Properties

Label 588.2.n.f.275.11
Level $588$
Weight $2$
Character 588.275
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(263,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.263"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,4,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 275.11
Character \(\chi\) \(=\) 588.275
Dual form 588.2.n.f.263.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36159 + 0.382199i) q^{2} +(-0.683917 - 1.59131i) q^{3} +(1.70785 + 1.04079i) q^{4} +(1.97228 + 1.13870i) q^{5} +(-0.323018 - 2.42810i) q^{6} +(1.92760 + 2.06987i) q^{8} +(-2.06452 + 2.17664i) q^{9} +(2.25023 + 2.30424i) q^{10} +(2.15917 + 3.73979i) q^{11} +(0.488197 - 3.42953i) q^{12} -0.406728 q^{13} +(0.463141 - 3.91729i) q^{15} +(1.83349 + 3.55504i) q^{16} +(3.73979 - 2.15917i) q^{17} +(-3.64293 + 2.17464i) q^{18} +(-4.70065 - 2.71392i) q^{19} +(2.18321 + 3.99747i) q^{20} +(1.51056 + 5.91729i) q^{22} +(0.581371 - 1.00696i) q^{23} +(1.97548 - 4.48302i) q^{24} +(0.0932716 + 0.161551i) q^{25} +(-0.553797 - 0.155451i) q^{26} +(4.87566 + 1.79664i) q^{27} -3.72469i q^{29} +(2.12779 - 5.15672i) q^{30} +(-5.05289 + 2.91729i) q^{31} +(1.13773 + 5.54126i) q^{32} +(4.47446 - 5.99360i) q^{33} +(5.91729 - 1.51056i) q^{34} +(-5.79132 + 1.56864i) q^{36} +(3.91729 - 6.78494i) q^{37} +(-5.36310 - 5.49183i) q^{38} +(0.278168 + 0.647230i) q^{39} +(1.44481 + 6.27733i) q^{40} +2.56195i q^{41} -11.0211i q^{43} +(-0.204820 + 8.63424i) q^{44} +(-6.55035 + 1.94210i) q^{45} +(1.17645 - 1.14887i) q^{46} +(1.16274 - 2.01393i) q^{47} +(4.40320 - 5.34900i) q^{48} +(0.0652529 + 0.255614i) q^{50} +(-5.99360 - 4.47446i) q^{51} +(-0.694631 - 0.423321i) q^{52} +(-4.74675 + 2.74054i) q^{53} +(5.95198 + 4.30975i) q^{54} +9.83457i q^{55} +(-1.10383 + 9.33627i) q^{57} +(1.42357 - 5.07150i) q^{58} +(1.95653 + 3.38881i) q^{59} +(4.86807 - 6.20810i) q^{60} +(-5.22448 + 9.04906i) q^{61} +(-7.99494 + 2.04094i) q^{62} +(-0.568736 + 7.97976i) q^{64} +(-0.802184 - 0.463141i) q^{65} +(8.38312 - 6.45069i) q^{66} +(-6.78494 + 3.91729i) q^{67} +(8.63424 + 0.204820i) q^{68} +(-2.00000 - 0.236460i) q^{69} +4.88743 q^{71} +(-8.48493 - 0.0775907i) q^{72} +(-1.40673 - 2.43653i) q^{73} +(7.92693 - 7.74112i) q^{74} +(0.193287 - 0.258911i) q^{75} +(-5.20336 - 9.52738i) q^{76} +(0.131381 + 0.987576i) q^{78} +(-3.46410 - 2.00000i) q^{79} +(-0.431948 + 9.09935i) q^{80} +(-0.475549 - 8.98743i) q^{81} +(-0.979172 + 3.48832i) q^{82} -0.641735 q^{83} +9.83457 q^{85} +(4.21225 - 15.0062i) q^{86} +(-5.92712 + 2.54738i) q^{87} +(-3.57888 + 11.6780i) q^{88} +(-12.1218 - 6.99851i) q^{89} +(-9.66116 + 0.140802i) q^{90} +(2.04094 - 1.11466i) q^{92} +(8.09805 + 6.04551i) q^{93} +(2.35290 - 2.29775i) q^{94} +(-6.18068 - 10.7053i) q^{95} +(8.03973 - 5.60024i) q^{96} -2.00000 q^{97} +(-12.5978 - 3.02112i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} - 12 q^{6} + 4 q^{9} - 4 q^{10} + 6 q^{12} - 4 q^{16} + 8 q^{18} - 32 q^{22} - 2 q^{24} + 12 q^{25} - 20 q^{30} + 16 q^{33} + 64 q^{34} - 40 q^{36} + 16 q^{37} - 20 q^{40} - 24 q^{45} + 92 q^{48}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36159 + 0.382199i 0.962789 + 0.270255i
\(3\) −0.683917 1.59131i −0.394860 0.918742i
\(4\) 1.70785 + 1.04079i 0.853924 + 0.520397i
\(5\) 1.97228 + 1.13870i 0.882033 + 0.509242i 0.871328 0.490701i \(-0.163259\pi\)
0.0107045 + 0.999943i \(0.496593\pi\)
\(6\) −0.323018 2.42810i −0.131872 0.991267i
\(7\) 0 0
\(8\) 1.92760 + 2.06987i 0.681509 + 0.731810i
\(9\) −2.06452 + 2.17664i −0.688172 + 0.725548i
\(10\) 2.25023 + 2.30424i 0.711586 + 0.728666i
\(11\) 2.15917 + 3.73979i 0.651014 + 1.12759i 0.982877 + 0.184261i \(0.0589893\pi\)
−0.331864 + 0.943327i \(0.607677\pi\)
\(12\) 0.488197 3.42953i 0.140930 0.990020i
\(13\) −0.406728 −0.112806 −0.0564031 0.998408i \(-0.517963\pi\)
−0.0564031 + 0.998408i \(0.517963\pi\)
\(14\) 0 0
\(15\) 0.463141 3.91729i 0.119583 1.01144i
\(16\) 1.83349 + 3.55504i 0.458373 + 0.888760i
\(17\) 3.73979 2.15917i 0.907032 0.523675i 0.0275570 0.999620i \(-0.491227\pi\)
0.879475 + 0.475945i \(0.157894\pi\)
\(18\) −3.64293 + 2.17464i −0.858647 + 0.512567i
\(19\) −4.70065 2.71392i −1.07840 0.622616i −0.147938 0.988997i \(-0.547264\pi\)
−0.930465 + 0.366380i \(0.880597\pi\)
\(20\) 2.18321 + 3.99747i 0.488181 + 0.893861i
\(21\) 0 0
\(22\) 1.51056 + 5.91729i 0.322052 + 1.26157i
\(23\) 0.581371 1.00696i 0.121224 0.209967i −0.799026 0.601296i \(-0.794651\pi\)
0.920251 + 0.391329i \(0.127985\pi\)
\(24\) 1.97548 4.48302i 0.403244 0.915092i
\(25\) 0.0932716 + 0.161551i 0.0186543 + 0.0323102i
\(26\) −0.553797 0.155451i −0.108609 0.0304865i
\(27\) 4.87566 + 1.79664i 0.938322 + 0.345763i
\(28\) 0 0
\(29\) 3.72469i 0.691657i −0.938298 0.345829i \(-0.887598\pi\)
0.938298 0.345829i \(-0.112402\pi\)
\(30\) 2.12779 5.15672i 0.388479 0.941484i
\(31\) −5.05289 + 2.91729i −0.907525 + 0.523960i −0.879634 0.475651i \(-0.842213\pi\)
−0.0278913 + 0.999611i \(0.508879\pi\)
\(32\) 1.13773 + 5.54126i 0.201125 + 0.979566i
\(33\) 4.47446 5.99360i 0.778904 1.04335i
\(34\) 5.91729 1.51056i 1.01481 0.259058i
\(35\) 0 0
\(36\) −5.79132 + 1.56864i −0.965220 + 0.261440i
\(37\) 3.91729 6.78494i 0.643998 1.11544i −0.340534 0.940232i \(-0.610608\pi\)
0.984532 0.175205i \(-0.0560588\pi\)
\(38\) −5.36310 5.49183i −0.870009 0.890892i
\(39\) 0.278168 + 0.647230i 0.0445426 + 0.103640i
\(40\) 1.44481 + 6.27733i 0.228445 + 0.992533i
\(41\) 2.56195i 0.400109i 0.979785 + 0.200054i \(0.0641119\pi\)
−0.979785 + 0.200054i \(0.935888\pi\)
\(42\) 0 0
\(43\) 11.0211i 1.68070i −0.542041 0.840352i \(-0.682348\pi\)
0.542041 0.840352i \(-0.317652\pi\)
\(44\) −0.204820 + 8.63424i −0.0308777 + 1.30166i
\(45\) −6.55035 + 1.94210i −0.976469 + 0.289511i
\(46\) 1.17645 1.14887i 0.173458 0.169392i
\(47\) 1.16274 2.01393i 0.169603 0.293762i −0.768677 0.639637i \(-0.779085\pi\)
0.938281 + 0.345875i \(0.112418\pi\)
\(48\) 4.40320 5.34900i 0.635547 0.772062i
\(49\) 0 0
\(50\) 0.0652529 + 0.255614i 0.00922816 + 0.0361493i
\(51\) −5.99360 4.47446i −0.839272 0.626550i
\(52\) −0.694631 0.423321i −0.0963279 0.0587040i
\(53\) −4.74675 + 2.74054i −0.652017 + 0.376442i −0.789228 0.614100i \(-0.789519\pi\)
0.137212 + 0.990542i \(0.456186\pi\)
\(54\) 5.95198 + 4.30975i 0.809962 + 0.586483i
\(55\) 9.83457i 1.32609i
\(56\) 0 0
\(57\) −1.10383 + 9.33627i −0.146206 + 1.23662i
\(58\) 1.42357 5.07150i 0.186924 0.665920i
\(59\) 1.95653 + 3.38881i 0.254719 + 0.441186i 0.964819 0.262915i \(-0.0846838\pi\)
−0.710100 + 0.704100i \(0.751350\pi\)
\(60\) 4.86807 6.20810i 0.628464 0.801462i
\(61\) −5.22448 + 9.04906i −0.668926 + 1.15861i 0.309279 + 0.950971i \(0.399912\pi\)
−0.978205 + 0.207642i \(0.933421\pi\)
\(62\) −7.99494 + 2.04094i −1.01536 + 0.259199i
\(63\) 0 0
\(64\) −0.568736 + 7.97976i −0.0710920 + 0.997470i
\(65\) −0.802184 0.463141i −0.0994987 0.0574456i
\(66\) 8.38312 6.45069i 1.03189 0.794025i
\(67\) −6.78494 + 3.91729i −0.828912 + 0.478573i −0.853480 0.521126i \(-0.825512\pi\)
0.0245679 + 0.999698i \(0.492179\pi\)
\(68\) 8.63424 + 0.204820i 1.04706 + 0.0248380i
\(69\) −2.00000 0.236460i −0.240772 0.0284665i
\(70\) 0 0
\(71\) 4.88743 0.580031 0.290016 0.957022i \(-0.406339\pi\)
0.290016 + 0.957022i \(0.406339\pi\)
\(72\) −8.48493 0.0775907i −0.999958 0.00914415i
\(73\) −1.40673 2.43653i −0.164645 0.285174i 0.771884 0.635763i \(-0.219315\pi\)
−0.936529 + 0.350590i \(0.885981\pi\)
\(74\) 7.92693 7.74112i 0.921486 0.899886i
\(75\) 0.193287 0.258911i 0.0223189 0.0298965i
\(76\) −5.20336 9.52738i −0.596867 1.09287i
\(77\) 0 0
\(78\) 0.131381 + 0.987576i 0.0148759 + 0.111821i
\(79\) −3.46410 2.00000i −0.389742 0.225018i 0.292306 0.956325i \(-0.405577\pi\)
−0.682048 + 0.731307i \(0.738911\pi\)
\(80\) −0.431948 + 9.09935i −0.0482933 + 1.01734i
\(81\) −0.475549 8.98743i −0.0528388 0.998603i
\(82\) −0.979172 + 3.48832i −0.108131 + 0.385220i
\(83\) −0.641735 −0.0704395 −0.0352198 0.999380i \(-0.511213\pi\)
−0.0352198 + 0.999380i \(0.511213\pi\)
\(84\) 0 0
\(85\) 9.83457 1.06671
\(86\) 4.21225 15.0062i 0.454219 1.61816i
\(87\) −5.92712 + 2.54738i −0.635454 + 0.273108i
\(88\) −3.57888 + 11.6780i −0.381509 + 1.24488i
\(89\) −12.1218 6.99851i −1.28491 0.741841i −0.307165 0.951656i \(-0.599380\pi\)
−0.977741 + 0.209815i \(0.932714\pi\)
\(90\) −9.66116 + 0.140802i −1.01838 + 0.0148419i
\(91\) 0 0
\(92\) 2.04094 1.11466i 0.212782 0.116211i
\(93\) 8.09805 + 6.04551i 0.839729 + 0.626891i
\(94\) 2.35290 2.29775i 0.242683 0.236994i
\(95\) −6.18068 10.7053i −0.634124 1.09834i
\(96\) 8.03973 5.60024i 0.820552 0.571573i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −12.5978 3.02112i −1.26613 0.303633i
\(100\) −0.00884778 + 0.372981i −0.000884778 + 0.0372981i
\(101\) 7.52122 4.34238i 0.748390 0.432083i −0.0767221 0.997053i \(-0.524445\pi\)
0.825112 + 0.564970i \(0.191112\pi\)
\(102\) −6.45069 8.38312i −0.638714 0.830053i
\(103\) −9.22146 5.32401i −0.908618 0.524591i −0.0286316 0.999590i \(-0.509115\pi\)
−0.879986 + 0.474999i \(0.842448\pi\)
\(104\) −0.784009 0.841876i −0.0768784 0.0825527i
\(105\) 0 0
\(106\) −7.51056 + 1.91729i −0.729490 + 0.186223i
\(107\) −4.20011 + 7.27480i −0.406040 + 0.703281i −0.994442 0.105287i \(-0.966424\pi\)
0.588402 + 0.808568i \(0.299757\pi\)
\(108\) 6.45697 + 8.14295i 0.621322 + 0.783555i
\(109\) 5.24130 + 9.07820i 0.502026 + 0.869534i 0.999997 + 0.00234046i \(0.000744993\pi\)
−0.497972 + 0.867193i \(0.665922\pi\)
\(110\) −3.75876 + 13.3906i −0.358384 + 1.27675i
\(111\) −13.4760 1.59327i −1.27909 0.151227i
\(112\) 0 0
\(113\) 9.56296i 0.899607i −0.893128 0.449804i \(-0.851494\pi\)
0.893128 0.449804i \(-0.148506\pi\)
\(114\) −5.07127 + 12.2903i −0.474968 + 1.15109i
\(115\) 2.29326 1.32401i 0.213848 0.123465i
\(116\) 3.87664 6.36121i 0.359937 0.590623i
\(117\) 0.839697 0.885303i 0.0776300 0.0818463i
\(118\) 1.36879 + 5.36195i 0.126008 + 0.493608i
\(119\) 0 0
\(120\) 9.00103 6.59231i 0.821678 0.601793i
\(121\) −3.82401 + 6.62339i −0.347638 + 0.602126i
\(122\) −10.5721 + 10.3243i −0.957156 + 0.934720i
\(123\) 4.07684 1.75216i 0.367597 0.157987i
\(124\) −11.6659 0.276735i −1.04763 0.0248515i
\(125\) 10.9622i 0.980485i
\(126\) 0 0
\(127\) 6.20766i 0.550841i 0.961324 + 0.275420i \(0.0888170\pi\)
−0.961324 + 0.275420i \(0.911183\pi\)
\(128\) −3.82424 + 10.6478i −0.338018 + 0.941140i
\(129\) −17.5380 + 7.53753i −1.54413 + 0.663642i
\(130\) −0.915233 0.937202i −0.0802713 0.0821980i
\(131\) −7.20115 + 12.4728i −0.629167 + 1.08975i 0.358552 + 0.933510i \(0.383271\pi\)
−0.987719 + 0.156240i \(0.950063\pi\)
\(132\) 13.8798 5.57917i 1.20808 0.485605i
\(133\) 0 0
\(134\) −10.7355 + 2.74054i −0.927404 + 0.236747i
\(135\) 7.57037 + 9.09539i 0.651554 + 0.782807i
\(136\) 11.6780 + 3.57888i 1.00138 + 0.306886i
\(137\) −2.01393 + 1.16274i −0.172062 + 0.0993398i −0.583558 0.812072i \(-0.698340\pi\)
0.411496 + 0.911412i \(0.365006\pi\)
\(138\) −2.63280 1.08636i −0.224119 0.0924770i
\(139\) 9.22019i 0.782046i −0.920381 0.391023i \(-0.872121\pi\)
0.920381 0.391023i \(-0.127879\pi\)
\(140\) 0 0
\(141\) −4.00000 0.472921i −0.336861 0.0398271i
\(142\) 6.65467 + 1.86797i 0.558448 + 0.156757i
\(143\) −0.878195 1.52108i −0.0734384 0.127199i
\(144\) −11.5233 3.34857i −0.960277 0.279048i
\(145\) 4.24130 7.34615i 0.352221 0.610064i
\(146\) −0.984149 3.85520i −0.0814488 0.319058i
\(147\) 0 0
\(148\) 13.7519 7.51056i 1.13040 0.617364i
\(149\) −15.0594 8.69454i −1.23371 0.712284i −0.265911 0.963998i \(-0.585673\pi\)
−0.967802 + 0.251713i \(0.919006\pi\)
\(150\) 0.362133 0.278656i 0.0295681 0.0227522i
\(151\) 3.60737 2.08271i 0.293563 0.169489i −0.345984 0.938240i \(-0.612455\pi\)
0.639548 + 0.768751i \(0.279122\pi\)
\(152\) −3.44349 14.9611i −0.279304 1.21350i
\(153\) −3.02112 + 12.5978i −0.244243 + 1.01847i
\(154\) 0 0
\(155\) −13.2876 −1.06729
\(156\) −0.198564 + 1.39489i −0.0158978 + 0.111680i
\(157\) 9.63121 + 16.6817i 0.768654 + 1.33135i 0.938293 + 0.345842i \(0.112407\pi\)
−0.169639 + 0.985506i \(0.554260\pi\)
\(158\) −3.95229 4.04715i −0.314427 0.321974i
\(159\) 7.60742 + 5.67924i 0.603308 + 0.450393i
\(160\) −4.06589 + 12.2245i −0.321437 + 0.966430i
\(161\) 0 0
\(162\) 2.78748 12.4189i 0.219005 0.975724i
\(163\) 7.48941 + 4.32401i 0.586616 + 0.338683i 0.763758 0.645502i \(-0.223352\pi\)
−0.177142 + 0.984185i \(0.556685\pi\)
\(164\) −2.66646 + 4.37542i −0.208216 + 0.341663i
\(165\) 15.6498 6.72603i 1.21834 0.523621i
\(166\) −0.873779 0.245270i −0.0678184 0.0190367i
\(167\) 1.75639 0.135914 0.0679568 0.997688i \(-0.478352\pi\)
0.0679568 + 0.997688i \(0.478352\pi\)
\(168\) 0 0
\(169\) −12.8346 −0.987275
\(170\) 13.3906 + 3.75876i 1.02702 + 0.288284i
\(171\) 15.6118 4.62870i 1.19386 0.353966i
\(172\) 11.4707 18.8224i 0.874634 1.43519i
\(173\) 6.81927 + 3.93711i 0.518459 + 0.299333i 0.736304 0.676651i \(-0.236569\pi\)
−0.217845 + 0.975983i \(0.569903\pi\)
\(174\) −9.04391 + 1.20314i −0.685617 + 0.0912100i
\(175\) 0 0
\(176\) −9.33627 + 14.5328i −0.703748 + 1.09545i
\(177\) 4.05453 5.43111i 0.304757 0.408227i
\(178\) −13.8301 14.1620i −1.03661 1.06149i
\(179\) −4.67303 8.09392i −0.349278 0.604968i 0.636843 0.770993i \(-0.280240\pi\)
−0.986121 + 0.166026i \(0.946907\pi\)
\(180\) −13.2083 3.50076i −0.984491 0.260932i
\(181\) 16.8893 1.25537 0.627687 0.778466i \(-0.284002\pi\)
0.627687 + 0.778466i \(0.284002\pi\)
\(182\) 0 0
\(183\) 17.9729 + 2.12494i 1.32860 + 0.157080i
\(184\) 3.20494 0.737659i 0.236271 0.0543809i
\(185\) 15.4520 8.92122i 1.13605 0.655901i
\(186\) 8.71563 + 11.3266i 0.639061 + 0.830504i
\(187\) 16.1497 + 9.32401i 1.18098 + 0.681839i
\(188\) 4.08188 2.22931i 0.297701 0.162589i
\(189\) 0 0
\(190\) −4.32401 16.9384i −0.313697 1.22884i
\(191\) 10.1541 17.5874i 0.734725 1.27258i −0.220118 0.975473i \(-0.570644\pi\)
0.954844 0.297108i \(-0.0960223\pi\)
\(192\) 13.0872 4.55246i 0.944488 0.328545i
\(193\) −3.42784 5.93720i −0.246742 0.427369i 0.715878 0.698225i \(-0.246027\pi\)
−0.962620 + 0.270856i \(0.912693\pi\)
\(194\) −2.72318 0.764397i −0.195513 0.0548805i
\(195\) −0.188373 + 1.59327i −0.0134897 + 0.114097i
\(196\) 0 0
\(197\) 1.96830i 0.140235i 0.997539 + 0.0701177i \(0.0223375\pi\)
−0.997539 + 0.0701177i \(0.977662\pi\)
\(198\) −15.9984 8.92839i −1.13696 0.634513i
\(199\) 5.51925 3.18654i 0.391250 0.225888i −0.291452 0.956586i \(-0.594138\pi\)
0.682701 + 0.730697i \(0.260805\pi\)
\(200\) −0.154600 + 0.504466i −0.0109319 + 0.0356711i
\(201\) 10.8739 + 8.11782i 0.766988 + 0.572587i
\(202\) 11.9005 3.03794i 0.837314 0.213748i
\(203\) 0 0
\(204\) −5.57917 13.8798i −0.390620 0.971781i
\(205\) −2.91729 + 5.05289i −0.203752 + 0.352909i
\(206\) −10.5210 10.7735i −0.733034 0.750629i
\(207\) 0.991553 + 3.34433i 0.0689177 + 0.232447i
\(208\) −0.745734 1.44594i −0.0517073 0.100258i
\(209\) 23.4393i 1.62133i
\(210\) 0 0
\(211\) 25.1306i 1.73006i 0.501717 + 0.865032i \(0.332702\pi\)
−0.501717 + 0.865032i \(0.667298\pi\)
\(212\) −10.9591 0.259969i −0.752672 0.0178547i
\(213\) −3.34260 7.77740i −0.229031 0.532899i
\(214\) −8.49923 + 8.30001i −0.580996 + 0.567377i
\(215\) 12.5497 21.7368i 0.855885 1.48244i
\(216\) 5.67951 + 13.5552i 0.386442 + 0.922314i
\(217\) 0 0
\(218\) 3.66682 + 14.3640i 0.248349 + 0.972852i
\(219\) −2.91517 + 3.90492i −0.196989 + 0.263870i
\(220\) −10.2358 + 16.7960i −0.690095 + 1.13238i
\(221\) −1.52108 + 0.878195i −0.102319 + 0.0590738i
\(222\) −17.7398 7.31989i −1.19062 0.491279i
\(223\) 9.22877i 0.618004i −0.951061 0.309002i \(-0.900005\pi\)
0.951061 0.309002i \(-0.0999950\pi\)
\(224\) 0 0
\(225\) −0.544200 0.130506i −0.0362800 0.00870039i
\(226\) 3.65495 13.0208i 0.243123 0.866132i
\(227\) 9.76310 + 16.9102i 0.647999 + 1.12237i 0.983600 + 0.180364i \(0.0577274\pi\)
−0.335601 + 0.942004i \(0.608939\pi\)
\(228\) −11.6023 + 14.7961i −0.768382 + 0.979895i
\(229\) −1.01682 + 1.76119i −0.0671934 + 0.116382i −0.897665 0.440679i \(-0.854738\pi\)
0.830471 + 0.557061i \(0.188071\pi\)
\(230\) 3.62851 0.926283i 0.239257 0.0610773i
\(231\) 0 0
\(232\) 7.70963 7.17970i 0.506162 0.471370i
\(233\) 2.83305 + 1.63566i 0.185599 + 0.107156i 0.589921 0.807461i \(-0.299159\pi\)
−0.404321 + 0.914617i \(0.632492\pi\)
\(234\) 1.48168 0.884487i 0.0968607 0.0578207i
\(235\) 4.58652 2.64803i 0.299192 0.172738i
\(236\) −0.185597 + 7.82392i −0.0120814 + 0.509294i
\(237\) −0.813457 + 6.88028i −0.0528397 + 0.446922i
\(238\) 0 0
\(239\) 24.5058 1.58515 0.792575 0.609775i \(-0.208740\pi\)
0.792575 + 0.609775i \(0.208740\pi\)
\(240\) 14.7753 5.53583i 0.953740 0.357336i
\(241\) −9.20766 15.9481i −0.593117 1.02731i −0.993810 0.111097i \(-0.964564\pi\)
0.400692 0.916213i \(-0.368770\pi\)
\(242\) −7.73818 + 7.55680i −0.497429 + 0.485769i
\(243\) −13.9765 + 6.90340i −0.896594 + 0.442853i
\(244\) −18.3408 + 10.0168i −1.17415 + 0.641261i
\(245\) 0 0
\(246\) 6.22066 0.827555i 0.396615 0.0527630i
\(247\) 1.91189 + 1.10383i 0.121651 + 0.0702350i
\(248\) −15.7783 4.83547i −1.00193 0.307053i
\(249\) 0.438893 + 1.02120i 0.0278137 + 0.0647157i
\(250\) 4.18972 14.9260i 0.264981 0.944000i
\(251\) 15.4443 0.974837 0.487418 0.873169i \(-0.337939\pi\)
0.487418 + 0.873169i \(0.337939\pi\)
\(252\) 0 0
\(253\) 5.02112 0.315675
\(254\) −2.37256 + 8.45228i −0.148868 + 0.530343i
\(255\) −6.72603 15.6498i −0.421200 0.980030i
\(256\) −9.27660 + 13.0363i −0.579788 + 0.814768i
\(257\) 7.76765 + 4.48465i 0.484533 + 0.279745i 0.722303 0.691576i \(-0.243083\pi\)
−0.237771 + 0.971321i \(0.576417\pi\)
\(258\) −26.7603 + 3.56002i −1.66603 + 0.221637i
\(259\) 0 0
\(260\) −0.887974 1.62588i −0.0550698 0.100833i
\(261\) 8.10732 + 7.68968i 0.501830 + 0.475979i
\(262\) −14.5721 + 14.2305i −0.900266 + 0.879163i
\(263\) 9.68119 + 16.7683i 0.596967 + 1.03398i 0.993266 + 0.115856i \(0.0369612\pi\)
−0.396299 + 0.918122i \(0.629705\pi\)
\(264\) 21.0309 2.29170i 1.29437 0.141044i
\(265\) −12.4826 −0.766800
\(266\) 0 0
\(267\) −2.84649 + 24.0759i −0.174203 + 1.47342i
\(268\) −15.6647 0.371595i −0.956876 0.0226988i
\(269\) 0.0416451 0.0240438i 0.00253914 0.00146598i −0.498730 0.866757i \(-0.666200\pi\)
0.501269 + 0.865291i \(0.332867\pi\)
\(270\) 6.83149 + 15.2776i 0.415751 + 0.929763i
\(271\) 17.2138 + 9.93840i 1.04566 + 0.603715i 0.921433 0.388538i \(-0.127020\pi\)
0.124232 + 0.992253i \(0.460353\pi\)
\(272\) 14.5328 + 9.33627i 0.881181 + 0.566095i
\(273\) 0 0
\(274\) −3.18654 + 0.813457i −0.192506 + 0.0491427i
\(275\) −0.402778 + 0.697632i −0.0242884 + 0.0420688i
\(276\) −3.16959 2.48543i −0.190787 0.149605i
\(277\) −5.13747 8.89836i −0.308681 0.534651i 0.669393 0.742908i \(-0.266554\pi\)
−0.978074 + 0.208257i \(0.933221\pi\)
\(278\) 3.52394 12.5541i 0.211352 0.752945i
\(279\) 4.08188 17.0211i 0.244376 1.01903i
\(280\) 0 0
\(281\) 6.78411i 0.404706i −0.979313 0.202353i \(-0.935141\pi\)
0.979313 0.202353i \(-0.0648588\pi\)
\(282\) −5.26561 2.17272i −0.313562 0.129383i
\(283\) −4.70065 + 2.71392i −0.279425 + 0.161326i −0.633163 0.774019i \(-0.718244\pi\)
0.353738 + 0.935344i \(0.384910\pi\)
\(284\) 8.34699 + 5.08681i 0.495303 + 0.301847i
\(285\) −12.8083 + 17.1569i −0.758697 + 1.01628i
\(286\) −0.614387 2.40673i −0.0363294 0.142313i
\(287\) 0 0
\(288\) −14.4102 8.96358i −0.849130 0.528184i
\(289\) 0.824014 1.42723i 0.0484714 0.0839550i
\(290\) 8.58259 8.38141i 0.503987 0.492174i
\(291\) 1.36783 + 3.18261i 0.0801838 + 0.186568i
\(292\) 0.133443 5.62533i 0.00780915 0.329198i
\(293\) 28.1874i 1.64673i 0.567515 + 0.823363i \(0.307905\pi\)
−0.567515 + 0.823363i \(0.692095\pi\)
\(294\) 0 0
\(295\) 8.91160i 0.518853i
\(296\) 21.5949 4.97035i 1.25518 0.288896i
\(297\) 3.80834 + 22.1132i 0.220982 + 1.28314i
\(298\) −17.1817 17.5941i −0.995306 1.01920i
\(299\) −0.236460 + 0.409561i −0.0136749 + 0.0236855i
\(300\) 0.599579 0.241009i 0.0346167 0.0139146i
\(301\) 0 0
\(302\) 5.70776 1.45707i 0.328445 0.0838450i
\(303\) −12.0540 8.99875i −0.692481 0.516965i
\(304\) 1.02949 21.6870i 0.0590450 1.24383i
\(305\) −20.6083 + 11.8982i −1.18003 + 0.681290i
\(306\) −8.92839 + 15.9984i −0.510402 + 0.914567i
\(307\) 2.24130i 0.127918i −0.997953 0.0639589i \(-0.979627\pi\)
0.997953 0.0639589i \(-0.0203727\pi\)
\(308\) 0 0
\(309\) −2.16543 + 18.3154i −0.123187 + 1.04192i
\(310\) −18.0923 5.07852i −1.02757 0.288440i
\(311\) −13.2396 22.9316i −0.750746 1.30033i −0.947461 0.319870i \(-0.896361\pi\)
0.196715 0.980461i \(-0.436973\pi\)
\(312\) −0.803486 + 1.82337i −0.0454884 + 0.103228i
\(313\) −0.220185 + 0.381372i −0.0124456 + 0.0215564i −0.872181 0.489183i \(-0.837295\pi\)
0.859736 + 0.510739i \(0.170628\pi\)
\(314\) 6.73801 + 26.3947i 0.380248 + 1.48954i
\(315\) 0 0
\(316\) −3.83457 7.02112i −0.215712 0.394969i
\(317\) −10.2124 5.89613i −0.573586 0.331160i 0.184995 0.982740i \(-0.440773\pi\)
−0.758580 + 0.651580i \(0.774107\pi\)
\(318\) 8.18759 + 10.6403i 0.459137 + 0.596681i
\(319\) 13.9296 8.04223i 0.779905 0.450278i
\(320\) −10.2083 + 15.0907i −0.570659 + 0.843598i
\(321\) 14.4490 + 1.70830i 0.806462 + 0.0953482i
\(322\) 0 0
\(323\) −23.4393 −1.30419
\(324\) 8.54190 15.8441i 0.474550 0.880229i
\(325\) −0.0379362 0.0657074i −0.00210432 0.00364479i
\(326\) 8.54487 + 8.74997i 0.473257 + 0.484616i
\(327\) 10.8616 14.5492i 0.600647 0.804575i
\(328\) −5.30290 + 4.93840i −0.292804 + 0.272678i
\(329\) 0 0
\(330\) 23.8793 3.17675i 1.31451 0.174874i
\(331\) 1.13427 + 0.654870i 0.0623451 + 0.0359949i 0.530849 0.847467i \(-0.321873\pi\)
−0.468503 + 0.883462i \(0.655207\pi\)
\(332\) −1.09599 0.667914i −0.0601500 0.0366565i
\(333\) 6.68109 + 22.5341i 0.366121 + 1.23486i
\(334\) 2.39148 + 0.671290i 0.130856 + 0.0367313i
\(335\) −17.8424 −0.974837
\(336\) 0 0
\(337\) −15.4615 −0.842241 −0.421120 0.907005i \(-0.638363\pi\)
−0.421120 + 0.907005i \(0.638363\pi\)
\(338\) −17.4754 4.90535i −0.950537 0.266816i
\(339\) −15.2176 + 6.54027i −0.826506 + 0.355218i
\(340\) 16.7960 + 10.2358i 0.910889 + 0.555112i
\(341\) −21.8201 12.5978i −1.18162 0.682210i
\(342\) 23.0259 0.335582i 1.24510 0.0181462i
\(343\) 0 0
\(344\) 22.8123 21.2443i 1.22996 1.14541i
\(345\) −3.67531 2.74377i −0.197872 0.147719i
\(346\) 7.78028 + 7.96703i 0.418271 + 0.428310i
\(347\) 13.8307 + 23.9555i 0.742471 + 1.28600i 0.951367 + 0.308060i \(0.0996798\pi\)
−0.208896 + 0.977938i \(0.566987\pi\)
\(348\) −12.7739 1.81838i −0.684754 0.0974756i
\(349\) −18.9316 −1.01338 −0.506692 0.862127i \(-0.669132\pi\)
−0.506692 + 0.862127i \(0.669132\pi\)
\(350\) 0 0
\(351\) −1.98307 0.730743i −0.105849 0.0390042i
\(352\) −18.2666 + 16.2194i −0.973612 + 0.864497i
\(353\) 1.72586 0.996425i 0.0918582 0.0530344i −0.453367 0.891324i \(-0.649777\pi\)
0.545225 + 0.838289i \(0.316444\pi\)
\(354\) 7.59637 5.84530i 0.403742 0.310674i
\(355\) 9.63941 + 5.56531i 0.511607 + 0.295376i
\(356\) −13.4182 24.5687i −0.711161 1.30214i
\(357\) 0 0
\(358\) −3.26926 12.8066i −0.172786 0.676851i
\(359\) −1.17502 + 2.03519i −0.0620151 + 0.107413i −0.895366 0.445331i \(-0.853086\pi\)
0.833351 + 0.552744i \(0.186419\pi\)
\(360\) −16.6463 9.81481i −0.877339 0.517286i
\(361\) 5.23074 + 9.05991i 0.275302 + 0.476837i
\(362\) 22.9963 + 6.45508i 1.20866 + 0.339271i
\(363\) 13.1551 + 1.55534i 0.690466 + 0.0816339i
\(364\) 0 0
\(365\) 6.40736i 0.335377i
\(366\) 23.6596 + 9.76253i 1.23671 + 0.510296i
\(367\) 29.6129 17.0970i 1.54578 0.892455i 0.547321 0.836923i \(-0.315648\pi\)
0.998457 0.0555330i \(-0.0176858\pi\)
\(368\) 4.64574 + 0.220534i 0.242176 + 0.0114962i
\(369\) −5.57644 5.28918i −0.290298 0.275344i
\(370\) 24.4490 6.24130i 1.27104 0.324470i
\(371\) 0 0
\(372\) 7.53811 + 18.7532i 0.390833 + 0.972310i
\(373\) 8.83457 15.3019i 0.457437 0.792304i −0.541388 0.840773i \(-0.682101\pi\)
0.998825 + 0.0484692i \(0.0154343\pi\)
\(374\) 18.4256 + 18.8679i 0.952764 + 0.975633i
\(375\) −17.4442 + 7.49720i −0.900813 + 0.387154i
\(376\) 6.40988 1.47532i 0.330564 0.0760837i
\(377\) 1.51494i 0.0780232i
\(378\) 0 0
\(379\) 5.39420i 0.277082i −0.990357 0.138541i \(-0.955759\pi\)
0.990357 0.138541i \(-0.0442412\pi\)
\(380\) 0.586302 24.7158i 0.0300767 1.26789i
\(381\) 9.87829 4.24552i 0.506080 0.217505i
\(382\) 20.5476 20.0660i 1.05131 1.02666i
\(383\) 0.926283 1.60437i 0.0473308 0.0819794i −0.841389 0.540429i \(-0.818262\pi\)
0.888720 + 0.458450i \(0.151595\pi\)
\(384\) 19.5593 1.19666i 0.998134 0.0610669i
\(385\) 0 0
\(386\) −2.39812 9.39414i −0.122061 0.478149i
\(387\) 23.9890 + 22.7533i 1.21943 + 1.15661i
\(388\) −3.41570 2.08159i −0.173406 0.105677i
\(389\) −4.66346 + 2.69245i −0.236447 + 0.136513i −0.613543 0.789662i \(-0.710256\pi\)
0.377096 + 0.926174i \(0.376923\pi\)
\(390\) −0.865432 + 2.09739i −0.0438229 + 0.106205i
\(391\) 5.02112i 0.253929i
\(392\) 0 0
\(393\) 24.7730 + 2.92891i 1.24963 + 0.147744i
\(394\) −0.752281 + 2.68001i −0.0378994 + 0.135017i
\(395\) −4.55480 7.88914i −0.229177 0.396946i
\(396\) −18.3708 18.2714i −0.923168 0.918170i
\(397\) 10.8178 18.7369i 0.542927 0.940378i −0.455807 0.890079i \(-0.650649\pi\)
0.998734 0.0502990i \(-0.0160174\pi\)
\(398\) 8.73285 2.22931i 0.437738 0.111745i
\(399\) 0 0
\(400\) −0.403308 + 0.627787i −0.0201654 + 0.0313893i
\(401\) 33.1440 + 19.1357i 1.65513 + 0.955591i 0.974914 + 0.222580i \(0.0714480\pi\)
0.680217 + 0.733010i \(0.261885\pi\)
\(402\) 11.7032 + 15.2091i 0.583703 + 0.758563i
\(403\) 2.05515 1.18654i 0.102374 0.0591059i
\(404\) 17.3646 + 0.411920i 0.863923 + 0.0204938i
\(405\) 9.29606 18.2673i 0.461925 0.907708i
\(406\) 0 0
\(407\) 33.8323 1.67701
\(408\) −2.29170 21.0309i −0.113456 1.04119i
\(409\) −2.38561 4.13200i −0.117961 0.204314i 0.800999 0.598666i \(-0.204302\pi\)
−0.918960 + 0.394352i \(0.870969\pi\)
\(410\) −5.90335 + 5.76497i −0.291546 + 0.284712i
\(411\) 3.22764 + 2.40956i 0.159208 + 0.118855i
\(412\) −10.2077 18.6903i −0.502895 0.920803i
\(413\) 0 0
\(414\) 0.0718878 + 4.93258i 0.00353309 + 0.242423i
\(415\) −1.26568 0.730743i −0.0621300 0.0358708i
\(416\) −0.462749 2.25379i −0.0226881 0.110501i
\(417\) −14.6721 + 6.30584i −0.718498 + 0.308798i
\(418\) 8.95845 31.9146i 0.438172 1.56100i
\(419\) 8.33257 0.407072 0.203536 0.979067i \(-0.434757\pi\)
0.203536 + 0.979067i \(0.434757\pi\)
\(420\) 0 0
\(421\) −20.7325 −1.01044 −0.505220 0.862991i \(-0.668589\pi\)
−0.505220 + 0.862991i \(0.668589\pi\)
\(422\) −9.60489 + 34.2176i −0.467559 + 1.66569i
\(423\) 1.98311 + 6.68867i 0.0964219 + 0.325214i
\(424\) −14.8224 4.54251i −0.719839 0.220604i
\(425\) 0.697632 + 0.402778i 0.0338401 + 0.0195376i
\(426\) −1.57873 11.8672i −0.0764897 0.574966i
\(427\) 0 0
\(428\) −14.7447 + 8.05280i −0.712713 + 0.389247i
\(429\) −1.81989 + 2.43777i −0.0878651 + 0.117697i
\(430\) 25.3953 24.8001i 1.22467 1.19597i
\(431\) −17.4975 30.3066i −0.842826 1.45982i −0.887496 0.460816i \(-0.847557\pi\)
0.0446692 0.999002i \(-0.485777\pi\)
\(432\) 2.55239 + 20.6273i 0.122802 + 0.992431i
\(433\) 17.3383 0.833225 0.416612 0.909084i \(-0.363217\pi\)
0.416612 + 0.909084i \(0.363217\pi\)
\(434\) 0 0
\(435\) −14.5907 1.72506i −0.699569 0.0827102i
\(436\) −0.497192 + 20.9593i −0.0238112 + 1.00377i
\(437\) −5.46565 + 3.15559i −0.261457 + 0.150953i
\(438\) −5.46172 + 4.20272i −0.260971 + 0.200814i
\(439\) −28.8352 16.6480i −1.37623 0.794567i −0.384527 0.923114i \(-0.625635\pi\)
−0.991703 + 0.128547i \(0.958969\pi\)
\(440\) −20.3563 + 18.9571i −0.970449 + 0.903744i
\(441\) 0 0
\(442\) −2.40673 + 0.614387i −0.114476 + 0.0292234i
\(443\) −4.43657 + 7.68436i −0.210788 + 0.365095i −0.951961 0.306218i \(-0.900936\pi\)
0.741174 + 0.671313i \(0.234270\pi\)
\(444\) −21.3567 16.7468i −1.01355 0.794769i
\(445\) −15.9384 27.6061i −0.755553 1.30866i
\(446\) 3.52722 12.5658i 0.167019 0.595008i
\(447\) −3.53632 + 29.9104i −0.167262 + 1.41472i
\(448\) 0 0
\(449\) 26.3829i 1.24509i 0.782585 + 0.622544i \(0.213901\pi\)
−0.782585 + 0.622544i \(0.786099\pi\)
\(450\) −0.691097 0.385688i −0.0325786 0.0181815i
\(451\) −9.58114 + 5.53167i −0.451158 + 0.260476i
\(452\) 9.95307 16.3321i 0.468153 0.768196i
\(453\) −5.78138 4.31602i −0.271633 0.202785i
\(454\) 6.83028 + 26.7562i 0.320561 + 1.25573i
\(455\) 0 0
\(456\) −21.4526 + 15.7118i −1.00461 + 0.735772i
\(457\) −15.1249 + 26.1972i −0.707515 + 1.22545i 0.258261 + 0.966075i \(0.416851\pi\)
−0.965776 + 0.259377i \(0.916483\pi\)
\(458\) −2.05761 + 2.00938i −0.0961460 + 0.0938923i
\(459\) 22.1132 3.80834i 1.03216 0.177758i
\(460\) 5.29457 + 0.125597i 0.246861 + 0.00585597i
\(461\) 1.56302i 0.0727973i 0.999337 + 0.0363987i \(0.0115886\pi\)
−0.999337 + 0.0363987i \(0.988411\pi\)
\(462\) 0 0
\(463\) 33.2961i 1.54740i −0.633553 0.773700i \(-0.718404\pi\)
0.633553 0.773700i \(-0.281596\pi\)
\(464\) 13.2414 6.82919i 0.614717 0.317037i
\(465\) 9.08764 + 21.1447i 0.421429 + 0.980563i
\(466\) 3.23230 + 3.30989i 0.149734 + 0.153328i
\(467\) −8.64844 + 14.9795i −0.400202 + 0.693170i −0.993750 0.111628i \(-0.964393\pi\)
0.593548 + 0.804799i \(0.297727\pi\)
\(468\) 2.35549 0.638010i 0.108883 0.0294920i
\(469\) 0 0
\(470\) 7.25703 1.85257i 0.334742 0.0854525i
\(471\) 19.9588 26.7351i 0.919654 1.23189i
\(472\) −3.24300 + 10.5820i −0.149271 + 0.487077i
\(473\) 41.2166 23.7964i 1.89514 1.09416i
\(474\) −3.73723 + 9.05721i −0.171657 + 0.416012i
\(475\) 1.01253i 0.0464579i
\(476\) 0 0
\(477\) 3.83457 15.9899i 0.175573 0.732126i
\(478\) 33.3669 + 9.36609i 1.52616 + 0.428395i
\(479\) 8.30404 + 14.3830i 0.379421 + 0.657177i 0.990978 0.134024i \(-0.0427898\pi\)
−0.611557 + 0.791200i \(0.709456\pi\)
\(480\) 22.2336 1.89044i 1.01482 0.0862865i
\(481\) −1.59327 + 2.75963i −0.0726469 + 0.125828i
\(482\) −6.44169 25.2340i −0.293411 1.14938i
\(483\) 0 0
\(484\) −13.4244 + 7.33173i −0.610201 + 0.333260i
\(485\) −3.94457 2.27740i −0.179114 0.103411i
\(486\) −21.6687 + 4.05778i −0.982914 + 0.184065i
\(487\) −21.0010 + 12.1249i −0.951647 + 0.549434i −0.893592 0.448880i \(-0.851823\pi\)
−0.0580548 + 0.998313i \(0.518490\pi\)
\(488\) −28.8011 + 6.62895i −1.30376 + 0.300079i
\(489\) 1.75870 14.8752i 0.0795311 0.672681i
\(490\) 0 0
\(491\) −20.3082 −0.916497 −0.458248 0.888824i \(-0.651523\pi\)
−0.458248 + 0.888824i \(0.651523\pi\)
\(492\) 8.78627 + 1.25074i 0.396115 + 0.0563875i
\(493\) −8.04223 13.9296i −0.362204 0.627355i
\(494\) 2.18132 + 2.23368i 0.0981424 + 0.100498i
\(495\) −21.4064 20.3036i −0.962144 0.912580i
\(496\) −19.6355 12.6144i −0.881660 0.566403i
\(497\) 0 0
\(498\) 0.207292 + 1.55819i 0.00928898 + 0.0698244i
\(499\) −9.12662 5.26926i −0.408564 0.235884i 0.281609 0.959529i \(-0.409132\pi\)
−0.690172 + 0.723645i \(0.742465\pi\)
\(500\) 11.4094 18.7217i 0.510242 0.837260i
\(501\) −1.20122 2.79496i −0.0536668 0.124869i
\(502\) 21.0288 + 5.90279i 0.938562 + 0.263455i
\(503\) −27.6664 −1.23358 −0.616792 0.787126i \(-0.711568\pi\)
−0.616792 + 0.787126i \(0.711568\pi\)
\(504\) 0 0
\(505\) 19.7787 0.880139
\(506\) 6.83669 + 1.91906i 0.303928 + 0.0853127i
\(507\) 8.77778 + 20.4237i 0.389835 + 0.907050i
\(508\) −6.46090 + 10.6017i −0.286656 + 0.470376i
\(509\) 24.4110 + 14.0937i 1.08200 + 0.624693i 0.931435 0.363908i \(-0.118558\pi\)
0.150564 + 0.988600i \(0.451891\pi\)
\(510\) −3.17675 23.8793i −0.140669 1.05739i
\(511\) 0 0
\(512\) −17.6134 + 14.2046i −0.778408 + 0.627758i
\(513\) −18.0429 21.6775i −0.796612 0.957086i
\(514\) 8.86232 + 9.07504i 0.390900 + 0.400283i
\(515\) −12.1249 21.0009i −0.534287 0.925412i
\(516\) −37.7972 5.38048i −1.66393 0.236862i
\(517\) 10.0422 0.441657
\(518\) 0 0
\(519\) 1.60133 13.5442i 0.0702907 0.594524i
\(520\) −0.587645 2.55317i −0.0257700 0.111964i
\(521\) −20.7962 + 12.0067i −0.911097 + 0.526022i −0.880784 0.473519i \(-0.842984\pi\)
−0.0303127 + 0.999540i \(0.509650\pi\)
\(522\) 8.09985 + 13.5688i 0.354521 + 0.593890i
\(523\) −2.40739 1.38991i −0.105268 0.0607764i 0.446442 0.894813i \(-0.352691\pi\)
−0.551710 + 0.834036i \(0.686024\pi\)
\(524\) −25.2801 + 13.8067i −1.10436 + 0.603147i
\(525\) 0 0
\(526\) 6.77297 + 26.5317i 0.295316 + 1.15684i
\(527\) −12.5978 + 21.8201i −0.548770 + 0.950497i
\(528\) 29.5114 + 4.91765i 1.28432 + 0.214013i
\(529\) 10.8240 + 18.7477i 0.470609 + 0.815119i
\(530\) −16.9962 4.77083i −0.738266 0.207232i
\(531\) −11.4155 2.73758i −0.495391 0.118801i
\(532\) 0 0
\(533\) 1.04202i 0.0451347i
\(534\) −13.0775 + 31.6935i −0.565920 + 1.37151i
\(535\) −16.5676 + 9.56531i −0.716280 + 0.413545i
\(536\) −21.1869 6.49300i −0.915135 0.280455i
\(537\) −9.68395 + 12.9718i −0.417893 + 0.559774i
\(538\) 0.0658929 0.0168211i 0.00284085 0.000725208i
\(539\) 0 0
\(540\) 3.46261 + 23.4128i 0.149007 + 1.00752i
\(541\) −4.15859 + 7.20288i −0.178792 + 0.309676i −0.941467 0.337105i \(-0.890552\pi\)
0.762675 + 0.646782i \(0.223885\pi\)
\(542\) 19.6397 + 20.1111i 0.843597 + 0.863846i
\(543\) −11.5509 26.8761i −0.495696 1.15336i
\(544\) 16.2194 + 18.2666i 0.695401 + 0.783173i
\(545\) 23.8731i 1.02261i
\(546\) 0 0
\(547\) 15.4364i 0.660014i −0.943978 0.330007i \(-0.892949\pi\)
0.943978 0.330007i \(-0.107051\pi\)
\(548\) −4.64966 0.110298i −0.198624 0.00471171i
\(549\) −8.91056 30.0538i −0.380293 1.28266i
\(550\) −0.815052 + 0.795947i −0.0347539 + 0.0339393i
\(551\) −10.1085 + 17.5085i −0.430637 + 0.745886i
\(552\) −3.36575 4.59554i −0.143256 0.195599i
\(553\) 0 0
\(554\) −3.59418 14.0794i −0.152702 0.598178i
\(555\) −24.7643 18.4875i −1.05119 0.784751i
\(556\) 9.59632 15.7467i 0.406975 0.667808i
\(557\) 11.6502 6.72624i 0.493634 0.285000i −0.232447 0.972609i \(-0.574673\pi\)
0.726081 + 0.687609i \(0.241340\pi\)
\(558\) 12.0633 21.6157i 0.510679 0.915064i
\(559\) 4.48260i 0.189594i
\(560\) 0 0
\(561\) 3.79234 32.0759i 0.160113 1.35425i
\(562\) 2.59288 9.23717i 0.109374 0.389646i
\(563\) 17.0006 + 29.4458i 0.716488 + 1.24099i 0.962383 + 0.271698i \(0.0875851\pi\)
−0.245894 + 0.969297i \(0.579082\pi\)
\(564\) −6.33918 4.97085i −0.266928 0.209311i
\(565\) 10.8893 18.8609i 0.458118 0.793483i
\(566\) −7.43761 + 1.89866i −0.312626 + 0.0798068i
\(567\) 0 0
\(568\) 9.42100 + 10.1164i 0.395296 + 0.424473i
\(569\) −23.0318 13.2974i −0.965544 0.557457i −0.0676690 0.997708i \(-0.521556\pi\)
−0.897875 + 0.440251i \(0.854890\pi\)
\(570\) −23.9969 + 18.4653i −1.00512 + 0.773426i
\(571\) 7.12974 4.11636i 0.298370 0.172264i −0.343340 0.939211i \(-0.611558\pi\)
0.641711 + 0.766947i \(0.278225\pi\)
\(572\) 0.0833059 3.51179i 0.00348320 0.146835i
\(573\) −34.9316 4.12996i −1.45929 0.172532i
\(574\) 0 0
\(575\) 0.216902 0.00904543
\(576\) −16.1949 17.7123i −0.674788 0.738011i
\(577\) −0.792342 1.37238i −0.0329856 0.0571328i 0.849061 0.528294i \(-0.177168\pi\)
−0.882047 + 0.471162i \(0.843835\pi\)
\(578\) 1.66746 1.62837i 0.0693570 0.0677313i
\(579\) −7.10355 + 9.51530i −0.295213 + 0.395442i
\(580\) 14.8893 8.13179i 0.618246 0.337654i
\(581\) 0 0
\(582\) 0.646037 + 4.85620i 0.0267791 + 0.201296i
\(583\) −20.4981 11.8346i −0.848944 0.490138i
\(584\) 2.33169 7.60839i 0.0964859 0.314837i
\(585\) 2.66422 0.789906i 0.110152 0.0326586i
\(586\) −10.7732 + 38.3797i −0.445036 + 1.58545i
\(587\) 30.8651 1.27394 0.636969 0.770889i \(-0.280188\pi\)
0.636969 + 0.770889i \(0.280188\pi\)
\(588\) 0 0
\(589\) 31.6691 1.30490
\(590\) −3.40600 + 12.1339i −0.140223 + 0.499546i
\(591\) 3.13217 1.34615i 0.128840 0.0553733i
\(592\) 31.3030 + 1.48596i 1.28655 + 0.0610727i
\(593\) 5.58714 + 3.22574i 0.229436 + 0.132465i 0.610312 0.792161i \(-0.291044\pi\)
−0.380876 + 0.924626i \(0.624377\pi\)
\(594\) −3.26624 + 31.5646i −0.134015 + 1.29511i
\(595\) 0 0
\(596\) −16.6699 30.5227i −0.682826 1.25026i
\(597\) −8.84548 6.60350i −0.362021 0.270263i
\(598\) −0.478495 + 0.467279i −0.0195671 + 0.0191085i
\(599\) 6.40487 + 11.0936i 0.261696 + 0.453270i 0.966693 0.255940i \(-0.0823850\pi\)
−0.704997 + 0.709210i \(0.749052\pi\)
\(600\) 0.908493 0.0989965i 0.0370891 0.00404152i
\(601\) −37.2710 −1.52032 −0.760158 0.649738i \(-0.774878\pi\)
−0.760158 + 0.649738i \(0.774878\pi\)
\(602\) 0 0
\(603\) 5.48108 22.8557i 0.223207 0.930756i
\(604\) 8.32851 + 0.197567i 0.338882 + 0.00803889i
\(605\) −15.0841 + 8.70880i −0.613256 + 0.354063i
\(606\) −12.9732 16.8596i −0.527001 0.684874i
\(607\) 18.0250 + 10.4067i 0.731611 + 0.422396i 0.819011 0.573777i \(-0.194522\pi\)
−0.0873999 + 0.996173i \(0.527856\pi\)
\(608\) 9.69046 29.1352i 0.393000 1.18159i
\(609\) 0 0
\(610\) −32.6075 + 8.32401i −1.32024 + 0.337029i
\(611\) −0.472921 + 0.819123i −0.0191323 + 0.0331382i
\(612\) −18.2714 + 18.3708i −0.738576 + 0.742596i
\(613\) −9.61439 16.6526i −0.388321 0.672592i 0.603902 0.797058i \(-0.293612\pi\)
−0.992224 + 0.124466i \(0.960278\pi\)
\(614\) 0.856622 3.05173i 0.0345704 0.123158i
\(615\) 10.0359 + 1.18654i 0.404686 + 0.0478460i
\(616\) 0 0
\(617\) 29.3933i 1.18333i −0.806185 0.591664i \(-0.798471\pi\)
0.806185 0.591664i \(-0.201529\pi\)
\(618\) −9.94853 + 24.1104i −0.400188 + 0.969861i
\(619\) −17.2548 + 9.96206i −0.693529 + 0.400409i −0.804933 0.593366i \(-0.797799\pi\)
0.111404 + 0.993775i \(0.464465\pi\)
\(620\) −22.6933 13.8297i −0.911384 0.555414i
\(621\) 4.64372 3.86511i 0.186346 0.155102i
\(622\) −9.26242 36.2835i −0.371389 1.45484i
\(623\) 0 0
\(624\) −1.79091 + 2.17559i −0.0716937 + 0.0870933i
\(625\) 12.9490 22.4283i 0.517958 0.897130i
\(626\) −0.445562 + 0.435118i −0.0178082 + 0.0173908i
\(627\) −37.2990 + 16.0305i −1.48958 + 0.640196i
\(628\) −0.913620 + 38.5140i −0.0364574 + 1.53688i
\(629\) 33.8323i 1.34898i
\(630\) 0 0
\(631\) 17.6269i 0.701716i −0.936429 0.350858i \(-0.885890\pi\)
0.936429 0.350858i \(-0.114110\pi\)
\(632\) −2.53765 11.0254i −0.100942 0.438568i
\(633\) 39.9905 17.1873i 1.58948 0.683132i
\(634\) −11.6516 11.9313i −0.462744 0.473851i
\(635\) −7.06866 + 12.2433i −0.280511 + 0.485859i
\(636\) 7.08141 + 17.6171i 0.280796 + 0.698561i
\(637\) 0 0
\(638\) 22.0401 5.62636i 0.872574 0.222750i
\(639\) −10.0902 + 10.6382i −0.399161 + 0.420840i
\(640\) −19.6671 + 16.6458i −0.777410 + 0.657983i
\(641\) 19.0040 10.9719i 0.750611 0.433365i −0.0753036 0.997161i \(-0.523993\pi\)
0.825915 + 0.563795i \(0.190659\pi\)
\(642\) 19.0206 + 7.84838i 0.750684 + 0.309751i
\(643\) 49.5796i 1.95523i 0.210406 + 0.977614i \(0.432521\pi\)
−0.210406 + 0.977614i \(0.567479\pi\)
\(644\) 0 0
\(645\) −43.1729 5.10433i −1.69993 0.200983i
\(646\) −31.9146 8.95845i −1.25566 0.352465i
\(647\) −11.9561 20.7086i −0.470042 0.814137i 0.529371 0.848391i \(-0.322428\pi\)
−0.999413 + 0.0342534i \(0.989095\pi\)
\(648\) 17.6862 18.3085i 0.694778 0.719225i
\(649\) −8.44896 + 14.6340i −0.331651 + 0.574436i
\(650\) −0.0265402 0.103966i −0.00104099 0.00407787i
\(651\) 0 0
\(652\) 8.29037 + 15.1797i 0.324676 + 0.594483i
\(653\) 40.4145 + 23.3333i 1.58154 + 0.913103i 0.994635 + 0.103447i \(0.0329872\pi\)
0.586905 + 0.809656i \(0.300346\pi\)
\(654\) 20.3497 15.6588i 0.795737 0.612308i
\(655\) −28.4054 + 16.3999i −1.10989 + 0.640797i
\(656\) −9.10782 + 4.69731i −0.355601 + 0.183399i
\(657\) 8.20766 + 1.96830i 0.320211 + 0.0767907i
\(658\) 0 0
\(659\) −30.4598 −1.18655 −0.593273 0.805001i \(-0.702165\pi\)
−0.593273 + 0.805001i \(0.702165\pi\)
\(660\) 33.7279 + 4.80121i 1.31286 + 0.186887i
\(661\) 24.6523 + 42.6991i 0.958864 + 1.66080i 0.725266 + 0.688468i \(0.241717\pi\)
0.233598 + 0.972333i \(0.424950\pi\)
\(662\) 1.29412 + 1.32518i 0.0502973 + 0.0515046i
\(663\) 2.43777 + 1.81989i 0.0946751 + 0.0706787i
\(664\) −1.23701 1.32831i −0.0480052 0.0515484i
\(665\) 0 0
\(666\) 0.484380 + 33.2357i 0.0187694 + 1.28786i
\(667\) −3.75063 2.16543i −0.145225 0.0838457i
\(668\) 2.99965 + 1.82804i 0.116060 + 0.0707290i
\(669\) −14.6858 + 6.31171i −0.567786 + 0.244025i
\(670\) −24.2941 6.81935i −0.938562 0.263455i
\(671\) −45.1221 −1.74192
\(672\) 0 0
\(673\) −19.4364 −0.749219 −0.374610 0.927183i \(-0.622223\pi\)
−0.374610 + 0.927183i \(0.622223\pi\)
\(674\) −21.0522 5.90936i −0.810900 0.227620i
\(675\) 0.164512 + 0.955244i 0.00633208 + 0.0367674i
\(676\) −21.9195 13.3582i −0.843058 0.513775i
\(677\) 8.63274 + 4.98411i 0.331783 + 0.191555i 0.656633 0.754211i \(-0.271980\pi\)
−0.324849 + 0.945766i \(0.605314\pi\)
\(678\) −23.2198 + 3.08901i −0.891751 + 0.118633i
\(679\) 0 0
\(680\) 18.9571 + 20.3563i 0.726971 + 0.780628i
\(681\) 20.2321 27.1012i 0.775297 1.03852i
\(682\) −24.8951 25.4927i −0.953282 0.976164i
\(683\) 14.8051 + 25.6431i 0.566501 + 0.981208i 0.996908 + 0.0785732i \(0.0250364\pi\)
−0.430408 + 0.902635i \(0.641630\pi\)
\(684\) 31.4801 + 8.34356i 1.20367 + 0.319024i
\(685\) −5.29606 −0.202352
\(686\) 0 0
\(687\) 3.49801 + 0.413570i 0.133457 + 0.0157787i
\(688\) 39.1805 20.2071i 1.49374 0.770390i
\(689\) 1.93064 1.11466i 0.0735515 0.0424650i
\(690\) −3.95560 5.14058i −0.150587 0.195699i
\(691\) −38.2440 22.0802i −1.45487 0.839969i −0.456117 0.889920i \(-0.650760\pi\)
−0.998752 + 0.0499504i \(0.984094\pi\)
\(692\) 7.54856 + 13.8214i 0.286953 + 0.525412i
\(693\) 0 0
\(694\) 9.67599 + 37.9036i 0.367295 + 1.43880i
\(695\) 10.4990 18.1848i 0.398250 0.689790i
\(696\) −16.6979 7.35807i −0.632930 0.278907i
\(697\) 5.53167 + 9.58114i 0.209527 + 0.362911i
\(698\) −25.7770 7.23561i −0.975674 0.273872i
\(699\) 0.665271 5.62691i 0.0251629 0.212829i
\(700\) 0 0
\(701\) 38.2714i 1.44549i 0.691115 + 0.722745i \(0.257120\pi\)
−0.691115 + 0.722745i \(0.742880\pi\)
\(702\) −2.42084 1.75290i −0.0913687 0.0661589i
\(703\) −36.8276 + 21.2624i −1.38898 + 0.801927i
\(704\) −31.0706 + 15.1027i −1.17102 + 0.569204i
\(705\) −7.35062 5.48753i −0.276841 0.206672i
\(706\) 2.73074 0.697101i 0.102773 0.0262357i
\(707\) 0 0
\(708\) 12.5772 5.05557i 0.472680 0.190000i
\(709\) −3.44896 + 5.97377i −0.129528 + 0.224350i −0.923494 0.383613i \(-0.874680\pi\)
0.793966 + 0.607963i \(0.208013\pi\)
\(710\) 10.9979 + 11.2618i 0.412742 + 0.422649i
\(711\) 11.5050 3.41108i 0.431470 0.127926i
\(712\) −8.87989 38.5808i −0.332788 1.44588i
\(713\) 6.78411i 0.254067i
\(714\) 0 0
\(715\) 4.00000i 0.149592i
\(716\) 0.443285 18.6869i 0.0165663 0.698360i
\(717\) −16.7599 38.9963i −0.625912 1.45634i
\(718\) −2.37774 + 2.32200i −0.0887365 + 0.0866564i
\(719\) 14.1178 24.4527i 0.526503 0.911930i −0.473020 0.881052i \(-0.656836\pi\)
0.999523 0.0308787i \(-0.00983056\pi\)
\(720\) −18.9143 19.7259i −0.704893 0.735142i
\(721\) 0 0
\(722\) 3.65944 + 14.3351i 0.136190 + 0.533496i
\(723\) −19.0811 + 25.5594i −0.709634 + 0.950565i
\(724\) 28.8444 + 17.5783i 1.07199 + 0.653293i
\(725\) 0.601728 0.347408i 0.0223476 0.0129024i
\(726\) 17.3175 + 7.14561i 0.642711 + 0.265198i
\(727\) 27.3942i 1.01599i 0.861359 + 0.507997i \(0.169614\pi\)
−0.861359 + 0.507997i \(0.830386\pi\)
\(728\) 0 0
\(729\) 20.5442 + 17.5196i 0.760896 + 0.648874i
\(730\) 2.44888 8.72419i 0.0906373 0.322897i
\(731\) −23.7964 41.2166i −0.880143 1.52445i
\(732\) 28.4834 + 22.3352i 1.05278 + 0.825534i
\(733\) 14.8514 25.7234i 0.548549 0.950114i −0.449826 0.893116i \(-0.648514\pi\)
0.998374 0.0569978i \(-0.0181528\pi\)
\(734\) 46.8550 11.9611i 1.72945 0.441492i
\(735\) 0 0
\(736\) 6.24130 + 2.07587i 0.230057 + 0.0765177i
\(737\) −29.2996 16.9162i −1.07927 0.623115i
\(738\) −5.57131 9.33299i −0.205083 0.343552i
\(739\) 23.7606 13.7182i 0.874050 0.504633i 0.00535770 0.999986i \(-0.498295\pi\)
0.868692 + 0.495353i \(0.164961\pi\)
\(740\) 35.6748 + 0.846271i 1.31143 + 0.0311095i
\(741\) 0.448959 3.79733i 0.0164929 0.139498i
\(742\) 0 0
\(743\) 2.30093 0.0844131 0.0422065 0.999109i \(-0.486561\pi\)
0.0422065 + 0.999109i \(0.486561\pi\)
\(744\) 3.09635 + 28.4152i 0.113518 + 1.04175i
\(745\) −19.8009 34.2962i −0.725450 1.25652i
\(746\) 17.8774 17.4584i 0.654539 0.639196i
\(747\) 1.32487 1.39683i 0.0484745 0.0511072i
\(748\) 17.8768 + 32.7325i 0.653641 + 1.19682i
\(749\) 0 0
\(750\) −26.6172 + 3.54098i −0.971922 + 0.129298i
\(751\) 16.8176 + 9.70963i 0.613682 + 0.354309i 0.774405 0.632690i \(-0.218049\pi\)
−0.160723 + 0.987000i \(0.551383\pi\)
\(752\) 9.29148 + 0.441069i 0.338825 + 0.0160841i
\(753\) −10.5626 24.5766i −0.384924 0.895623i
\(754\) −0.579007 + 2.06272i −0.0210862 + 0.0751199i
\(755\) 9.48634 0.345243
\(756\) 0 0
\(757\) 13.9327 0.506393 0.253197 0.967415i \(-0.418518\pi\)
0.253197 + 0.967415i \(0.418518\pi\)
\(758\) 2.06166 7.34468i 0.0748827 0.266771i
\(759\) −3.43402 7.99014i −0.124647 0.290024i
\(760\) 10.2446 33.4286i 0.371612 1.21258i
\(761\) −10.7265 6.19296i −0.388836 0.224495i 0.292820 0.956168i \(-0.405406\pi\)
−0.681656 + 0.731673i \(0.738740\pi\)
\(762\) 15.0728 2.00519i 0.546030 0.0726403i
\(763\) 0 0
\(764\) 35.6466 19.4683i 1.28965 0.704339i
\(765\) −20.3036 + 21.4064i −0.734079 + 0.773948i
\(766\) 1.87440 1.83047i 0.0677249 0.0661374i
\(767\) −0.795777 1.37833i −0.0287338 0.0497685i
\(768\) 27.0891 + 5.84619i 0.977496 + 0.210956i
\(769\) 45.0074 1.62301 0.811505 0.584346i \(-0.198649\pi\)
0.811505 + 0.584346i \(0.198649\pi\)
\(770\) 0 0
\(771\) 1.82404 15.4278i 0.0656911 0.555620i
\(772\) 0.325167 13.7075i 0.0117030 0.493344i
\(773\) −44.5842 + 25.7407i −1.60358 + 0.925828i −0.612819 + 0.790223i \(0.709965\pi\)
−0.990763 + 0.135605i \(0.956702\pi\)
\(774\) 23.9669 + 40.1492i 0.861474 + 1.44313i
\(775\) −0.942582 0.544200i −0.0338585 0.0195482i
\(776\) −3.85520 4.13974i −0.138393 0.148608i
\(777\) 0 0
\(778\) −7.37877 + 1.88364i −0.264542 + 0.0675319i
\(779\) 6.95292 12.0428i 0.249114 0.431479i
\(780\) −1.97998 + 2.52501i −0.0708947 + 0.0904098i
\(781\) 10.5528 + 18.2780i 0.377608 + 0.654037i
\(782\) 1.91906 6.83669i 0.0686255 0.244480i
\(783\) 6.69191 18.1603i 0.239149 0.648997i
\(784\) 0 0
\(785\) 43.8682i 1.56572i
\(786\) 32.6112 + 13.4562i 1.16320 + 0.479966i
\(787\) 35.6977 20.6101i 1.27249 0.734670i 0.297031 0.954868i \(-0.404003\pi\)
0.975455 + 0.220197i \(0.0706701\pi\)
\(788\) −2.04859 + 3.36156i −0.0729782 + 0.119750i
\(789\) 20.0624 26.8739i 0.714240 0.956735i
\(790\) −3.18654 12.4826i −0.113372 0.444111i
\(791\) 0 0
\(792\) −18.0302 31.8994i −0.640676 1.13349i
\(793\) 2.12494 3.68051i 0.0754590 0.130699i
\(794\) 21.8905 21.3774i 0.776866 0.758656i
\(795\) 8.53706 + 19.8636i 0.302778 + 0.704491i
\(796\) 12.7426 + 0.302277i 0.451649 + 0.0107139i
\(797\) 37.0164i 1.31119i 0.755113 + 0.655595i \(0.227582\pi\)
−0.755113 + 0.655595i \(0.772418\pi\)
\(798\) 0 0
\(799\) 10.0422i 0.355269i
\(800\) −0.789078 + 0.700644i −0.0278981 + 0.0247715i
\(801\) 40.2589 11.9362i 1.42248 0.421747i
\(802\) 37.8149 + 38.7225i 1.33529 + 1.36734i
\(803\) 6.07473 10.5217i 0.214372 0.371304i
\(804\) 10.1221 + 25.1815i 0.356977 + 0.888085i
\(805\) 0 0
\(806\) 3.25177 0.830108i 0.114539 0.0292393i
\(807\) −0.0667428 0.0498261i −0.00234946 0.00175396i
\(808\) 23.4861 + 7.19760i 0.826237 + 0.253211i
\(809\) −45.3040 + 26.1563i −1.59280 + 0.919605i −0.599979 + 0.800016i \(0.704825\pi\)
−0.992823 + 0.119589i \(0.961842\pi\)
\(810\) 19.6391 21.3196i 0.690049 0.749094i
\(811\) 25.3719i 0.890929i −0.895300 0.445464i \(-0.853039\pi\)
0.895300 0.445464i \(-0.146961\pi\)
\(812\) 0 0
\(813\) 4.04223 34.1895i 0.141767 1.19908i
\(814\) 46.0657 + 12.9307i 1.61460 + 0.453219i
\(815\) 9.84750 + 17.0564i 0.344943 + 0.597459i
\(816\) 4.91765 29.5114i 0.172152 1.03311i
\(817\) −29.9104 + 51.8064i −1.04643 + 1.81248i
\(818\) −1.66898 6.53787i −0.0583545 0.228591i
\(819\) 0 0
\(820\) −10.2413 + 5.59327i −0.357642 + 0.195326i
\(821\) 25.1716 + 14.5328i 0.878493 + 0.507198i 0.870161 0.492767i \(-0.164014\pi\)
0.00833206 + 0.999965i \(0.497348\pi\)
\(822\) 3.47379 + 4.51443i 0.121162 + 0.157459i
\(823\) 24.7981 14.3172i 0.864406 0.499065i −0.00107900 0.999999i \(-0.500343\pi\)
0.865485 + 0.500934i \(0.167010\pi\)
\(824\) −6.75524 29.3498i −0.235330 1.02245i
\(825\) 1.38561 + 0.163821i 0.0482409 + 0.00570352i
\(826\) 0 0
\(827\) −4.88743 −0.169953 −0.0849763 0.996383i \(-0.527081\pi\)
−0.0849763 + 0.996383i \(0.527081\pi\)
\(828\) −1.78734 + 6.74362i −0.0621144 + 0.234357i
\(829\) 19.4658 + 33.7157i 0.676074 + 1.17100i 0.976154 + 0.217081i \(0.0696536\pi\)
−0.300079 + 0.953914i \(0.597013\pi\)
\(830\) −1.44405 1.47871i −0.0501238 0.0513269i
\(831\) −10.6464 + 14.2610i −0.369320 + 0.494710i
\(832\) 0.231321 3.24559i 0.00801961 0.112521i
\(833\) 0 0
\(834\) −22.3875 + 2.97829i −0.775216 + 0.103130i
\(835\) 3.46410 + 2.00000i 0.119880 + 0.0692129i
\(836\) 24.3954 40.0307i 0.843734 1.38449i
\(837\) −29.8775 + 5.14551i −1.03272 + 0.177855i
\(838\) 11.3455 + 3.18469i 0.391925 + 0.110013i
\(839\) 49.3493 1.70373 0.851863 0.523765i \(-0.175473\pi\)
0.851863 + 0.523765i \(0.175473\pi\)
\(840\) 0 0
\(841\) 15.1267 0.521610
\(842\) −28.2291 7.92393i −0.972840 0.273077i
\(843\) −10.7956 + 4.63976i −0.371820 + 0.159802i
\(844\) −26.1558 + 42.9193i −0.900321 + 1.47734i
\(845\) −25.3134 14.6147i −0.870809 0.502762i
\(846\) 0.143776 + 9.86515i 0.00494310 + 0.339171i
\(847\) 0 0
\(848\) −18.4459 11.8501i −0.633434 0.406935i
\(849\) 7.53354 + 5.62408i 0.258550 + 0.193018i
\(850\) 0.795947 + 0.815052i 0.0273008 + 0.0279561i
\(851\) −4.55480 7.88914i −0.156136 0.270436i
\(852\) 2.38603 16.7616i 0.0817441 0.574242i
\(853\) 36.4912 1.24943 0.624717 0.780851i \(-0.285214\pi\)
0.624717 + 0.780851i \(0.285214\pi\)
\(854\) 0 0
\(855\) 36.0616 + 8.64803i 1.23328 + 0.295756i
\(856\) −23.1540 + 5.32920i −0.791388 + 0.182148i
\(857\) −31.5609 + 18.2217i −1.07810 + 0.622441i −0.930383 0.366589i \(-0.880526\pi\)
−0.147716 + 0.989030i \(0.547192\pi\)
\(858\) −3.40965 + 2.62368i −0.116404 + 0.0895709i
\(859\) −10.2782 5.93411i −0.350687 0.202469i 0.314301 0.949323i \(-0.398230\pi\)
−0.664988 + 0.746854i \(0.731563\pi\)
\(860\) 44.0566 24.0614i 1.50232 0.820488i
\(861\) 0 0
\(862\) −12.2413 47.9527i −0.416940 1.63327i
\(863\) 8.16126 14.1357i 0.277812 0.481185i −0.693028 0.720910i \(-0.743724\pi\)
0.970841 + 0.239725i \(0.0770573\pi\)
\(864\) −4.40842 + 29.0614i −0.149977 + 0.988689i
\(865\) 8.96636 + 15.5302i 0.304865 + 0.528042i
\(866\) 23.6076 + 6.62667i 0.802220 + 0.225183i
\(867\) −2.83473 0.335150i −0.0962723 0.0113823i
\(868\) 0 0
\(869\) 17.2733i 0.585958i
\(870\) −19.2072 7.92535i −0.651184 0.268695i
\(871\) 2.75963 1.59327i 0.0935064 0.0539859i
\(872\) −8.68759 + 28.3479i −0.294199 + 0.959982i
\(873\) 4.12903 4.35329i 0.139747 0.147336i
\(874\) −8.64803 + 2.20766i −0.292524 + 0.0746752i
\(875\) 0 0
\(876\) −9.04289 + 3.63491i −0.305531 + 0.122812i
\(877\) −3.40673 + 5.90063i −0.115037 + 0.199250i −0.917795 0.397056i \(-0.870032\pi\)
0.802758 + 0.596306i \(0.203365\pi\)
\(878\) −32.8989 33.6886i −1.11028 1.13693i
\(879\) 44.8548 19.2778i 1.51292 0.650226i
\(880\) −34.9623 + 18.0316i −1.17858 + 0.607846i
\(881\) 10.1075i 0.340530i −0.985398 0.170265i \(-0.945538\pi\)
0.985398 0.170265i \(-0.0544624\pi\)
\(882\) 0 0
\(883\) 29.4615i 0.991458i 0.868477 + 0.495729i \(0.165099\pi\)
−0.868477 + 0.495729i \(0.834901\pi\)
\(884\) −3.51179 0.0833059i −0.118114 0.00280188i
\(885\) 14.1811 6.09479i 0.476692 0.204874i
\(886\) −8.97773 + 8.76729i −0.301613 + 0.294543i
\(887\) 22.2334 38.5094i 0.746525 1.29302i −0.202954 0.979188i \(-0.565054\pi\)
0.949479 0.313831i \(-0.101613\pi\)
\(888\) −22.6785 30.9648i −0.761040 1.03911i
\(889\) 0 0
\(890\) −11.1505 43.6798i −0.373767 1.46415i
\(891\) 32.5843 21.1838i 1.09161 0.709685i
\(892\) 9.60526 15.7613i 0.321608 0.527729i
\(893\) −10.9313 + 6.31119i −0.365802 + 0.211196i
\(894\) −16.2467 + 39.3742i −0.543372 + 1.31687i
\(895\) 21.2847i 0.711469i
\(896\) 0 0
\(897\) 0.813457 + 0.0961751i 0.0271605 + 0.00321119i
\(898\) −10.0835 + 35.9227i −0.336491 + 1.19876i
\(899\) 10.8660 + 18.8204i 0.362401 + 0.627697i
\(900\) −0.793581 0.789284i −0.0264527 0.0263095i
\(901\) −11.8346 + 20.4981i −0.394267 + 0.682890i
\(902\) −15.1598 + 3.86997i −0.504765 + 0.128856i
\(903\) 0 0
\(904\) 19.7941 18.4335i 0.658342 0.613090i
\(905\) 33.3106 + 19.2319i 1.10728 + 0.639289i
\(906\) −6.22228 8.08628i −0.206721 0.268649i
\(907\) −48.4273 + 27.9595i −1.60800 + 0.928380i −0.618186 + 0.786032i \(0.712132\pi\)
−0.989817 + 0.142348i \(0.954535\pi\)
\(908\) −0.926131 + 39.0414i −0.0307347 + 1.29563i
\(909\) −6.07587 + 25.3359i −0.201524 + 0.840340i
\(910\) 0 0
\(911\) 7.71538 0.255622 0.127811 0.991799i \(-0.459205\pi\)
0.127811 + 0.991799i \(0.459205\pi\)
\(912\) −35.2147 + 13.1938i −1.16607 + 0.436892i
\(913\) −1.38561 2.39995i −0.0458571 0.0794268i
\(914\) −30.6065 + 29.8890i −1.01237 + 0.988642i
\(915\) 33.0281 + 24.6568i 1.09188 + 0.815128i
\(916\) −3.56961 + 1.94954i −0.117943 + 0.0644145i
\(917\) 0 0
\(918\) 31.5646 + 3.26624i 1.04179 + 0.107802i
\(919\) 8.69683 + 5.02112i 0.286882 + 0.165631i 0.636535 0.771248i \(-0.280367\pi\)
−0.349653 + 0.936879i \(0.613700\pi\)
\(920\) 7.16102 + 2.19459i 0.236092 + 0.0723534i
\(921\) −3.56660 + 1.53286i −0.117523 + 0.0505095i
\(922\) −0.597386 + 2.12820i −0.0196738 + 0.0700884i
\(923\) −1.98786 −0.0654311
\(924\) 0 0
\(925\) 1.46149 0.0480534
\(926\) 12.7257 45.3355i 0.418193 1.48982i
\(927\) 30.6263 9.08032i 1.00590 0.298237i
\(928\) 20.6395 4.23770i 0.677524 0.139109i
\(929\) −2.71156 1.56552i −0.0889635 0.0513631i 0.454858 0.890564i \(-0.349690\pi\)
−0.543822 + 0.839201i \(0.683023\pi\)
\(930\) 4.29215 + 32.2637i 0.140745 + 1.05797i
\(931\) 0 0
\(932\) 3.13603 + 5.74209i 0.102724 + 0.188088i
\(933\) −27.4364 + 36.7515i −0.898229 + 1.20319i
\(934\) −17.5008 + 17.0906i −0.572643 + 0.559220i
\(935\) 21.2345 + 36.7792i 0.694442 + 1.20281i
\(936\) 3.45106 + 0.0315583i 0.112801 + 0.00103152i
\(937\) −47.0325 −1.53648 −0.768242 0.640159i \(-0.778868\pi\)
−0.768242 + 0.640159i \(0.778868\pi\)
\(938\) 0 0
\(939\) 0.757468 + 0.0895556i 0.0247190 + 0.00292254i
\(940\) 10.5891 + 0.251193i 0.345380 + 0.00819302i
\(941\) 19.2716 11.1265i 0.628238 0.362713i −0.151832 0.988406i \(-0.548517\pi\)
0.780069 + 0.625693i \(0.215184\pi\)
\(942\) 37.3938 28.7740i 1.21836 0.937508i
\(943\) 2.57979 + 1.48944i 0.0840095 + 0.0485029i
\(944\) −8.46007 + 13.1689i −0.275352 + 0.428611i
\(945\) 0 0
\(946\) 65.2151 16.6480i 2.12033 0.541274i
\(947\) −16.9667 + 29.3873i −0.551345 + 0.954958i 0.446833 + 0.894617i \(0.352552\pi\)
−0.998178 + 0.0603402i \(0.980781\pi\)
\(948\) −8.55022 + 10.9038i −0.277698 + 0.354140i
\(949\) 0.572156 + 0.991004i 0.0185730 + 0.0321694i
\(950\) 0.386986 1.37865i 0.0125555 0.0447292i
\(951\) −2.39812 + 20.2835i −0.0777645 + 0.657739i
\(952\) 0 0
\(953\) 20.2641i 0.656419i 0.944605 + 0.328209i \(0.106445\pi\)
−0.944605 + 0.328209i \(0.893555\pi\)
\(954\) 11.3324 20.3061i 0.366901 0.657433i
\(955\) 40.0536 23.1249i 1.29610 0.748306i
\(956\) 41.8522 + 25.5055i 1.35360 + 0.824908i
\(957\) −22.3243 16.6660i −0.721642 0.538735i
\(958\) 5.80952 + 22.7575i 0.187697 + 0.735263i
\(959\) 0 0
\(960\) 30.9956 + 5.92366i 1.00038 + 0.191185i
\(961\) 1.52112 2.63465i 0.0490682 0.0849887i
\(962\) −3.22411 + 3.14853i −0.103949 + 0.101513i
\(963\) −7.16345 24.1611i −0.230839 0.778579i
\(964\) 0.873442 36.8203i 0.0281317 1.18590i
\(965\) 15.6131i 0.502604i
\(966\) 0 0
\(967\) 43.5882i 1.40170i 0.713308 + 0.700851i \(0.247196\pi\)
−0.713308 + 0.700851i \(0.752804\pi\)
\(968\) −21.0807 + 4.85201i −0.677560 + 0.155949i
\(969\) 16.0305 + 37.2990i 0.514974 + 1.19822i
\(970\) −4.50046 4.60849i −0.144501 0.147970i
\(971\) 1.83580 3.17971i 0.0589138 0.102042i −0.835064 0.550152i \(-0.814570\pi\)
0.893978 + 0.448111i \(0.147903\pi\)
\(972\) −31.0548 2.75673i −0.996083 0.0884221i
\(973\) 0 0
\(974\) −33.2289 + 8.48263i −1.06472 + 0.271801i
\(975\) −0.0786155 + 0.105307i −0.00251771 + 0.00337251i
\(976\) −41.7488 1.98183i −1.33635 0.0634367i
\(977\) 29.5088 17.0369i 0.944069 0.545058i 0.0528352 0.998603i \(-0.483174\pi\)
0.891233 + 0.453545i \(0.149841\pi\)
\(978\) 8.07991 19.5818i 0.258367 0.626156i
\(979\) 60.4439i 1.93179i
\(980\) 0 0
\(981\) −30.5807 7.33364i −0.976368 0.234145i
\(982\) −27.6514 7.76177i −0.882393 0.247688i
\(983\) −27.1404 47.0086i −0.865645 1.49934i −0.866406 0.499341i \(-0.833576\pi\)
0.000761201 1.00000i \(-0.499758\pi\)
\(984\) 11.4853 + 5.06109i 0.366137 + 0.161342i
\(985\) −2.24130 + 3.88205i −0.0714138 + 0.123692i
\(986\) −5.62636 22.0401i −0.179180 0.701898i
\(987\) 0 0
\(988\) 2.11636 + 3.87506i 0.0673303 + 0.123282i
\(989\) −11.0979 6.40736i −0.352892 0.203742i
\(990\) −21.3866 35.8267i −0.679712 1.13865i
\(991\) −9.09990 + 5.25383i −0.289068 + 0.166893i −0.637521 0.770433i \(-0.720040\pi\)
0.348454 + 0.937326i \(0.386707\pi\)
\(992\) −21.9143 24.6803i −0.695779 0.783599i
\(993\) 0.266354 2.25285i 0.00845250 0.0714919i
\(994\) 0 0
\(995\) 14.5141 0.460127
\(996\) −0.313293 + 2.20085i −0.00992708 + 0.0697365i
\(997\) −10.7282 18.5818i −0.339765 0.588491i 0.644623 0.764501i \(-0.277014\pi\)
−0.984388 + 0.176010i \(0.943681\pi\)
\(998\) −10.4128 10.6627i −0.329612 0.337523i
\(999\) 31.2894 26.0431i 0.989954 0.823969i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.f.275.11 24
3.2 odd 2 inner 588.2.n.f.275.2 24
4.3 odd 2 inner 588.2.n.f.275.9 24
7.2 even 3 84.2.e.a.71.5 12
7.3 odd 6 588.2.n.g.263.4 24
7.4 even 3 inner 588.2.n.f.263.4 24
7.5 odd 6 588.2.e.c.491.5 12
7.6 odd 2 588.2.n.g.275.11 24
12.11 even 2 inner 588.2.n.f.275.4 24
21.2 odd 6 84.2.e.a.71.8 yes 12
21.5 even 6 588.2.e.c.491.8 12
21.11 odd 6 inner 588.2.n.f.263.9 24
21.17 even 6 588.2.n.g.263.9 24
21.20 even 2 588.2.n.g.275.2 24
28.3 even 6 588.2.n.g.263.2 24
28.11 odd 6 inner 588.2.n.f.263.2 24
28.19 even 6 588.2.e.c.491.7 12
28.23 odd 6 84.2.e.a.71.7 yes 12
28.27 even 2 588.2.n.g.275.9 24
56.37 even 6 1344.2.h.h.575.1 12
56.51 odd 6 1344.2.h.h.575.12 12
84.11 even 6 inner 588.2.n.f.263.11 24
84.23 even 6 84.2.e.a.71.6 yes 12
84.47 odd 6 588.2.e.c.491.6 12
84.59 odd 6 588.2.n.g.263.11 24
84.83 odd 2 588.2.n.g.275.4 24
168.107 even 6 1344.2.h.h.575.2 12
168.149 odd 6 1344.2.h.h.575.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.e.a.71.5 12 7.2 even 3
84.2.e.a.71.6 yes 12 84.23 even 6
84.2.e.a.71.7 yes 12 28.23 odd 6
84.2.e.a.71.8 yes 12 21.2 odd 6
588.2.e.c.491.5 12 7.5 odd 6
588.2.e.c.491.6 12 84.47 odd 6
588.2.e.c.491.7 12 28.19 even 6
588.2.e.c.491.8 12 21.5 even 6
588.2.n.f.263.2 24 28.11 odd 6 inner
588.2.n.f.263.4 24 7.4 even 3 inner
588.2.n.f.263.9 24 21.11 odd 6 inner
588.2.n.f.263.11 24 84.11 even 6 inner
588.2.n.f.275.2 24 3.2 odd 2 inner
588.2.n.f.275.4 24 12.11 even 2 inner
588.2.n.f.275.9 24 4.3 odd 2 inner
588.2.n.f.275.11 24 1.1 even 1 trivial
588.2.n.g.263.2 24 28.3 even 6
588.2.n.g.263.4 24 7.3 odd 6
588.2.n.g.263.9 24 21.17 even 6
588.2.n.g.263.11 24 84.59 odd 6
588.2.n.g.275.2 24 21.20 even 2
588.2.n.g.275.4 24 84.83 odd 2
588.2.n.g.275.9 24 28.27 even 2
588.2.n.g.275.11 24 7.6 odd 2
1344.2.h.h.575.1 12 56.37 even 6
1344.2.h.h.575.2 12 168.107 even 6
1344.2.h.h.575.11 12 168.149 odd 6
1344.2.h.h.575.12 12 56.51 odd 6