Properties

Label 588.2.n.f.275.4
Level $588$
Weight $2$
Character 588.275
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(263,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.263"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,4,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 275.4
Character \(\chi\) \(=\) 588.275
Dual form 588.2.n.f.263.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.01179 - 0.988071i) q^{2} +(-1.03615 - 1.38794i) q^{3} +(0.0474302 + 1.99944i) q^{4} +(-1.97228 - 1.13870i) q^{5} +(-0.323018 + 2.42810i) q^{6} +(1.92760 - 2.06987i) q^{8} +(-0.852770 + 2.87624i) q^{9} +(0.870418 + 3.10088i) q^{10} +(2.15917 + 3.73979i) q^{11} +(2.72596 - 2.13756i) q^{12} -0.406728 q^{13} +(0.463141 + 3.91729i) q^{15} +(-3.99550 + 0.189667i) q^{16} +(-3.73979 + 2.15917i) q^{17} +(3.70476 - 2.06755i) q^{18} +(4.70065 + 2.71392i) q^{19} +(2.18321 - 3.99747i) q^{20} +(1.51056 - 5.91729i) q^{22} +(0.581371 - 1.00696i) q^{23} +(-4.87015 - 0.530690i) q^{24} +(0.0932716 + 0.161551i) q^{25} +(0.411523 + 0.401877i) q^{26} +(4.87566 - 1.79664i) q^{27} +3.72469i q^{29} +(3.40196 - 4.42108i) q^{30} +(5.05289 - 2.91729i) q^{31} +(4.23000 + 3.75594i) q^{32} +(2.95338 - 6.87180i) q^{33} +(5.91729 + 1.51056i) q^{34} +(-5.79132 - 1.56864i) q^{36} +(3.91729 - 6.78494i) q^{37} +(-2.07451 - 7.39049i) q^{38} +(0.421433 + 0.564516i) q^{39} +(-6.15873 + 1.88742i) q^{40} -2.56195i q^{41} +11.0211i q^{43} +(-7.37506 + 4.49450i) q^{44} +(4.95708 - 4.70172i) q^{45} +(-1.58318 + 0.444399i) q^{46} +(1.16274 - 2.01393i) q^{47} +(4.40320 + 5.34900i) q^{48} +(0.0652529 - 0.255614i) q^{50} +(6.87180 + 2.95338i) q^{51} +(-0.0192912 - 0.813228i) q^{52} +(4.74675 - 2.74054i) q^{53} +(-6.70834 - 2.99969i) q^{54} -9.83457i q^{55} +(-1.10383 - 9.33627i) q^{57} +(3.68026 - 3.76860i) q^{58} +(1.95653 + 3.38881i) q^{59} +(-7.81040 + 1.11182i) q^{60} +(-5.22448 + 9.04906i) q^{61} +(-7.99494 - 2.04094i) q^{62} +(-0.568736 - 7.97976i) q^{64} +(0.802184 + 0.463141i) q^{65} +(-9.77802 + 4.03465i) q^{66} +(6.78494 - 3.91729i) q^{67} +(-4.49450 - 7.37506i) q^{68} +(-2.00000 + 0.236460i) q^{69} +4.88743 q^{71} +(4.30966 + 7.30937i) q^{72} +(-1.40673 - 2.43653i) q^{73} +(-10.6675 + 2.99436i) q^{74} +(0.127580 - 0.296847i) q^{75} +(-5.20336 + 9.52738i) q^{76} +(0.131381 - 0.987576i) q^{78} +(3.46410 + 2.00000i) q^{79} +(8.09624 + 4.17560i) q^{80} +(-7.54557 - 4.90555i) q^{81} +(-2.53139 + 2.59215i) q^{82} -0.641735 q^{83} +9.83457 q^{85} +(10.8896 - 11.1510i) q^{86} +(5.16966 - 3.85935i) q^{87} +(11.9029 + 2.73961i) q^{88} +(12.1218 + 6.99851i) q^{89} +(-9.66116 - 0.140802i) q^{90} +(2.04094 + 1.11466i) q^{92} +(-9.28460 - 3.99036i) q^{93} +(-3.16636 + 0.888797i) q^{94} +(-6.18068 - 10.7053i) q^{95} +(0.830089 - 9.76273i) q^{96} -2.00000 q^{97} +(-12.5978 + 3.02112i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} - 12 q^{6} + 4 q^{9} - 4 q^{10} + 6 q^{12} - 4 q^{16} + 8 q^{18} - 32 q^{22} - 2 q^{24} + 12 q^{25} - 20 q^{30} + 16 q^{33} + 64 q^{34} - 40 q^{36} + 16 q^{37} - 20 q^{40} - 24 q^{45} + 92 q^{48}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.01179 0.988071i −0.715442 0.698672i
\(3\) −1.03615 1.38794i −0.598224 0.801329i
\(4\) 0.0474302 + 1.99944i 0.0237151 + 0.999719i
\(5\) −1.97228 1.13870i −0.882033 0.509242i −0.0107045 0.999943i \(-0.503407\pi\)
−0.871328 + 0.490701i \(0.836741\pi\)
\(6\) −0.323018 + 2.42810i −0.131872 + 0.991267i
\(7\) 0 0
\(8\) 1.92760 2.06987i 0.681509 0.731810i
\(9\) −0.852770 + 2.87624i −0.284257 + 0.958748i
\(10\) 0.870418 + 3.10088i 0.275250 + 0.980584i
\(11\) 2.15917 + 3.73979i 0.651014 + 1.12759i 0.982877 + 0.184261i \(0.0589893\pi\)
−0.331864 + 0.943327i \(0.607677\pi\)
\(12\) 2.72596 2.13756i 0.786917 0.617059i
\(13\) −0.406728 −0.112806 −0.0564031 0.998408i \(-0.517963\pi\)
−0.0564031 + 0.998408i \(0.517963\pi\)
\(14\) 0 0
\(15\) 0.463141 + 3.91729i 0.119583 + 1.01144i
\(16\) −3.99550 + 0.189667i −0.998875 + 0.0474169i
\(17\) −3.73979 + 2.15917i −0.907032 + 0.523675i −0.879475 0.475945i \(-0.842106\pi\)
−0.0275570 + 0.999620i \(0.508773\pi\)
\(18\) 3.70476 2.06755i 0.873220 0.487327i
\(19\) 4.70065 + 2.71392i 1.07840 + 0.622616i 0.930465 0.366380i \(-0.119403\pi\)
0.147938 + 0.988997i \(0.452736\pi\)
\(20\) 2.18321 3.99747i 0.488181 0.893861i
\(21\) 0 0
\(22\) 1.51056 5.91729i 0.322052 1.26157i
\(23\) 0.581371 1.00696i 0.121224 0.209967i −0.799026 0.601296i \(-0.794651\pi\)
0.920251 + 0.391329i \(0.127985\pi\)
\(24\) −4.87015 0.530690i −0.994115 0.108327i
\(25\) 0.0932716 + 0.161551i 0.0186543 + 0.0323102i
\(26\) 0.411523 + 0.401877i 0.0807063 + 0.0788145i
\(27\) 4.87566 1.79664i 0.938322 0.345763i
\(28\) 0 0
\(29\) 3.72469i 0.691657i 0.938298 + 0.345829i \(0.112402\pi\)
−0.938298 + 0.345829i \(0.887598\pi\)
\(30\) 3.40196 4.42108i 0.621110 0.807175i
\(31\) 5.05289 2.91729i 0.907525 0.523960i 0.0278913 0.999611i \(-0.491121\pi\)
0.879634 + 0.475651i \(0.157787\pi\)
\(32\) 4.23000 + 3.75594i 0.747766 + 0.663962i
\(33\) 2.95338 6.87180i 0.514118 1.19623i
\(34\) 5.91729 + 1.51056i 1.01481 + 0.259058i
\(35\) 0 0
\(36\) −5.79132 1.56864i −0.965220 0.261440i
\(37\) 3.91729 6.78494i 0.643998 1.11544i −0.340534 0.940232i \(-0.610608\pi\)
0.984532 0.175205i \(-0.0560588\pi\)
\(38\) −2.07451 7.39049i −0.336531 1.19890i
\(39\) 0.421433 + 0.564516i 0.0674833 + 0.0903949i
\(40\) −6.15873 + 1.88742i −0.973781 + 0.298428i
\(41\) 2.56195i 0.400109i −0.979785 0.200054i \(-0.935888\pi\)
0.979785 0.200054i \(-0.0641119\pi\)
\(42\) 0 0
\(43\) 11.0211i 1.68070i 0.542041 + 0.840352i \(0.317652\pi\)
−0.542041 + 0.840352i \(0.682348\pi\)
\(44\) −7.37506 + 4.49450i −1.11183 + 0.677571i
\(45\) 4.95708 4.70172i 0.738958 0.700892i
\(46\) −1.58318 + 0.444399i −0.233427 + 0.0655230i
\(47\) 1.16274 2.01393i 0.169603 0.293762i −0.768677 0.639637i \(-0.779085\pi\)
0.938281 + 0.345875i \(0.112418\pi\)
\(48\) 4.40320 + 5.34900i 0.635547 + 0.772062i
\(49\) 0 0
\(50\) 0.0652529 0.255614i 0.00922816 0.0361493i
\(51\) 6.87180 + 2.95338i 0.962244 + 0.413556i
\(52\) −0.0192912 0.813228i −0.00267521 0.112774i
\(53\) 4.74675 2.74054i 0.652017 0.376442i −0.137212 0.990542i \(-0.543814\pi\)
0.789228 + 0.614100i \(0.210481\pi\)
\(54\) −6.70834 2.99969i −0.912890 0.408206i
\(55\) 9.83457i 1.32609i
\(56\) 0 0
\(57\) −1.10383 9.33627i −0.146206 1.23662i
\(58\) 3.68026 3.76860i 0.483242 0.494841i
\(59\) 1.95653 + 3.38881i 0.254719 + 0.441186i 0.964819 0.262915i \(-0.0846838\pi\)
−0.710100 + 0.704100i \(0.751350\pi\)
\(60\) −7.81040 + 1.11182i −1.00832 + 0.143535i
\(61\) −5.22448 + 9.04906i −0.668926 + 1.15861i 0.309279 + 0.950971i \(0.399912\pi\)
−0.978205 + 0.207642i \(0.933421\pi\)
\(62\) −7.99494 2.04094i −1.01536 0.259199i
\(63\) 0 0
\(64\) −0.568736 7.97976i −0.0710920 0.997470i
\(65\) 0.802184 + 0.463141i 0.0994987 + 0.0574456i
\(66\) −9.77802 + 4.03465i −1.20359 + 0.496631i
\(67\) 6.78494 3.91729i 0.828912 0.478573i −0.0245679 0.999698i \(-0.507821\pi\)
0.853480 + 0.521126i \(0.174488\pi\)
\(68\) −4.49450 7.37506i −0.545038 0.894358i
\(69\) −2.00000 + 0.236460i −0.240772 + 0.0284665i
\(70\) 0 0
\(71\) 4.88743 0.580031 0.290016 0.957022i \(-0.406339\pi\)
0.290016 + 0.957022i \(0.406339\pi\)
\(72\) 4.30966 + 7.30937i 0.507898 + 0.861417i
\(73\) −1.40673 2.43653i −0.164645 0.285174i 0.771884 0.635763i \(-0.219315\pi\)
−0.936529 + 0.350590i \(0.885981\pi\)
\(74\) −10.6675 + 2.99436i −1.24007 + 0.348087i
\(75\) 0.127580 0.296847i 0.0147317 0.0342770i
\(76\) −5.20336 + 9.52738i −0.596867 + 1.09287i
\(77\) 0 0
\(78\) 0.131381 0.987576i 0.0148759 0.111821i
\(79\) 3.46410 + 2.00000i 0.389742 + 0.225018i 0.682048 0.731307i \(-0.261089\pi\)
−0.292306 + 0.956325i \(0.594423\pi\)
\(80\) 8.09624 + 4.17560i 0.905187 + 0.466846i
\(81\) −7.54557 4.90555i −0.838396 0.545061i
\(82\) −2.53139 + 2.59215i −0.279545 + 0.286255i
\(83\) −0.641735 −0.0704395 −0.0352198 0.999380i \(-0.511213\pi\)
−0.0352198 + 0.999380i \(0.511213\pi\)
\(84\) 0 0
\(85\) 9.83457 1.06671
\(86\) 10.8896 11.1510i 1.17426 1.20245i
\(87\) 5.16966 3.85935i 0.554245 0.413766i
\(88\) 11.9029 + 2.73961i 1.26885 + 0.292043i
\(89\) 12.1218 + 6.99851i 1.28491 + 0.741841i 0.977741 0.209815i \(-0.0672863\pi\)
0.307165 + 0.951656i \(0.400620\pi\)
\(90\) −9.66116 0.140802i −1.01838 0.0148419i
\(91\) 0 0
\(92\) 2.04094 + 1.11466i 0.212782 + 0.116211i
\(93\) −9.28460 3.99036i −0.962768 0.413781i
\(94\) −3.16636 + 0.888797i −0.326585 + 0.0916724i
\(95\) −6.18068 10.7053i −0.634124 1.09834i
\(96\) 0.830089 9.76273i 0.0847206 0.996405i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −12.5978 + 3.02112i −1.26613 + 0.303633i
\(100\) −0.318587 + 0.194153i −0.0318587 + 0.0194153i
\(101\) −7.52122 + 4.34238i −0.748390 + 0.432083i −0.825112 0.564970i \(-0.808888\pi\)
0.0767221 + 0.997053i \(0.475555\pi\)
\(102\) −4.03465 9.77802i −0.399490 0.968169i
\(103\) 9.22146 + 5.32401i 0.908618 + 0.524591i 0.879986 0.474999i \(-0.157552\pi\)
0.0286316 + 0.999590i \(0.490885\pi\)
\(104\) −0.784009 + 0.841876i −0.0768784 + 0.0825527i
\(105\) 0 0
\(106\) −7.51056 1.91729i −0.729490 0.186223i
\(107\) −4.20011 + 7.27480i −0.406040 + 0.703281i −0.994442 0.105287i \(-0.966424\pi\)
0.588402 + 0.808568i \(0.299757\pi\)
\(108\) 3.82351 + 9.66337i 0.367918 + 0.929858i
\(109\) 5.24130 + 9.07820i 0.502026 + 0.869534i 0.999997 + 0.00234046i \(0.000744993\pi\)
−0.497972 + 0.867193i \(0.665922\pi\)
\(110\) −9.71726 + 9.95050i −0.926504 + 0.948743i
\(111\) −13.4760 + 1.59327i −1.27909 + 0.151227i
\(112\) 0 0
\(113\) 9.56296i 0.899607i 0.893128 + 0.449804i \(0.148506\pi\)
−0.893128 + 0.449804i \(0.851494\pi\)
\(114\) −8.10806 + 10.5370i −0.759390 + 0.986880i
\(115\) −2.29326 + 1.32401i −0.213848 + 0.123465i
\(116\) −7.44728 + 0.176663i −0.691463 + 0.0164027i
\(117\) 0.346846 1.16985i 0.0320659 0.108153i
\(118\) 1.36879 5.36195i 0.126008 0.493608i
\(119\) 0 0
\(120\) 9.00103 + 6.59231i 0.821678 + 0.601793i
\(121\) −3.82401 + 6.62339i −0.347638 + 0.602126i
\(122\) 14.2272 3.99358i 1.28807 0.361561i
\(123\) −3.55583 + 2.65457i −0.320619 + 0.239355i
\(124\) 6.07259 + 9.96457i 0.545335 + 0.894844i
\(125\) 10.9622i 0.980485i
\(126\) 0 0
\(127\) 6.20766i 0.550841i −0.961324 0.275420i \(-0.911183\pi\)
0.961324 0.275420i \(-0.0888170\pi\)
\(128\) −7.30913 + 8.63578i −0.646042 + 0.763302i
\(129\) 15.2967 11.4196i 1.34680 1.00544i
\(130\) −0.354024 1.26122i −0.0310499 0.110616i
\(131\) −7.20115 + 12.4728i −0.629167 + 1.08975i 0.358552 + 0.933510i \(0.383271\pi\)
−0.987719 + 0.156240i \(0.950063\pi\)
\(132\) 13.8798 + 5.57917i 1.20808 + 0.485605i
\(133\) 0 0
\(134\) −10.7355 2.74054i −0.927404 0.236747i
\(135\) −11.6620 2.00844i −1.00371 0.172859i
\(136\) −2.73961 + 11.9029i −0.234919 + 1.02066i
\(137\) 2.01393 1.16274i 0.172062 0.0993398i −0.411496 0.911412i \(-0.634994\pi\)
0.583558 + 0.812072i \(0.301660\pi\)
\(138\) 2.25722 + 1.73689i 0.192147 + 0.147854i
\(139\) 9.22019i 0.782046i 0.920381 + 0.391023i \(0.127879\pi\)
−0.920381 + 0.391023i \(0.872121\pi\)
\(140\) 0 0
\(141\) −4.00000 + 0.472921i −0.336861 + 0.0398271i
\(142\) −4.94505 4.82913i −0.414979 0.405252i
\(143\) −0.878195 1.52108i −0.0734384 0.127199i
\(144\) 2.86171 11.6538i 0.238476 0.971148i
\(145\) 4.24130 7.34615i 0.352221 0.610064i
\(146\) −0.984149 + 3.85520i −0.0814488 + 0.319058i
\(147\) 0 0
\(148\) 13.7519 + 7.51056i 1.13040 + 0.617364i
\(149\) 15.0594 + 8.69454i 1.23371 + 0.712284i 0.967802 0.251713i \(-0.0809940\pi\)
0.265911 + 0.963998i \(0.414327\pi\)
\(150\) −0.422390 + 0.174289i −0.0344880 + 0.0142306i
\(151\) −3.60737 + 2.08271i −0.293563 + 0.169489i −0.639548 0.768751i \(-0.720878\pi\)
0.345984 + 0.938240i \(0.387545\pi\)
\(152\) 14.6784 4.49839i 1.19058 0.364868i
\(153\) −3.02112 12.5978i −0.244243 1.01847i
\(154\) 0 0
\(155\) −13.2876 −1.06729
\(156\) −1.10873 + 0.869405i −0.0887691 + 0.0696081i
\(157\) 9.63121 + 16.6817i 0.768654 + 1.33135i 0.938293 + 0.345842i \(0.112407\pi\)
−0.169639 + 0.985506i \(0.554260\pi\)
\(158\) −1.52879 5.44636i −0.121624 0.433289i
\(159\) −8.72208 3.74860i −0.691706 0.297283i
\(160\) −4.06589 12.2245i −0.321437 0.966430i
\(161\) 0 0
\(162\) 2.78748 + 12.4189i 0.219005 + 0.975724i
\(163\) −7.48941 4.32401i −0.586616 0.338683i 0.177142 0.984185i \(-0.443315\pi\)
−0.763758 + 0.645502i \(0.776648\pi\)
\(164\) 5.12245 0.121514i 0.399996 0.00948862i
\(165\) −13.6498 + 10.1901i −1.06264 + 0.793301i
\(166\) 0.649300 + 0.634080i 0.0503954 + 0.0492141i
\(167\) 1.75639 0.135914 0.0679568 0.997688i \(-0.478352\pi\)
0.0679568 + 0.997688i \(0.478352\pi\)
\(168\) 0 0
\(169\) −12.8346 −0.987275
\(170\) −9.95050 9.71726i −0.763169 0.745280i
\(171\) −11.8145 + 11.2059i −0.903476 + 0.856934i
\(172\) −22.0360 + 0.522734i −1.68023 + 0.0398581i
\(173\) −6.81927 3.93711i −0.518459 0.299333i 0.217845 0.975983i \(-0.430097\pi\)
−0.736304 + 0.676651i \(0.763431\pi\)
\(174\) −9.04391 1.20314i −0.685617 0.0912100i
\(175\) 0 0
\(176\) −9.33627 14.5328i −0.703748 1.09545i
\(177\) 2.67621 6.22688i 0.201156 0.468041i
\(178\) −5.34964 19.0582i −0.400973 1.42847i
\(179\) −4.67303 8.09392i −0.349278 0.604968i 0.636843 0.770993i \(-0.280240\pi\)
−0.986121 + 0.166026i \(0.946907\pi\)
\(180\) 9.63592 + 9.68837i 0.718219 + 0.722129i
\(181\) 16.8893 1.25537 0.627687 0.778466i \(-0.284002\pi\)
0.627687 + 0.778466i \(0.284002\pi\)
\(182\) 0 0
\(183\) 17.9729 2.12494i 1.32860 0.157080i
\(184\) −0.963638 3.14439i −0.0710403 0.231807i
\(185\) −15.4520 + 8.92122i −1.13605 + 0.655901i
\(186\) 5.45128 + 13.2112i 0.399707 + 0.968695i
\(187\) −16.1497 9.32401i −1.18098 0.681839i
\(188\) 4.08188 + 2.22931i 0.297701 + 0.162589i
\(189\) 0 0
\(190\) −4.32401 + 16.9384i −0.313697 + 1.22884i
\(191\) 10.1541 17.5874i 0.734725 1.27258i −0.220118 0.975473i \(-0.570644\pi\)
0.954844 0.297108i \(-0.0960223\pi\)
\(192\) −10.4861 + 9.05763i −0.756773 + 0.653678i
\(193\) −3.42784 5.93720i −0.246742 0.427369i 0.715878 0.698225i \(-0.246027\pi\)
−0.962620 + 0.270856i \(0.912693\pi\)
\(194\) 2.02358 + 1.97614i 0.145284 + 0.141879i
\(195\) −0.188373 1.59327i −0.0134897 0.114097i
\(196\) 0 0
\(197\) 1.96830i 0.140235i −0.997539 0.0701177i \(-0.977662\pi\)
0.997539 0.0701177i \(-0.0223375\pi\)
\(198\) 15.7314 + 9.39082i 1.11798 + 0.667376i
\(199\) −5.51925 + 3.18654i −0.391250 + 0.225888i −0.682701 0.730697i \(-0.739195\pi\)
0.291452 + 0.956586i \(0.405862\pi\)
\(200\) 0.514180 + 0.118345i 0.0363580 + 0.00836828i
\(201\) −12.4672 5.35819i −0.879369 0.377938i
\(202\) 11.9005 + 3.03794i 0.837314 + 0.213748i
\(203\) 0 0
\(204\) −5.57917 + 13.8798i −0.390620 + 0.971781i
\(205\) −2.91729 + 5.05289i −0.203752 + 0.352909i
\(206\) −4.06966 14.4982i −0.283547 1.01014i
\(207\) 2.40050 + 2.53088i 0.166846 + 0.175908i
\(208\) 1.62508 0.0771431i 0.112679 0.00534891i
\(209\) 23.4393i 1.62133i
\(210\) 0 0
\(211\) 25.1306i 1.73006i −0.501717 0.865032i \(-0.667298\pi\)
0.501717 0.865032i \(-0.332702\pi\)
\(212\) 5.70468 + 9.36085i 0.391799 + 0.642906i
\(213\) −5.06413 6.78348i −0.346989 0.464796i
\(214\) 11.4376 3.21055i 0.781861 0.219469i
\(215\) 12.5497 21.7368i 0.855885 1.48244i
\(216\) 5.67951 13.5552i 0.386442 0.922314i
\(217\) 0 0
\(218\) 3.66682 14.3640i 0.248349 0.972852i
\(219\) −1.92417 + 4.47707i −0.130023 + 0.302533i
\(220\) 19.6636 0.466456i 1.32572 0.0314484i
\(221\) 1.52108 0.878195i 0.102319 0.0590738i
\(222\) 15.2091 + 11.7032i 1.02077 + 0.785468i
\(223\) 9.22877i 0.618004i 0.951061 + 0.309002i \(0.0999950\pi\)
−0.951061 + 0.309002i \(0.900005\pi\)
\(224\) 0 0
\(225\) −0.544200 + 0.130506i −0.0362800 + 0.00870039i
\(226\) 9.44888 9.67568i 0.628530 0.643617i
\(227\) 9.76310 + 16.9102i 0.647999 + 1.12237i 0.983600 + 0.180364i \(0.0577274\pi\)
−0.335601 + 0.942004i \(0.608939\pi\)
\(228\) 18.6149 2.64986i 1.23280 0.175491i
\(229\) −1.01682 + 1.76119i −0.0671934 + 0.116382i −0.897665 0.440679i \(-0.854738\pi\)
0.830471 + 0.557061i \(0.188071\pi\)
\(230\) 3.62851 + 0.926283i 0.239257 + 0.0610773i
\(231\) 0 0
\(232\) 7.70963 + 7.17970i 0.506162 + 0.471370i
\(233\) −2.83305 1.63566i −0.185599 0.107156i 0.404321 0.914617i \(-0.367508\pi\)
−0.589921 + 0.807461i \(0.700841\pi\)
\(234\) −1.50683 + 0.840932i −0.0985046 + 0.0549735i
\(235\) −4.58652 + 2.64803i −0.299192 + 0.172738i
\(236\) −6.68292 + 4.07269i −0.435021 + 0.265110i
\(237\) −0.813457 6.88028i −0.0528397 0.446922i
\(238\) 0 0
\(239\) 24.5058 1.58515 0.792575 0.609775i \(-0.208740\pi\)
0.792575 + 0.609775i \(0.208740\pi\)
\(240\) −2.59346 15.5637i −0.167407 1.00463i
\(241\) −9.20766 15.9481i −0.593117 1.02731i −0.993810 0.111097i \(-0.964564\pi\)
0.400692 0.916213i \(-0.368770\pi\)
\(242\) 10.4135 2.92307i 0.669403 0.187902i
\(243\) 1.00974 + 15.5557i 0.0647750 + 0.997900i
\(244\) −18.3408 10.0168i −1.17415 0.641261i
\(245\) 0 0
\(246\) 6.22066 + 0.827555i 0.396615 + 0.0527630i
\(247\) −1.91189 1.10383i −0.121651 0.0702350i
\(248\) 3.70153 16.0822i 0.235047 1.02122i
\(249\) 0.664936 + 0.890691i 0.0421386 + 0.0564453i
\(250\) 10.8314 11.0914i 0.685038 0.701481i
\(251\) 15.4443 0.974837 0.487418 0.873169i \(-0.337939\pi\)
0.487418 + 0.873169i \(0.337939\pi\)
\(252\) 0 0
\(253\) 5.02112 0.315675
\(254\) −6.13361 + 6.28083i −0.384857 + 0.394095i
\(255\) −10.1901 13.6498i −0.638131 0.854785i
\(256\) 15.9281 1.51563i 0.995503 0.0947271i
\(257\) −7.76765 4.48465i −0.484533 0.279745i 0.237771 0.971321i \(-0.423583\pi\)
−0.722303 + 0.691576i \(0.756917\pi\)
\(258\) −26.7603 3.56002i −1.66603 0.221637i
\(259\) 0 0
\(260\) −0.887974 + 1.62588i −0.0550698 + 0.100833i
\(261\) −10.7131 3.17630i −0.663125 0.196608i
\(262\) 19.6100 5.50454i 1.21151 0.340071i
\(263\) 9.68119 + 16.7683i 0.596967 + 1.03398i 0.993266 + 0.115856i \(0.0369612\pi\)
−0.396299 + 0.918122i \(0.629705\pi\)
\(264\) −8.53081 19.3592i −0.525035 1.19148i
\(265\) −12.4826 −0.766800
\(266\) 0 0
\(267\) −2.84649 24.0759i −0.174203 1.47342i
\(268\) 8.15418 + 13.3803i 0.498096 + 0.817330i
\(269\) −0.0416451 + 0.0240438i −0.00253914 + 0.00146598i −0.501269 0.865291i \(-0.667133\pi\)
0.498730 + 0.866757i \(0.333800\pi\)
\(270\) 9.81502 + 13.5550i 0.597323 + 0.824933i
\(271\) −17.2138 9.93840i −1.04566 0.603715i −0.124232 0.992253i \(-0.539647\pi\)
−0.921433 + 0.388538i \(0.872980\pi\)
\(272\) 14.5328 9.33627i 0.881181 0.566095i
\(273\) 0 0
\(274\) −3.18654 0.813457i −0.192506 0.0491427i
\(275\) −0.402778 + 0.697632i −0.0242884 + 0.0420688i
\(276\) −0.567648 3.98766i −0.0341684 0.240029i
\(277\) −5.13747 8.89836i −0.308681 0.534651i 0.669393 0.742908i \(-0.266554\pi\)
−0.978074 + 0.208257i \(0.933221\pi\)
\(278\) 9.11020 9.32887i 0.546394 0.559509i
\(279\) 4.08188 + 17.0211i 0.244376 + 1.01903i
\(280\) 0 0
\(281\) 6.78411i 0.404706i 0.979313 + 0.202353i \(0.0648588\pi\)
−0.979313 + 0.202353i \(0.935141\pi\)
\(282\) 4.51443 + 3.47379i 0.268830 + 0.206861i
\(283\) 4.70065 2.71392i 0.279425 0.161326i −0.353738 0.935344i \(-0.615090\pi\)
0.633163 + 0.774019i \(0.281756\pi\)
\(284\) 0.231812 + 9.77212i 0.0137555 + 0.579868i
\(285\) −8.45414 + 19.6707i −0.500780 + 1.16519i
\(286\) −0.614387 + 2.40673i −0.0363294 + 0.142313i
\(287\) 0 0
\(288\) −14.4102 + 8.96358i −0.849130 + 0.528184i
\(289\) 0.824014 1.42723i 0.0484714 0.0839550i
\(290\) −11.5498 + 3.24204i −0.678228 + 0.190379i
\(291\) 2.07231 + 2.77589i 0.121481 + 0.162725i
\(292\) 4.80496 2.92823i 0.281189 0.171362i
\(293\) 28.1874i 1.64673i −0.567515 0.823363i \(-0.692095\pi\)
0.567515 0.823363i \(-0.307905\pi\)
\(294\) 0 0
\(295\) 8.91160i 0.518853i
\(296\) −6.49300 21.1869i −0.377398 1.23146i
\(297\) 17.2464 + 14.3547i 1.00074 + 0.832945i
\(298\) −6.64608 23.6768i −0.384997 1.37156i
\(299\) −0.236460 + 0.409561i −0.0136749 + 0.0236855i
\(300\) 0.599579 + 0.241009i 0.0346167 + 0.0139146i
\(301\) 0 0
\(302\) 5.70776 + 1.45707i 0.328445 + 0.0838450i
\(303\) 13.8201 + 5.93965i 0.793945 + 0.341224i
\(304\) −19.2962 9.95192i −1.10671 0.570782i
\(305\) 20.6083 11.8982i 1.18003 0.681290i
\(306\) −9.39082 + 15.7314i −0.536837 + 0.899304i
\(307\) 2.24130i 0.127918i 0.997953 + 0.0639589i \(0.0203727\pi\)
−0.997953 + 0.0639589i \(0.979627\pi\)
\(308\) 0 0
\(309\) −2.16543 18.3154i −0.123187 1.04192i
\(310\) 13.4443 + 13.1291i 0.763584 + 0.745685i
\(311\) −13.2396 22.9316i −0.750746 1.30033i −0.947461 0.319870i \(-0.896361\pi\)
0.196715 0.980461i \(-0.436973\pi\)
\(312\) 1.98083 + 0.215847i 0.112142 + 0.0122199i
\(313\) −0.220185 + 0.381372i −0.0124456 + 0.0215564i −0.872181 0.489183i \(-0.837295\pi\)
0.859736 + 0.510739i \(0.170628\pi\)
\(314\) 6.73801 26.3947i 0.380248 1.48954i
\(315\) 0 0
\(316\) −3.83457 + 7.02112i −0.215712 + 0.394969i
\(317\) 10.2124 + 5.89613i 0.573586 + 0.331160i 0.758580 0.651580i \(-0.225893\pi\)
−0.184995 + 0.982740i \(0.559227\pi\)
\(318\) 5.12101 + 12.4108i 0.287172 + 0.695965i
\(319\) −13.9296 + 8.04223i −0.779905 + 0.450278i
\(320\) −7.96484 + 16.3860i −0.445248 + 0.916004i
\(321\) 14.4490 1.70830i 0.806462 0.0953482i
\(322\) 0 0
\(323\) −23.4393 −1.30419
\(324\) 9.45046 15.3196i 0.525025 0.851087i
\(325\) −0.0379362 0.0657074i −0.00210432 0.00364479i
\(326\) 3.30526 + 11.7751i 0.183062 + 0.652160i
\(327\) 7.16923 16.6810i 0.396459 0.922463i
\(328\) −5.30290 4.93840i −0.292804 0.272678i
\(329\) 0 0
\(330\) 23.8793 + 3.17675i 1.31451 + 0.174874i
\(331\) −1.13427 0.654870i −0.0623451 0.0359949i 0.468503 0.883462i \(-0.344793\pi\)
−0.530849 + 0.847467i \(0.678127\pi\)
\(332\) −0.0304376 1.28311i −0.00167048 0.0704197i
\(333\) 16.1746 + 17.0531i 0.886362 + 0.934502i
\(334\) −1.77709 1.73544i −0.0972383 0.0949590i
\(335\) −17.8424 −0.974837
\(336\) 0 0
\(337\) −15.4615 −0.842241 −0.421120 0.907005i \(-0.638363\pi\)
−0.421120 + 0.907005i \(0.638363\pi\)
\(338\) 12.9859 + 12.6815i 0.706338 + 0.689781i
\(339\) 13.2728 9.90869i 0.720881 0.538166i
\(340\) 0.466456 + 19.6636i 0.0252971 + 1.06641i
\(341\) 21.8201 + 12.5978i 1.18162 + 0.682210i
\(342\) 23.0259 + 0.335582i 1.24510 + 0.0181462i
\(343\) 0 0
\(344\) 22.8123 + 21.2443i 1.22996 + 1.14541i
\(345\) 4.21383 + 1.81103i 0.226865 + 0.0975026i
\(346\) 3.00951 + 10.7214i 0.161792 + 0.576388i
\(347\) 13.8307 + 23.9555i 0.742471 + 1.28600i 0.951367 + 0.308060i \(0.0996798\pi\)
−0.208896 + 0.977938i \(0.566987\pi\)
\(348\) 7.96173 + 10.1534i 0.426793 + 0.544277i
\(349\) −18.9316 −1.01338 −0.506692 0.862127i \(-0.669132\pi\)
−0.506692 + 0.862127i \(0.669132\pi\)
\(350\) 0 0
\(351\) −1.98307 + 0.730743i −0.105849 + 0.0390042i
\(352\) −4.91312 + 23.9290i −0.261870 + 1.27542i
\(353\) −1.72586 + 0.996425i −0.0918582 + 0.0530344i −0.545225 0.838289i \(-0.683556\pi\)
0.453367 + 0.891324i \(0.350223\pi\)
\(354\) −8.86036 + 3.65600i −0.470923 + 0.194314i
\(355\) −9.63941 5.56531i −0.511607 0.295376i
\(356\) −13.4182 + 24.5687i −0.711161 + 1.30214i
\(357\) 0 0
\(358\) −3.26926 + 12.8066i −0.172786 + 0.676851i
\(359\) −1.17502 + 2.03519i −0.0620151 + 0.107413i −0.895366 0.445331i \(-0.853086\pi\)
0.833351 + 0.552744i \(0.186419\pi\)
\(360\) −0.176705 19.3236i −0.00931317 1.01844i
\(361\) 5.23074 + 9.05991i 0.275302 + 0.476837i
\(362\) −17.0884 16.6879i −0.898148 0.877095i
\(363\) 13.1551 1.55534i 0.690466 0.0816339i
\(364\) 0 0
\(365\) 6.40736i 0.335377i
\(366\) −20.2844 15.6086i −1.06028 0.815872i
\(367\) −29.6129 + 17.0970i −1.54578 + 0.892455i −0.547321 + 0.836923i \(0.684352\pi\)
−0.998457 + 0.0555330i \(0.982314\pi\)
\(368\) −2.13188 + 4.13360i −0.111132 + 0.215479i
\(369\) 7.36878 + 2.18475i 0.383604 + 0.113734i
\(370\) 24.4490 + 6.24130i 1.27104 + 0.324470i
\(371\) 0 0
\(372\) 7.53811 18.7532i 0.390833 0.972310i
\(373\) 8.83457 15.3019i 0.457437 0.792304i −0.541388 0.840773i \(-0.682101\pi\)
0.998825 + 0.0484692i \(0.0154343\pi\)
\(374\) 7.12725 + 25.3909i 0.368541 + 1.31293i
\(375\) 15.2148 11.3585i 0.785691 0.586550i
\(376\) −1.92728 6.28877i −0.0993916 0.324319i
\(377\) 1.51494i 0.0780232i
\(378\) 0 0
\(379\) 5.39420i 0.277082i 0.990357 + 0.138541i \(0.0442412\pi\)
−0.990357 + 0.138541i \(0.955759\pi\)
\(380\) 21.1113 12.8656i 1.08299 0.659993i
\(381\) −8.61587 + 6.43209i −0.441405 + 0.329526i
\(382\) −27.6514 + 7.76177i −1.41477 + 0.397127i
\(383\) 0.926283 1.60437i 0.0473308 0.0819794i −0.841389 0.540429i \(-0.818262\pi\)
0.888720 + 0.458450i \(0.151595\pi\)
\(384\) 19.5593 + 1.19666i 0.998134 + 0.0610669i
\(385\) 0 0
\(386\) −2.39812 + 9.39414i −0.122061 + 0.478149i
\(387\) −31.6994 9.39848i −1.61137 0.477752i
\(388\) −0.0948604 3.99888i −0.00481581 0.203012i
\(389\) 4.66346 2.69245i 0.236447 0.136513i −0.377096 0.926174i \(-0.623077\pi\)
0.613543 + 0.789662i \(0.289744\pi\)
\(390\) −1.38367 + 1.79818i −0.0700650 + 0.0910543i
\(391\) 5.02112i 0.253929i
\(392\) 0 0
\(393\) 24.7730 2.92891i 1.24963 0.147744i
\(394\) −1.94482 + 1.99150i −0.0979786 + 0.100330i
\(395\) −4.55480 7.88914i −0.229177 0.396946i
\(396\) −6.63805 25.0453i −0.333574 1.25857i
\(397\) 10.8178 18.7369i 0.542927 0.940378i −0.455807 0.890079i \(-0.650649\pi\)
0.998734 0.0502990i \(-0.0160174\pi\)
\(398\) 8.73285 + 2.22931i 0.437738 + 0.111745i
\(399\) 0 0
\(400\) −0.403308 0.627787i −0.0201654 0.0313893i
\(401\) −33.1440 19.1357i −1.65513 0.955591i −0.974914 0.222580i \(-0.928552\pi\)
−0.680217 0.733010i \(-0.738115\pi\)
\(402\) 7.31989 + 17.7398i 0.365083 + 0.884783i
\(403\) −2.05515 + 1.18654i −0.102374 + 0.0591059i
\(404\) −9.03905 14.8323i −0.449710 0.737932i
\(405\) 9.29606 + 18.2673i 0.461925 + 0.907708i
\(406\) 0 0
\(407\) 33.8323 1.67701
\(408\) 19.3592 8.53081i 0.958422 0.422338i
\(409\) −2.38561 4.13200i −0.117961 0.204314i 0.800999 0.598666i \(-0.204302\pi\)
−0.918960 + 0.394352i \(0.870969\pi\)
\(410\) 7.94429 2.22996i 0.392340 0.110130i
\(411\) −3.70056 1.59044i −0.182535 0.0784506i
\(412\) −10.2077 + 18.6903i −0.502895 + 0.920803i
\(413\) 0 0
\(414\) 0.0718878 4.93258i 0.00353309 0.242423i
\(415\) 1.26568 + 0.730743i 0.0621300 + 0.0358708i
\(416\) −1.72046 1.52765i −0.0843527 0.0748990i
\(417\) 12.7971 9.55353i 0.626676 0.467838i
\(418\) 23.1597 23.7156i 1.13278 1.15997i
\(419\) 8.33257 0.407072 0.203536 0.979067i \(-0.434757\pi\)
0.203536 + 0.979067i \(0.434757\pi\)
\(420\) 0 0
\(421\) −20.7325 −1.01044 −0.505220 0.862991i \(-0.668589\pi\)
−0.505220 + 0.862991i \(0.668589\pi\)
\(422\) −24.8309 + 25.4269i −1.20875 + 1.23776i
\(423\) 4.80100 + 5.06175i 0.233433 + 0.246111i
\(424\) 3.47727 15.1078i 0.168871 0.733701i
\(425\) −0.697632 0.402778i −0.0338401 0.0195376i
\(426\) −1.57873 + 11.8672i −0.0764897 + 0.574966i
\(427\) 0 0
\(428\) −14.7447 8.05280i −0.712713 0.389247i
\(429\) −1.20122 + 2.79496i −0.0579957 + 0.134942i
\(430\) −34.1752 + 9.59298i −1.64807 + 0.462615i
\(431\) −17.4975 30.3066i −0.842826 1.45982i −0.887496 0.460816i \(-0.847557\pi\)
0.0446692 0.999002i \(-0.485777\pi\)
\(432\) −19.1400 + 8.10321i −0.920872 + 0.389866i
\(433\) 17.3383 0.833225 0.416612 0.909084i \(-0.363217\pi\)
0.416612 + 0.909084i \(0.363217\pi\)
\(434\) 0 0
\(435\) −14.5907 + 1.72506i −0.699569 + 0.0827102i
\(436\) −17.9027 + 10.9102i −0.857384 + 0.522505i
\(437\) 5.46565 3.15559i 0.261457 0.150953i
\(438\) 6.37052 2.62863i 0.304395 0.125601i
\(439\) 28.8352 + 16.6480i 1.37623 + 0.794567i 0.991703 0.128547i \(-0.0410312\pi\)
0.384527 + 0.923114i \(0.374365\pi\)
\(440\) −20.3563 18.9571i −0.970449 0.903744i
\(441\) 0 0
\(442\) −2.40673 0.614387i −0.114476 0.0292234i
\(443\) −4.43657 + 7.68436i −0.210788 + 0.365095i −0.951961 0.306218i \(-0.900936\pi\)
0.741174 + 0.671313i \(0.234270\pi\)
\(444\) −3.82482 26.8689i −0.181518 1.27514i
\(445\) −15.9384 27.6061i −0.755553 1.30866i
\(446\) 9.11869 9.33756i 0.431782 0.442146i
\(447\) −3.53632 29.9104i −0.167262 1.41472i
\(448\) 0 0
\(449\) 26.3829i 1.24509i −0.782585 0.622544i \(-0.786099\pi\)
0.782585 0.622544i \(-0.213901\pi\)
\(450\) 0.679564 + 0.405664i 0.0320349 + 0.0191232i
\(451\) 9.58114 5.53167i 0.451158 0.260476i
\(452\) −19.1205 + 0.453573i −0.899354 + 0.0213343i
\(453\) 6.62847 + 2.84881i 0.311433 + 0.133849i
\(454\) 6.83028 26.7562i 0.320561 1.25573i
\(455\) 0 0
\(456\) −21.4526 15.7118i −1.00461 0.735772i
\(457\) −15.1249 + 26.1972i −0.707515 + 1.22545i 0.258261 + 0.966075i \(0.416851\pi\)
−0.965776 + 0.259377i \(0.916483\pi\)
\(458\) 2.76898 0.777255i 0.129386 0.0363187i
\(459\) −14.3547 + 17.2464i −0.670021 + 0.804994i
\(460\) −2.75605 4.52243i −0.128502 0.210859i
\(461\) 1.56302i 0.0727973i −0.999337 0.0363987i \(-0.988411\pi\)
0.999337 0.0363987i \(-0.0115886\pi\)
\(462\) 0 0
\(463\) 33.2961i 1.54740i 0.633553 + 0.773700i \(0.281596\pi\)
−0.633553 + 0.773700i \(0.718404\pi\)
\(464\) −0.706452 14.8820i −0.0327962 0.690879i
\(465\) 13.7680 + 18.4425i 0.638478 + 0.855250i
\(466\) 1.25030 + 4.45420i 0.0579189 + 0.206337i
\(467\) −8.64844 + 14.9795i −0.400202 + 0.693170i −0.993750 0.111628i \(-0.964393\pi\)
0.593548 + 0.804799i \(0.297727\pi\)
\(468\) 2.35549 + 0.638010i 0.108883 + 0.0294920i
\(469\) 0 0
\(470\) 7.25703 + 1.85257i 0.334742 + 0.0854525i
\(471\) 13.1739 30.6524i 0.607021 1.41239i
\(472\) 10.7858 + 2.48250i 0.496457 + 0.114266i
\(473\) −41.2166 + 23.7964i −1.89514 + 1.09416i
\(474\) −5.97516 + 7.76514i −0.274448 + 0.356665i
\(475\) 1.01253i 0.0464579i
\(476\) 0 0
\(477\) 3.83457 + 15.9899i 0.175573 + 0.732126i
\(478\) −24.7947 24.2135i −1.13408 1.10750i
\(479\) 8.30404 + 14.3830i 0.379421 + 0.657177i 0.990978 0.134024i \(-0.0427898\pi\)
−0.611557 + 0.791200i \(0.709456\pi\)
\(480\) −12.7540 + 18.3097i −0.582137 + 0.835718i
\(481\) −1.59327 + 2.75963i −0.0726469 + 0.125828i
\(482\) −6.44169 + 25.2340i −0.293411 + 1.14938i
\(483\) 0 0
\(484\) −13.4244 7.33173i −0.610201 0.333260i
\(485\) 3.94457 + 2.27740i 0.179114 + 0.103411i
\(486\) 14.3485 16.7368i 0.650862 0.759196i
\(487\) 21.0010 12.1249i 0.951647 0.549434i 0.0580548 0.998313i \(-0.481510\pi\)
0.893592 + 0.448880i \(0.148177\pi\)
\(488\) 8.65971 + 28.2570i 0.392006 + 1.27913i
\(489\) 1.75870 + 14.8752i 0.0795311 + 0.672681i
\(490\) 0 0
\(491\) −20.3082 −0.916497 −0.458248 0.888824i \(-0.651523\pi\)
−0.458248 + 0.888824i \(0.651523\pi\)
\(492\) −5.47630 6.98376i −0.246891 0.314852i
\(493\) −8.04223 13.9296i −0.362204 0.627355i
\(494\) 0.843764 + 3.00592i 0.0379627 + 0.135243i
\(495\) 28.2866 + 8.38663i 1.27139 + 0.376951i
\(496\) −19.6355 + 12.6144i −0.881660 + 0.566403i
\(497\) 0 0
\(498\) 0.207292 1.55819i 0.00928898 0.0698244i
\(499\) 9.12662 + 5.26926i 0.408564 + 0.235884i 0.690172 0.723645i \(-0.257535\pi\)
−0.281609 + 0.959529i \(0.590868\pi\)
\(500\) −21.9182 + 0.519937i −0.980210 + 0.0232523i
\(501\) −1.81989 2.43777i −0.0813067 0.108911i
\(502\) −15.6264 15.2601i −0.697439 0.681091i
\(503\) −27.6664 −1.23358 −0.616792 0.787126i \(-0.711568\pi\)
−0.616792 + 0.787126i \(0.711568\pi\)
\(504\) 0 0
\(505\) 19.7787 0.880139
\(506\) −5.08030 4.96122i −0.225847 0.220553i
\(507\) 13.2986 + 17.8137i 0.590611 + 0.791132i
\(508\) 12.4118 0.294430i 0.550686 0.0130632i
\(509\) −24.4110 14.0937i −1.08200 0.624693i −0.150564 0.988600i \(-0.548109\pi\)
−0.931435 + 0.363908i \(0.881442\pi\)
\(510\) −3.17675 + 23.8793i −0.140669 + 1.05739i
\(511\) 0 0
\(512\) −17.6134 14.2046i −0.778408 0.627758i
\(513\) 27.7947 + 4.78681i 1.22717 + 0.211343i
\(514\) 3.42806 + 12.2125i 0.151205 + 0.538671i
\(515\) −12.1249 21.0009i −0.534287 0.925412i
\(516\) 23.5582 + 30.0431i 1.03709 + 1.32257i
\(517\) 10.0422 0.441657
\(518\) 0 0
\(519\) 1.60133 + 13.5442i 0.0702907 + 0.594524i
\(520\) 2.50493 0.767668i 0.109849 0.0336645i
\(521\) 20.7962 12.0067i 0.911097 0.526022i 0.0303127 0.999540i \(-0.490350\pi\)
0.880784 + 0.473519i \(0.157016\pi\)
\(522\) 7.70099 + 13.7991i 0.337063 + 0.603969i
\(523\) 2.40739 + 1.38991i 0.105268 + 0.0607764i 0.551710 0.834036i \(-0.313976\pi\)
−0.446442 + 0.894813i \(0.647309\pi\)
\(524\) −25.2801 13.8067i −1.10436 0.603147i
\(525\) 0 0
\(526\) 6.77297 26.5317i 0.295316 1.15684i
\(527\) −12.5978 + 21.8201i −0.548770 + 0.950497i
\(528\) −10.4969 + 28.0164i −0.456818 + 1.21926i
\(529\) 10.8240 + 18.7477i 0.470609 + 0.815119i
\(530\) 12.6297 + 12.3337i 0.548601 + 0.535742i
\(531\) −11.4155 + 2.73758i −0.495391 + 0.118801i
\(532\) 0 0
\(533\) 1.04202i 0.0451347i
\(534\) −20.9086 + 27.1722i −0.904805 + 1.17586i
\(535\) 16.5676 9.56531i 0.716280 0.413545i
\(536\) 4.97035 21.5949i 0.214687 0.932758i
\(537\) −6.39192 + 14.8724i −0.275832 + 0.641793i
\(538\) 0.0658929 + 0.0168211i 0.00284085 + 0.000725208i
\(539\) 0 0
\(540\) 3.46261 23.4128i 0.149007 1.00752i
\(541\) −4.15859 + 7.20288i −0.178792 + 0.309676i −0.941467 0.337105i \(-0.890552\pi\)
0.762675 + 0.646782i \(0.223885\pi\)
\(542\) 7.59688 + 27.0640i 0.326314 + 1.16250i
\(543\) −17.4999 23.4414i −0.750994 1.00597i
\(544\) −23.9290 4.91312i −1.02595 0.210648i
\(545\) 23.8731i 1.02261i
\(546\) 0 0
\(547\) 15.4364i 0.660014i 0.943978 + 0.330007i \(0.107051\pi\)
−0.943978 + 0.330007i \(0.892949\pi\)
\(548\) 2.42035 + 3.97158i 0.103392 + 0.169657i
\(549\) −21.5720 22.7437i −0.920672 0.970675i
\(550\) 1.09684 0.307882i 0.0467693 0.0131281i
\(551\) −10.1085 + 17.5085i −0.430637 + 0.745886i
\(552\) −3.36575 + 4.59554i −0.143256 + 0.195599i
\(553\) 0 0
\(554\) −3.59418 + 14.0794i −0.152702 + 0.598178i
\(555\) 28.3928 + 12.2027i 1.20521 + 0.517978i
\(556\) −18.4352 + 0.437315i −0.781826 + 0.0185463i
\(557\) −11.6502 + 6.72624i −0.493634 + 0.285000i −0.726081 0.687609i \(-0.758660\pi\)
0.232447 + 0.972609i \(0.425327\pi\)
\(558\) 12.6881 21.2549i 0.537129 0.899794i
\(559\) 4.48260i 0.189594i
\(560\) 0 0
\(561\) 3.79234 + 32.0759i 0.160113 + 1.35425i
\(562\) 6.70318 6.86408i 0.282757 0.289544i
\(563\) 17.0006 + 29.4458i 0.716488 + 1.24099i 0.962383 + 0.271698i \(0.0875851\pi\)
−0.245894 + 0.969297i \(0.579082\pi\)
\(564\) −1.13530 7.97532i −0.0478046 0.335822i
\(565\) 10.8893 18.8609i 0.458118 0.793483i
\(566\) −7.43761 1.89866i −0.312626 0.0798068i
\(567\) 0 0
\(568\) 9.42100 10.1164i 0.395296 0.424473i
\(569\) 23.0318 + 13.2974i 0.965544 + 0.557457i 0.897875 0.440251i \(-0.145110\pi\)
0.0676690 + 0.997708i \(0.478444\pi\)
\(570\) 27.9899 11.5493i 1.17237 0.483747i
\(571\) −7.12974 + 4.11636i −0.298370 + 0.172264i −0.641711 0.766947i \(-0.721775\pi\)
0.343340 + 0.939211i \(0.388442\pi\)
\(572\) 2.99965 1.82804i 0.125422 0.0764342i
\(573\) −34.9316 + 4.12996i −1.45929 + 0.172532i
\(574\) 0 0
\(575\) 0.216902 0.00904543
\(576\) 23.4367 + 5.16908i 0.976531 + 0.215378i
\(577\) −0.792342 1.37238i −0.0329856 0.0571328i 0.849061 0.528294i \(-0.177168\pi\)
−0.882047 + 0.471162i \(0.843835\pi\)
\(578\) −2.24394 + 0.629874i −0.0933355 + 0.0261993i
\(579\) −4.68872 + 10.9095i −0.194857 + 0.453383i
\(580\) 14.8893 + 8.13179i 0.618246 + 0.337654i
\(581\) 0 0
\(582\) 0.646037 4.85620i 0.0267791 0.201296i
\(583\) 20.4981 + 11.8346i 0.848944 + 0.490138i
\(584\) −7.75490 1.78489i −0.320900 0.0738594i
\(585\) −2.01619 + 1.91233i −0.0833591 + 0.0790649i
\(586\) −27.8512 + 28.5197i −1.15052 + 1.17814i
\(587\) 30.8651 1.27394 0.636969 0.770889i \(-0.280188\pi\)
0.636969 + 0.770889i \(0.280188\pi\)
\(588\) 0 0
\(589\) 31.6691 1.30490
\(590\) −8.80530 + 9.01665i −0.362508 + 0.371210i
\(591\) −2.73189 + 2.03946i −0.112375 + 0.0838922i
\(592\) −14.3646 + 27.8522i −0.590383 + 1.14472i
\(593\) −5.58714 3.22574i −0.229436 0.132465i 0.380876 0.924626i \(-0.375623\pi\)
−0.610312 + 0.792161i \(0.708956\pi\)
\(594\) −3.26624 31.5646i −0.134015 1.29511i
\(595\) 0 0
\(596\) −16.6699 + 30.5227i −0.682826 + 1.25026i
\(597\) 10.1415 + 4.35866i 0.415065 + 0.178388i
\(598\) 0.643923 0.180750i 0.0263320 0.00739140i
\(599\) 6.40487 + 11.0936i 0.261696 + 0.453270i 0.966693 0.255940i \(-0.0823850\pi\)
−0.704997 + 0.709210i \(0.749052\pi\)
\(600\) −0.368513 0.836276i −0.0150445 0.0341408i
\(601\) −37.2710 −1.52032 −0.760158 0.649738i \(-0.774878\pi\)
−0.760158 + 0.649738i \(0.774878\pi\)
\(602\) 0 0
\(603\) 5.48108 + 22.8557i 0.223207 + 0.930756i
\(604\) −4.33535 7.11392i −0.176403 0.289461i
\(605\) 15.0841 8.70880i 0.613256 0.354063i
\(606\) −8.11423 19.6649i −0.329618 0.798833i
\(607\) −18.0250 10.4067i −0.731611 0.422396i 0.0873999 0.996173i \(-0.472144\pi\)
−0.819011 + 0.573777i \(0.805478\pi\)
\(608\) 9.69046 + 29.1352i 0.393000 + 1.18159i
\(609\) 0 0
\(610\) −32.6075 8.32401i −1.32024 0.337029i
\(611\) −0.472921 + 0.819123i −0.0191323 + 0.0331382i
\(612\) 25.0453 6.63805i 1.01239 0.268327i
\(613\) −9.61439 16.6526i −0.388321 0.672592i 0.603902 0.797058i \(-0.293612\pi\)
−0.992224 + 0.124466i \(0.960278\pi\)
\(614\) 2.21456 2.26772i 0.0893726 0.0915178i
\(615\) 10.0359 1.18654i 0.404686 0.0478460i
\(616\) 0 0
\(617\) 29.3933i 1.18333i 0.806185 + 0.591664i \(0.201529\pi\)
−0.806185 + 0.591664i \(0.798471\pi\)
\(618\) −15.9059 + 20.6709i −0.639830 + 0.831504i
\(619\) 17.2548 9.96206i 0.693529 0.400409i −0.111404 0.993775i \(-0.535535\pi\)
0.804933 + 0.593366i \(0.202201\pi\)
\(620\) −0.630236 26.5678i −0.0253109 1.06699i
\(621\) 1.02542 5.95414i 0.0411488 0.238931i
\(622\) −9.26242 + 36.2835i −0.371389 + 1.45484i
\(623\) 0 0
\(624\) −1.79091 2.17559i −0.0716937 0.0870933i
\(625\) 12.9490 22.4283i 0.517958 0.897130i
\(626\) 0.599604 0.168309i 0.0239650 0.00672698i
\(627\) 32.5323 24.2867i 1.29922 0.969916i
\(628\) −32.8973 + 20.0482i −1.31274 + 0.800011i
\(629\) 33.8323i 1.34898i
\(630\) 0 0
\(631\) 17.6269i 0.701716i 0.936429 + 0.350858i \(0.114110\pi\)
−0.936429 + 0.350858i \(0.885890\pi\)
\(632\) 10.8171 3.31505i 0.430283 0.131866i
\(633\) −34.8799 + 26.0392i −1.38635 + 1.03497i
\(634\) −4.50699 16.0562i −0.178995 0.637674i
\(635\) −7.06866 + 12.2433i −0.280511 + 0.485859i
\(636\) 7.08141 17.6171i 0.280796 0.698561i
\(637\) 0 0
\(638\) 22.0401 + 5.62636i 0.872574 + 0.222750i
\(639\) −4.16786 + 14.0575i −0.164878 + 0.556104i
\(640\) 24.2492 8.70931i 0.958535 0.344266i
\(641\) −19.0040 + 10.9719i −0.750611 + 0.433365i −0.825915 0.563795i \(-0.809341\pi\)
0.0753036 + 0.997161i \(0.476007\pi\)
\(642\) −16.3072 12.5482i −0.643594 0.495236i
\(643\) 49.5796i 1.95523i −0.210406 0.977614i \(-0.567479\pi\)
0.210406 0.977614i \(-0.432521\pi\)
\(644\) 0 0
\(645\) −43.1729 + 5.10433i −1.69993 + 0.200983i
\(646\) 23.7156 + 23.1597i 0.933076 + 0.911204i
\(647\) −11.9561 20.7086i −0.470042 0.814137i 0.529371 0.848391i \(-0.322428\pi\)
−0.999413 + 0.0342534i \(0.989095\pi\)
\(648\) −24.6987 + 6.16242i −0.970256 + 0.242083i
\(649\) −8.44896 + 14.6340i −0.331651 + 0.574436i
\(650\) −0.0265402 + 0.103966i −0.00104099 + 0.00407787i
\(651\) 0 0
\(652\) 8.29037 15.1797i 0.324676 0.594483i
\(653\) −40.4145 23.3333i −1.58154 0.913103i −0.994635 0.103447i \(-0.967013\pi\)
−0.586905 0.809656i \(-0.699654\pi\)
\(654\) −23.7358 + 9.79397i −0.928143 + 0.382974i
\(655\) 28.4054 16.3999i 1.10989 0.640797i
\(656\) 0.485918 + 10.2363i 0.0189719 + 0.399659i
\(657\) 8.20766 1.96830i 0.320211 0.0767907i
\(658\) 0 0
\(659\) −30.4598 −1.18655 −0.593273 0.805001i \(-0.702165\pi\)
−0.593273 + 0.805001i \(0.702165\pi\)
\(660\) −21.0219 26.8086i −0.818278 1.04353i
\(661\) 24.6523 + 42.6991i 0.958864 + 1.66080i 0.725266 + 0.688468i \(0.241717\pi\)
0.233598 + 0.972333i \(0.424950\pi\)
\(662\) 0.500581 + 1.78333i 0.0194556 + 0.0693110i
\(663\) −2.79496 1.20122i −0.108547 0.0466517i
\(664\) −1.23701 + 1.32831i −0.0480052 + 0.0515484i
\(665\) 0 0
\(666\) 0.484380 33.2357i 0.0187694 1.28786i
\(667\) 3.75063 + 2.16543i 0.145225 + 0.0838457i
\(668\) 0.0833059 + 3.51179i 0.00322320 + 0.135875i
\(669\) 12.8090 9.56243i 0.495225 0.369705i
\(670\) 18.0528 + 17.6296i 0.697439 + 0.681091i
\(671\) −45.1221 −1.74192
\(672\) 0 0
\(673\) −19.4364 −0.749219 −0.374610 0.927183i \(-0.622223\pi\)
−0.374610 + 0.927183i \(0.622223\pi\)
\(674\) 15.6437 + 15.2771i 0.602575 + 0.588450i
\(675\) 0.745009 + 0.620094i 0.0286754 + 0.0238674i
\(676\) −0.608746 25.6619i −0.0234133 0.986997i
\(677\) −8.63274 4.98411i −0.331783 0.191555i 0.324849 0.945766i \(-0.394686\pi\)
−0.656633 + 0.754211i \(0.728020\pi\)
\(678\) −23.2198 3.08901i −0.891751 0.118633i
\(679\) 0 0
\(680\) 18.9571 20.3563i 0.726971 0.780628i
\(681\) 13.3543 31.0722i 0.511737 1.19069i
\(682\) −9.62974 34.3061i −0.368742 1.31365i
\(683\) 14.8051 + 25.6431i 0.566501 + 0.981208i 0.996908 + 0.0785732i \(0.0250364\pi\)
−0.430408 + 0.902635i \(0.641630\pi\)
\(684\) −22.9658 23.0908i −0.878119 0.882899i
\(685\) −5.29606 −0.202352
\(686\) 0 0
\(687\) 3.49801 0.413570i 0.133457 0.0157787i
\(688\) −2.09035 44.0349i −0.0796937 1.67881i
\(689\) −1.93064 + 1.11466i −0.0735515 + 0.0424650i
\(690\) −2.47407 5.99594i −0.0941863 0.228262i
\(691\) 38.2440 + 22.0802i 1.45487 + 0.839969i 0.998752 0.0499504i \(-0.0159063\pi\)
0.456117 + 0.889920i \(0.349240\pi\)
\(692\) 7.54856 13.8214i 0.286953 0.525412i
\(693\) 0 0
\(694\) 9.67599 37.9036i 0.367295 1.43880i
\(695\) 10.4990 18.1848i 0.398250 0.689790i
\(696\) 1.97665 18.1398i 0.0749249 0.687587i
\(697\) 5.53167 + 9.58114i 0.209527 + 0.362911i
\(698\) 19.1547 + 18.7057i 0.725017 + 0.708022i
\(699\) 0.665271 + 5.62691i 0.0251629 + 0.212829i
\(700\) 0 0
\(701\) 38.2714i 1.44549i −0.691115 0.722745i \(-0.742880\pi\)
0.691115 0.722745i \(-0.257120\pi\)
\(702\) 2.72847 + 1.22006i 0.102980 + 0.0460482i
\(703\) 36.8276 21.2624i 1.38898 0.801927i
\(704\) 28.6146 19.3566i 1.07845 0.729529i
\(705\) 8.42765 + 3.62206i 0.317404 + 0.136415i
\(706\) 2.73074 + 0.697101i 0.102773 + 0.0262357i
\(707\) 0 0
\(708\) 12.5772 + 5.05557i 0.472680 + 0.190000i
\(709\) −3.44896 + 5.97377i −0.129528 + 0.224350i −0.923494 0.383613i \(-0.874680\pi\)
0.793966 + 0.607963i \(0.208013\pi\)
\(710\) 4.25411 + 15.1553i 0.159654 + 0.568770i
\(711\) −8.70657 + 8.25806i −0.326522 + 0.309702i
\(712\) 37.8519 11.6002i 1.41856 0.434736i
\(713\) 6.78411i 0.254067i
\(714\) 0 0
\(715\) 4.00000i 0.149592i
\(716\) 15.9616 9.72732i 0.596515 0.363527i
\(717\) −25.3918 34.0127i −0.948274 1.27023i
\(718\) 3.19978 0.898181i 0.119415 0.0335198i
\(719\) 14.1178 24.4527i 0.526503 0.911930i −0.473020 0.881052i \(-0.656836\pi\)
0.999523 0.0308787i \(-0.00983056\pi\)
\(720\) −18.9143 + 19.7259i −0.704893 + 0.735142i
\(721\) 0 0
\(722\) 3.65944 14.3351i 0.136190 0.533496i
\(723\) −12.5945 + 29.3044i −0.468396 + 1.08984i
\(724\) 0.801064 + 33.7692i 0.0297713 + 1.25502i
\(725\) −0.601728 + 0.347408i −0.0223476 + 0.0129024i
\(726\) −14.8470 11.4246i −0.551024 0.424005i
\(727\) 27.3942i 1.01599i −0.861359 0.507997i \(-0.830386\pi\)
0.861359 0.507997i \(-0.169614\pi\)
\(728\) 0 0
\(729\) 20.5442 17.5196i 0.760896 0.648874i
\(730\) 6.33093 6.48289i 0.234318 0.239943i
\(731\) −23.7964 41.2166i −0.880143 1.52445i
\(732\) 5.10115 + 35.8350i 0.188544 + 1.32450i
\(733\) 14.8514 25.7234i 0.548549 0.950114i −0.449826 0.893116i \(-0.648514\pi\)
0.998374 0.0569978i \(-0.0181528\pi\)
\(734\) 46.8550 + 11.9611i 1.72945 + 0.441492i
\(735\) 0 0
\(736\) 6.24130 2.07587i 0.230057 0.0765177i
\(737\) 29.2996 + 16.9162i 1.07927 + 0.623115i
\(738\) −5.29696 9.49139i −0.194984 0.349383i
\(739\) −23.7606 + 13.7182i −0.874050 + 0.504633i −0.868692 0.495353i \(-0.835039\pi\)
−0.00535770 + 0.999986i \(0.501705\pi\)
\(740\) −18.5703 30.4722i −0.682658 1.12018i
\(741\) 0.448959 + 3.79733i 0.0164929 + 0.139498i
\(742\) 0 0
\(743\) 2.30093 0.0844131 0.0422065 0.999109i \(-0.486561\pi\)
0.0422065 + 0.999109i \(0.486561\pi\)
\(744\) −26.1565 + 11.5261i −0.958944 + 0.422568i
\(745\) −19.8009 34.2962i −0.725450 1.25652i
\(746\) −24.0581 + 6.75312i −0.880830 + 0.247249i
\(747\) 0.547252 1.84579i 0.0200229 0.0675338i
\(748\) 17.8768 32.7325i 0.653641 1.19682i
\(749\) 0 0
\(750\) −26.6172 3.54098i −0.971922 0.129298i
\(751\) −16.8176 9.70963i −0.613682 0.354309i 0.160723 0.987000i \(-0.448617\pi\)
−0.774405 + 0.632690i \(0.781951\pi\)
\(752\) −4.26376 + 8.26719i −0.155483 + 0.301474i
\(753\) −16.0027 21.4358i −0.583170 0.781165i
\(754\) −1.49687 + 1.53280i −0.0545126 + 0.0558211i
\(755\) 9.48634 0.345243
\(756\) 0 0
\(757\) 13.9327 0.506393 0.253197 0.967415i \(-0.418518\pi\)
0.253197 + 0.967415i \(0.418518\pi\)
\(758\) 5.32986 5.45779i 0.193589 0.198236i
\(759\) −5.20265 6.96902i −0.188844 0.252959i
\(760\) −34.0724 7.84220i −1.23593 0.284467i
\(761\) 10.7265 + 6.19296i 0.388836 + 0.224495i 0.681656 0.731673i \(-0.261260\pi\)
−0.292820 + 0.956168i \(0.594594\pi\)
\(762\) 15.0728 + 2.00519i 0.546030 + 0.0726403i
\(763\) 0 0
\(764\) 35.6466 + 19.4683i 1.28965 + 0.704339i
\(765\) −8.38663 + 28.2866i −0.303219 + 1.02271i
\(766\) −2.52243 + 0.708048i −0.0911392 + 0.0255828i
\(767\) −0.795777 1.37833i −0.0287338 0.0497685i
\(768\) −18.6075 20.5368i −0.671441 0.741058i
\(769\) 45.0074 1.62301 0.811505 0.584346i \(-0.198649\pi\)
0.811505 + 0.584346i \(0.198649\pi\)
\(770\) 0 0
\(771\) 1.82404 + 15.4278i 0.0656911 + 0.555620i
\(772\) 11.7085 7.13536i 0.421397 0.256807i
\(773\) 44.5842 25.7407i 1.60358 0.925828i 0.612819 0.790223i \(-0.290035\pi\)
0.990763 0.135605i \(-0.0432979\pi\)
\(774\) 22.7867 + 40.8306i 0.819052 + 1.46762i
\(775\) 0.942582 + 0.544200i 0.0338585 + 0.0195482i
\(776\) −3.85520 + 4.13974i −0.138393 + 0.148608i
\(777\) 0 0
\(778\) −7.37877 1.88364i −0.264542 0.0675319i
\(779\) 6.95292 12.0428i 0.249114 0.431479i
\(780\) 3.17671 0.452209i 0.113745 0.0161917i
\(781\) 10.5528 + 18.2780i 0.377608 + 0.654037i
\(782\) 4.96122 5.08030i 0.177413 0.181671i
\(783\) 6.69191 + 18.1603i 0.239149 + 0.648997i
\(784\) 0 0
\(785\) 43.8682i 1.56572i
\(786\) −27.9590 21.5140i −0.997264 0.767380i
\(787\) −35.6977 + 20.6101i −1.27249 + 0.734670i −0.975455 0.220197i \(-0.929330\pi\)
−0.297031 + 0.954868i \(0.595997\pi\)
\(788\) 3.93549 0.0933568i 0.140196 0.00332570i
\(789\) 13.2422 30.8115i 0.471437 1.09692i
\(790\) −3.18654 + 12.4826i −0.113372 + 0.444111i
\(791\) 0 0
\(792\) −18.0302 + 31.8994i −0.640676 + 1.13349i
\(793\) 2.12494 3.68051i 0.0754590 0.130699i
\(794\) −29.4587 + 8.26906i −1.04545 + 0.293458i
\(795\) 12.9339 + 17.3251i 0.458718 + 0.614459i
\(796\) −6.63307 10.8843i −0.235103 0.385783i
\(797\) 37.0164i 1.31119i −0.755113 0.655595i \(-0.772418\pi\)
0.755113 0.655595i \(-0.227582\pi\)
\(798\) 0 0
\(799\) 10.0422i 0.355269i
\(800\) −0.212236 + 1.03368i −0.00750369 + 0.0365463i
\(801\) −30.4665 + 28.8971i −1.07648 + 1.02103i
\(802\) 14.6273 + 52.1099i 0.516507 + 1.84006i
\(803\) 6.07473 10.5217i 0.214372 0.371304i
\(804\) 10.1221 25.1815i 0.356977 0.888085i
\(805\) 0 0
\(806\) 3.25177 + 0.830108i 0.114539 + 0.0292393i
\(807\) 0.0765221 + 0.0328879i 0.00269370 + 0.00115771i
\(808\) −5.50972 + 23.9383i −0.193831 + 0.842147i
\(809\) 45.3040 26.1563i 1.59280 0.919605i 0.599979 0.800016i \(-0.295175\pi\)
0.992823 0.119589i \(-0.0381578\pi\)
\(810\) 8.64373 27.6678i 0.303710 0.972147i
\(811\) 25.3719i 0.890929i 0.895300 + 0.445464i \(0.146961\pi\)
−0.895300 + 0.445464i \(0.853039\pi\)
\(812\) 0 0
\(813\) 4.04223 + 34.1895i 0.141767 + 1.19908i
\(814\) −34.2311 33.4287i −1.19980 1.17168i
\(815\) 9.84750 + 17.0564i 0.344943 + 0.597459i
\(816\) −28.0164 10.4969i −0.980771 0.367464i
\(817\) −29.9104 + 51.8064i −1.04643 + 1.81248i
\(818\) −1.66898 + 6.53787i −0.0583545 + 0.228591i
\(819\) 0 0
\(820\) −10.2413 5.59327i −0.357642 0.195326i
\(821\) −25.1716 14.5328i −0.878493 0.507198i −0.00833206 0.999965i \(-0.502652\pi\)
−0.870161 + 0.492767i \(0.835986\pi\)
\(822\) 2.17272 + 5.26561i 0.0757822 + 0.183659i
\(823\) −24.7981 + 14.3172i −0.864406 + 0.499065i −0.865485 0.500934i \(-0.832990\pi\)
0.00107900 + 0.999999i \(0.499657\pi\)
\(824\) 28.7953 8.82469i 1.00313 0.307423i
\(825\) 1.38561 0.163821i 0.0482409 0.00570352i
\(826\) 0 0
\(827\) −4.88743 −0.169953 −0.0849763 0.996383i \(-0.527081\pi\)
−0.0849763 + 0.996383i \(0.527081\pi\)
\(828\) −4.94647 + 4.91969i −0.171902 + 0.170971i
\(829\) 19.4658 + 33.7157i 0.676074 + 1.17100i 0.976154 + 0.217081i \(0.0696536\pi\)
−0.300079 + 0.953914i \(0.597013\pi\)
\(830\) −0.558578 1.98994i −0.0193885 0.0690719i
\(831\) −7.02721 + 16.3506i −0.243771 + 0.567196i
\(832\) 0.231321 + 3.24559i 0.00801961 + 0.112521i
\(833\) 0 0
\(834\) −22.3875 2.97829i −0.775216 0.103130i
\(835\) −3.46410 2.00000i −0.119880 0.0692129i
\(836\) −46.8653 + 1.11173i −1.62087 + 0.0384499i
\(837\) 19.3949 23.3019i 0.670385 0.805432i
\(838\) −8.43079 8.23317i −0.291237 0.284410i
\(839\) 49.3493 1.70373 0.851863 0.523765i \(-0.175473\pi\)
0.851863 + 0.523765i \(0.175473\pi\)
\(840\) 0 0
\(841\) 15.1267 0.521610
\(842\) 20.9769 + 20.4852i 0.722911 + 0.705966i
\(843\) 9.41595 7.02938i 0.324303 0.242105i
\(844\) 50.2471 1.19195i 1.72958 0.0410286i
\(845\) 25.3134 + 14.6147i 0.870809 + 0.502762i
\(846\) 0.143776 9.86515i 0.00494310 0.339171i
\(847\) 0 0
\(848\) −18.4459 + 11.8501i −0.633434 + 0.406935i
\(849\) −8.63737 3.71219i −0.296434 0.127402i
\(850\) 0.307882 + 1.09684i 0.0105603 + 0.0376212i
\(851\) −4.55480 7.88914i −0.156136 0.270436i
\(852\) 13.3229 10.4472i 0.456437 0.357914i
\(853\) 36.4912 1.24943 0.624717 0.780851i \(-0.285214\pi\)
0.624717 + 0.780851i \(0.285214\pi\)
\(854\) 0 0
\(855\) 36.0616 8.64803i 1.23328 0.295756i
\(856\) 6.96178 + 22.7166i 0.237949 + 0.776436i
\(857\) 31.5609 18.2217i 1.07810 0.622441i 0.147716 0.989030i \(-0.452808\pi\)
0.930383 + 0.366589i \(0.119474\pi\)
\(858\) 3.97700 1.64101i 0.135773 0.0560231i
\(859\) 10.2782 + 5.93411i 0.350687 + 0.202469i 0.664988 0.746854i \(-0.268437\pi\)
−0.314301 + 0.949323i \(0.601770\pi\)
\(860\) 44.0566 + 24.0614i 1.50232 + 0.820488i
\(861\) 0 0
\(862\) −12.2413 + 47.9527i −0.416940 + 1.63327i
\(863\) 8.16126 14.1357i 0.277812 0.481185i −0.693028 0.720910i \(-0.743724\pi\)
0.970841 + 0.239725i \(0.0770573\pi\)
\(864\) 27.3721 + 10.7129i 0.931219 + 0.364460i
\(865\) 8.96636 + 15.5302i 0.304865 + 0.528042i
\(866\) −17.5427 17.1315i −0.596124 0.582151i
\(867\) −2.83473 + 0.335150i −0.0962723 + 0.0113823i
\(868\) 0 0
\(869\) 17.2733i 0.585958i
\(870\) 16.4671 + 12.6712i 0.558289 + 0.429595i
\(871\) −2.75963 + 1.59327i −0.0935064 + 0.0539859i
\(872\) 28.8938 + 6.65030i 0.978468 + 0.225207i
\(873\) 1.70554 5.75249i 0.0577238 0.194692i
\(874\) −8.64803 2.20766i −0.292524 0.0746752i
\(875\) 0 0
\(876\) −9.04289 3.63491i −0.305531 0.122812i
\(877\) −3.40673 + 5.90063i −0.115037 + 0.199250i −0.917795 0.397056i \(-0.870032\pi\)
0.802758 + 0.596306i \(0.203365\pi\)
\(878\) −12.7257 45.3355i −0.429472 1.53000i
\(879\) −39.1225 + 29.2065i −1.31957 + 0.985111i
\(880\) 1.86530 + 39.2940i 0.0628792 + 1.32460i
\(881\) 10.1075i 0.340530i 0.985398 + 0.170265i \(0.0544624\pi\)
−0.985398 + 0.170265i \(0.945538\pi\)
\(882\) 0 0
\(883\) 29.4615i 0.991458i −0.868477 0.495729i \(-0.834901\pi\)
0.868477 0.495729i \(-0.165099\pi\)
\(884\) 1.82804 + 2.99965i 0.0614837 + 0.100889i
\(885\) −12.3688 + 9.23379i −0.415772 + 0.310390i
\(886\) 12.0816 3.39130i 0.405888 0.113933i
\(887\) 22.2334 38.5094i 0.746525 1.29302i −0.202954 0.979188i \(-0.565054\pi\)
0.949479 0.313831i \(-0.101613\pi\)
\(888\) −22.6785 + 30.9648i −0.761040 + 1.03911i
\(889\) 0 0
\(890\) −11.1505 + 43.6798i −0.373767 + 1.46415i
\(891\) 2.05358 38.8107i 0.0687976 1.30021i
\(892\) −18.4524 + 0.437723i −0.617831 + 0.0146560i
\(893\) 10.9313 6.31119i 0.365802 0.211196i
\(894\) −25.9756 + 33.7572i −0.868756 + 1.12901i
\(895\) 21.2847i 0.711469i
\(896\) 0 0
\(897\) 0.813457 0.0961751i 0.0271605 0.00321119i
\(898\) −26.0682 + 26.6939i −0.869908 + 0.890788i
\(899\) 10.8660 + 18.8204i 0.362401 + 0.627697i
\(900\) −0.286750 1.08190i −0.00955833 0.0360634i
\(901\) −11.8346 + 20.4981i −0.394267 + 0.682890i
\(902\) −15.1598 3.86997i −0.504765 0.128856i
\(903\) 0 0
\(904\) 19.7941 + 18.4335i 0.658342 + 0.613090i
\(905\) −33.3106 19.2319i −1.10728 0.639289i
\(906\) −3.89179 9.43179i −0.129296 0.313350i
\(907\) 48.4273 27.9595i 1.60800 0.928380i 0.618186 0.786032i \(-0.287868\pi\)
0.989817 0.142348i \(-0.0454653\pi\)
\(908\) −33.3478 + 20.3228i −1.10668 + 0.674434i
\(909\) −6.07587 25.3359i −0.201524 0.840340i
\(910\) 0 0
\(911\) 7.71538 0.255622 0.127811 0.991799i \(-0.459205\pi\)
0.127811 + 0.991799i \(0.459205\pi\)
\(912\) 6.18114 + 37.0937i 0.204678 + 1.22830i
\(913\) −1.38561 2.39995i −0.0458571 0.0794268i
\(914\) 41.1879 11.5615i 1.36238 0.382419i
\(915\) −37.8674 16.2748i −1.25186 0.538028i
\(916\) −3.56961 1.94954i −0.117943 0.0644145i
\(917\) 0 0
\(918\) 31.5646 3.26624i 1.04179 0.107802i
\(919\) −8.69683 5.02112i −0.286882 0.165631i 0.349653 0.936879i \(-0.386300\pi\)
−0.636535 + 0.771248i \(0.719633\pi\)
\(920\) −1.67994 + 7.29892i −0.0553861 + 0.240638i
\(921\) 3.11080 2.32233i 0.102504 0.0765234i
\(922\) −1.54438 + 1.58145i −0.0508614 + 0.0520823i
\(923\) −1.98786 −0.0654311
\(924\) 0 0
\(925\) 1.46149 0.0480534
\(926\) 32.8989 33.6886i 1.08112 1.10707i
\(927\) −23.1770 + 21.9830i −0.761231 + 0.722017i
\(928\) −13.9897 + 15.7555i −0.459234 + 0.517198i
\(929\) 2.71156 + 1.56552i 0.0889635 + 0.0513631i 0.543822 0.839201i \(-0.316977\pi\)
−0.454858 + 0.890564i \(0.650310\pi\)
\(930\) 4.29215 32.2637i 0.140745 1.05797i
\(931\) 0 0
\(932\) 3.13603 5.74209i 0.102724 0.188088i
\(933\) −18.1095 + 42.1364i −0.592879 + 1.37948i
\(934\) 23.5512 6.61084i 0.770620 0.216313i
\(935\) 21.2345 + 36.7792i 0.694442 + 1.20281i
\(936\) −1.75286 2.97293i −0.0572940 0.0971732i
\(937\) −47.0325 −1.53648 −0.768242 0.640159i \(-0.778868\pi\)
−0.768242 + 0.640159i \(0.778868\pi\)
\(938\) 0 0
\(939\) 0.757468 0.0895556i 0.0247190 0.00292254i
\(940\) −5.51211 9.04486i −0.179785 0.295011i
\(941\) −19.2716 + 11.1265i −0.628238 + 0.362713i −0.780069 0.625693i \(-0.784816\pi\)
0.151832 + 0.988406i \(0.451483\pi\)
\(942\) −43.6160 + 17.9970i −1.42108 + 0.586374i
\(943\) −2.57979 1.48944i −0.0840095 0.0485029i
\(944\) −8.46007 13.1689i −0.275352 0.428611i
\(945\) 0 0
\(946\) 65.2151 + 16.6480i 2.12033 + 0.541274i
\(947\) −16.9667 + 29.3873i −0.551345 + 0.954958i 0.446833 + 0.894617i \(0.352552\pi\)
−0.998178 + 0.0603402i \(0.980781\pi\)
\(948\) 13.7181 1.95279i 0.445544 0.0634236i
\(949\) 0.572156 + 0.991004i 0.0185730 + 0.0321694i
\(950\) 1.00045 1.02446i 0.0324588 0.0332380i
\(951\) −2.39812 20.2835i −0.0777645 0.657739i
\(952\) 0 0
\(953\) 20.2641i 0.656419i −0.944605 0.328209i \(-0.893555\pi\)
0.944605 0.328209i \(-0.106445\pi\)
\(954\) 11.9194 19.9672i 0.385904 0.646462i
\(955\) −40.0536 + 23.1249i −1.29610 + 0.748306i
\(956\) 1.16232 + 48.9979i 0.0375920 + 1.58470i
\(957\) 25.5953 + 11.0004i 0.827379 + 0.355593i
\(958\) 5.80952 22.7575i 0.187697 0.735263i
\(959\) 0 0
\(960\) 30.9956 5.92366i 1.00038 0.191185i
\(961\) 1.52112 2.63465i 0.0490682 0.0849887i
\(962\) 4.33876 1.21789i 0.139887 0.0392664i
\(963\) −17.3424 18.2843i −0.558850 0.589202i
\(964\) 31.4506 19.1666i 1.01295 0.617313i
\(965\) 15.6131i 0.502604i
\(966\) 0 0
\(967\) 43.5882i 1.40170i −0.713308 0.700851i \(-0.752804\pi\)
0.713308 0.700851i \(-0.247196\pi\)
\(968\) 6.33840 + 20.6824i 0.203724 + 0.664759i
\(969\) 24.2867 + 32.5323i 0.780200 + 1.04509i
\(970\) −1.74084 6.20176i −0.0558949 0.199127i
\(971\) 1.83580 3.17971i 0.0589138 0.102042i −0.835064 0.550152i \(-0.814570\pi\)
0.893978 + 0.448111i \(0.147903\pi\)
\(972\) −31.0548 + 2.75673i −0.996083 + 0.0884221i
\(973\) 0 0
\(974\) −33.2289 8.48263i −1.06472 0.271801i
\(975\) −0.0518904 + 0.120736i −0.00166182 + 0.00386666i
\(976\) 19.1581 37.1465i 0.613236 1.18903i
\(977\) −29.5088 + 17.0369i −0.944069 + 0.545058i −0.891233 0.453545i \(-0.850159\pi\)
−0.0528352 + 0.998603i \(0.516826\pi\)
\(978\) 12.9183 16.7883i 0.413083 0.536830i
\(979\) 60.4439i 1.93179i
\(980\) 0 0
\(981\) −30.5807 + 7.33364i −0.976368 + 0.234145i
\(982\) 20.5476 + 20.0660i 0.655700 + 0.640331i
\(983\) −27.1404 47.0086i −0.865645 1.49934i −0.866406 0.499341i \(-0.833576\pi\)
0.000761201 1.00000i \(-0.499758\pi\)
\(984\) −1.35960 + 12.4771i −0.0433424 + 0.397754i
\(985\) −2.24130 + 3.88205i −0.0714138 + 0.123692i
\(986\) −5.62636 + 22.0401i −0.179180 + 0.701898i
\(987\) 0 0
\(988\) 2.11636 3.87506i 0.0673303 0.123282i
\(989\) 11.0979 + 6.40736i 0.352892 + 0.203742i
\(990\) −20.3335 36.4347i −0.646241 1.15797i
\(991\) 9.09990 5.25383i 0.289068 0.166893i −0.348454 0.937326i \(-0.613293\pi\)
0.637521 + 0.770433i \(0.279960\pi\)
\(992\) 32.3309 + 6.63819i 1.02651 + 0.210763i
\(993\) 0.266354 + 2.25285i 0.00845250 + 0.0714919i
\(994\) 0 0
\(995\) 14.5141 0.460127
\(996\) −1.74934 + 1.37174i −0.0554301 + 0.0434654i
\(997\) −10.7282 18.5818i −0.339765 0.588491i 0.644623 0.764501i \(-0.277014\pi\)
−0.984388 + 0.176010i \(0.943681\pi\)
\(998\) −4.02780 14.3491i −0.127498 0.454214i
\(999\) 6.90931 40.1190i 0.218601 1.26931i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.f.275.4 24
3.2 odd 2 inner 588.2.n.f.275.9 24
4.3 odd 2 inner 588.2.n.f.275.2 24
7.2 even 3 84.2.e.a.71.6 yes 12
7.3 odd 6 588.2.n.g.263.11 24
7.4 even 3 inner 588.2.n.f.263.11 24
7.5 odd 6 588.2.e.c.491.6 12
7.6 odd 2 588.2.n.g.275.4 24
12.11 even 2 inner 588.2.n.f.275.11 24
21.2 odd 6 84.2.e.a.71.7 yes 12
21.5 even 6 588.2.e.c.491.7 12
21.11 odd 6 inner 588.2.n.f.263.2 24
21.17 even 6 588.2.n.g.263.2 24
21.20 even 2 588.2.n.g.275.9 24
28.3 even 6 588.2.n.g.263.9 24
28.11 odd 6 inner 588.2.n.f.263.9 24
28.19 even 6 588.2.e.c.491.8 12
28.23 odd 6 84.2.e.a.71.8 yes 12
28.27 even 2 588.2.n.g.275.2 24
56.37 even 6 1344.2.h.h.575.2 12
56.51 odd 6 1344.2.h.h.575.11 12
84.11 even 6 inner 588.2.n.f.263.4 24
84.23 even 6 84.2.e.a.71.5 12
84.47 odd 6 588.2.e.c.491.5 12
84.59 odd 6 588.2.n.g.263.4 24
84.83 odd 2 588.2.n.g.275.11 24
168.107 even 6 1344.2.h.h.575.1 12
168.149 odd 6 1344.2.h.h.575.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.e.a.71.5 12 84.23 even 6
84.2.e.a.71.6 yes 12 7.2 even 3
84.2.e.a.71.7 yes 12 21.2 odd 6
84.2.e.a.71.8 yes 12 28.23 odd 6
588.2.e.c.491.5 12 84.47 odd 6
588.2.e.c.491.6 12 7.5 odd 6
588.2.e.c.491.7 12 21.5 even 6
588.2.e.c.491.8 12 28.19 even 6
588.2.n.f.263.2 24 21.11 odd 6 inner
588.2.n.f.263.4 24 84.11 even 6 inner
588.2.n.f.263.9 24 28.11 odd 6 inner
588.2.n.f.263.11 24 7.4 even 3 inner
588.2.n.f.275.2 24 4.3 odd 2 inner
588.2.n.f.275.4 24 1.1 even 1 trivial
588.2.n.f.275.9 24 3.2 odd 2 inner
588.2.n.f.275.11 24 12.11 even 2 inner
588.2.n.g.263.2 24 21.17 even 6
588.2.n.g.263.4 24 84.59 odd 6
588.2.n.g.263.9 24 28.3 even 6
588.2.n.g.263.11 24 7.3 odd 6
588.2.n.g.275.2 24 28.27 even 2
588.2.n.g.275.4 24 7.6 odd 2
588.2.n.g.275.9 24 21.20 even 2
588.2.n.g.275.11 24 84.83 odd 2
1344.2.h.h.575.1 12 168.107 even 6
1344.2.h.h.575.2 12 56.37 even 6
1344.2.h.h.575.11 12 56.51 odd 6
1344.2.h.h.575.12 12 168.149 odd 6