830754 0.556640i \(-0.812090\pi\)
0.830754 0.556640i \(-0.187910\pi\)
\(882\) 0 0
\(883\) 879.489i 0.996023i 0.867170 + 0.498012i \(0.165936\pi\)
−0.867170 + 0.498012i \(0.834064\pi\)
\(884\) 0 0
\(885\) 1344.04i 1.51869i
\(886\) 0 0
\(887\) 798.079 0.899751 0.449876 0.893091i \(-0.351468\pi\)
0.449876 + 0.893091i \(0.351468\pi\)
\(888\) 0 0
\(889\) 368.378i 0.414373i
\(890\) 0 0
\(891\) 1786.06i 2.00456i
\(892\) 0 0
\(893\) −2046.65 −2.29188
\(894\) 0 0
\(895\) 368.257i 0.411460i
\(896\) 0 0
\(897\) 509.803i 0.568343i
\(898\) 0 0
\(899\) 124.274 158.821i 0.138236 0.176665i
\(900\) 0 0
\(901\) 643.854 0.714599
\(902\) 0 0
\(903\) 1186.36 1.31380
\(904\) 0 0
\(905\) 11.8944i 0.0131430i
\(906\) 0 0
\(907\) −586.301 −0.646417 −0.323209 0.946328i \(-0.604762\pi\)
−0.323209 + 0.946328i \(0.604762\pi\)
\(908\) 0 0
\(909\) −639.936 −0.704000
\(910\) 0 0
\(911\) 1086.27i 1.19239i −0.802838 0.596197i \(-0.796678\pi\)
0.802838 0.596197i \(-0.203322\pi\)
\(912\) 0 0
\(913\) −3155.00 −3.45564
\(914\) 0 0
\(915\) 107.941 0.117968
\(916\) 0 0
\(917\) −873.342 −0.952391
\(918\) 0 0
\(919\) −362.396 −0.394337 −0.197169 0.980370i \(-0.563175\pi\)
−0.197169 + 0.980370i \(0.563175\pi\)
\(920\) 0 0
\(921\) 1942.28i 2.10888i
\(922\) 0 0
\(923\) 73.1366i 0.0792379i
\(924\) 0 0
\(925\) 533.051i 0.576271i
\(926\) 0 0
\(927\) 1454.15 1.56866
\(928\) 0 0
\(929\) 66.6020i 0.0716922i −0.999357 0.0358461i \(-0.988587\pi\)
0.999357 0.0358461i \(-0.0114126\pi\)
\(930\) 0 0
\(931\) 891.734 0.957824
\(932\) 0 0
\(933\) 1838.84i 1.97089i
\(934\) 0 0
\(935\) −1535.68 −1.64243
\(936\) 0 0
\(937\) 803.024 0.857015 0.428508 0.903538i \(-0.359039\pi\)
0.428508 + 0.903538i \(0.359039\pi\)
\(938\) 0 0
\(939\) −1485.48 −1.58198
\(940\) 0 0
\(941\) 1229.02i 1.30608i 0.757322 + 0.653042i \(0.226507\pi\)
−0.757322 + 0.653042i \(0.773493\pi\)
\(942\) 0 0
\(943\) 318.205i 0.337439i
\(944\) 0 0
\(945\) 123.650i 0.130847i
\(946\) 0 0
\(947\) 755.838i 0.798139i −0.916921 0.399070i \(-0.869333\pi\)
0.916921 0.399070i \(-0.130667\pi\)
\(948\) 0 0
\(949\) 163.911 0.172720
\(950\) 0 0
\(951\) 929.036i 0.976905i
\(952\) 0 0
\(953\) 831.719i 0.872738i 0.899768 + 0.436369i \(0.143736\pi\)
−0.899768 + 0.436369i \(0.856264\pi\)
\(954\) 0 0
\(955\) −1211.07 −1.26814
\(956\) 0 0
\(957\) 528.586i 0.552336i
\(958\) 0 0
\(959\) 553.320i 0.576976i
\(960\) 0 0
\(961\) 231.108 + 932.797i 0.240487 + 0.970652i
\(962\) 0 0
\(963\) 635.541 0.659960
\(964\) 0 0
\(965\) −282.078 −0.292309
\(966\) 0 0
\(967\) 1276.50i 1.32006i 0.751237 + 0.660032i \(0.229457\pi\)
−0.751237 + 0.660032i \(0.770543\pi\)
\(968\) 0 0
\(969\) −1648.69 −1.70143
\(970\) 0 0
\(971\) 1899.15 1.95587 0.977936 0.208906i \(-0.0669901\pi\)
0.977936 + 0.208906i \(0.0669901\pi\)
\(972\) 0 0
\(973\) 277.304i 0.284999i
\(974\) 0 0
\(975\) −239.391 −0.245529
\(976\) 0 0
\(977\) 902.996 0.924254 0.462127 0.886814i \(-0.347086\pi\)
0.462127 + 0.886814i \(0.347086\pi\)
\(978\) 0 0
\(979\) −2835.75 −2.89658
\(980\) 0 0
\(981\) 741.205 0.755561
\(982\) 0 0
\(983\) 1559.25i 1.58622i 0.609079 + 0.793110i \(0.291539\pi\)
−0.609079 + 0.793110i \(0.708461\pi\)
\(984\) 0 0
\(985\) 674.859i 0.685136i
\(986\) 0 0
\(987\) 1226.65i 1.24281i
\(988\) 0 0
\(989\) −1251.57 −1.26549
\(990\) 0 0
\(991\) 1385.77i 1.39836i −0.714947 0.699179i \(-0.753549\pi\)
0.714947 0.699179i \(-0.246451\pi\)
\(992\) 0 0
\(993\) 511.038 0.514640
\(994\) 0 0
\(995\) 1532.21i 1.53991i
\(996\) 0 0
\(997\) 1199.12 1.20273 0.601363 0.798976i \(-0.294625\pi\)
0.601363 + 0.798976i \(0.294625\pi\)
\(998\) 0 0
\(999\) 285.588 0.285874
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 496.3.e.d.433.1 4
4.3 odd 2 62.3.b.a.61.2 yes 4
12.11 even 2 558.3.d.a.433.3 4
20.3 even 4 1550.3.d.a.1549.5 8
20.7 even 4 1550.3.d.a.1549.4 8
20.19 odd 2 1550.3.c.a.1301.3 4
31.30 odd 2 inner 496.3.e.d.433.4 4
124.123 even 2 62.3.b.a.61.1 4
372.371 odd 2 558.3.d.a.433.4 4
620.123 odd 4 1550.3.d.a.1549.8 8
620.247 odd 4 1550.3.d.a.1549.1 8
620.619 even 2 1550.3.c.a.1301.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.3.b.a.61.1 4 124.123 even 2
62.3.b.a.61.2 yes 4 4.3 odd 2
496.3.e.d.433.1 4 1.1 even 1 trivial
496.3.e.d.433.4 4 31.30 odd 2 inner
558.3.d.a.433.3 4 12.11 even 2
558.3.d.a.433.4 4 372.371 odd 2
1550.3.c.a.1301.3 4 20.19 odd 2
1550.3.c.a.1301.4 4 620.619 even 2
1550.3.d.a.1549.1 8 620.247 odd 4
1550.3.d.a.1549.4 8 20.7 even 4
1550.3.d.a.1549.5 8 20.3 even 4
1550.3.d.a.1549.8 8 620.123 odd 4