L(s) = 1 | + (1.36 + 0.382i)2-s + (−0.683 − 1.59i)3-s + (1.70 + 1.04i)4-s + (1.97 + 1.13i)5-s + (−0.323 − 2.42i)6-s + (1.92 + 2.06i)8-s + (−2.06 + 2.17i)9-s + (2.25 + 2.30i)10-s + (2.15 + 3.73i)11-s + (0.488 − 3.42i)12-s − 0.406·13-s + (0.463 − 3.91i)15-s + (1.83 + 3.55i)16-s + (3.73 − 2.15i)17-s + (−3.64 + 2.17i)18-s + (−4.70 − 2.71i)19-s + ⋯ |
L(s) = 1 | + (0.962 + 0.270i)2-s + (−0.394 − 0.918i)3-s + (0.853 + 0.520i)4-s + (0.882 + 0.509i)5-s + (−0.131 − 0.991i)6-s + (0.681 + 0.731i)8-s + (−0.688 + 0.725i)9-s + (0.711 + 0.728i)10-s + (0.651 + 1.12i)11-s + (0.140 − 0.990i)12-s − 0.112·13-s + (0.119 − 1.01i)15-s + (0.458 + 0.888i)16-s + (0.907 − 0.523i)17-s + (−0.858 + 0.512i)18-s + (−1.07 − 0.622i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.252i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.967 - 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.68056 + 0.344245i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.68056 + 0.344245i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.36 - 0.382i)T \) |
| 3 | \( 1 + (0.683 + 1.59i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.97 - 1.13i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.15 - 3.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 0.406T + 13T^{2} \) |
| 17 | \( 1 + (-3.73 + 2.15i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.70 + 2.71i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.581 + 1.00i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.72iT - 29T^{2} \) |
| 31 | \( 1 + (5.05 - 2.91i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.91 + 6.78i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.56iT - 41T^{2} \) |
| 43 | \( 1 + 11.0iT - 43T^{2} \) |
| 47 | \( 1 + (-1.16 + 2.01i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.74 - 2.74i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.95 - 3.38i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.22 - 9.04i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.78 - 3.91i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.88T + 71T^{2} \) |
| 73 | \( 1 + (1.40 + 2.43i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.46 + 2i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.641T + 83T^{2} \) |
| 89 | \( 1 + (12.1 + 6.99i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92477457978192622435991160941, −10.10956935934786519828271236355, −8.861040259001261909410338153745, −7.52504623536937448980702037731, −6.98851395127847212638448290093, −6.18390748426350988949462070820, −5.42271020988015676267891917656, −4.28596343376644111783710893257, −2.67815193608538514165517533635, −1.83625116722310617567644306552,
1.44588099033128949341128608360, 3.14995274560318805007018331922, 4.04749160694134297361673342353, 5.12681344307402803940256955379, 5.89897292345080101194068627480, 6.40724836825995999792500205631, 8.118374702404168855767244817562, 9.259196112490317577627495210398, 9.910362438053084292503737491256, 10.82280403111620600657312774420