Properties

Label 588.2.e.c.491.8
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(491,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-4,0,6,0,0,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.2593100598870016.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} + x^{8} + 4x^{6} + 4x^{4} - 32x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.8
Root \(1.37027 - 0.349801i\) of defining polynomial
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.c.491.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.349801 + 1.37027i) q^{2} +(1.72007 - 0.203364i) q^{3} +(-1.75528 + 0.958643i) q^{4} -2.27740i q^{5} +(0.880346 + 2.28582i) q^{6} +(-1.92760 - 2.06987i) q^{8} +(2.91729 - 0.699602i) q^{9} +(3.12065 - 0.796636i) q^{10} +4.31834 q^{11} +(-2.82425 + 2.00589i) q^{12} +0.406728 q^{13} +(-0.463141 - 3.91729i) q^{15} +(2.16201 - 3.36537i) q^{16} +4.31834i q^{17} +(1.97911 + 3.75275i) q^{18} -5.42784i q^{19} +(2.18321 + 3.99747i) q^{20} +(1.51056 + 5.91729i) q^{22} +1.16274 q^{23} +(-3.73654 - 3.16832i) q^{24} -0.186543 q^{25} +(0.142274 + 0.557328i) q^{26} +(4.87566 - 1.79664i) q^{27} +3.72469i q^{29} +(5.20573 - 2.00490i) q^{30} +5.83457i q^{31} +(5.36774 + 1.78532i) q^{32} +(7.42784 - 0.878195i) q^{33} +(-5.91729 + 1.51056i) q^{34} +(-4.44998 + 4.02463i) q^{36} -7.83457 q^{37} +(7.43761 - 1.89866i) q^{38} +(0.699602 - 0.0827140i) q^{39} +(-4.71392 + 4.38991i) q^{40} +2.56195i q^{41} -11.0211i q^{43} +(-7.57988 + 4.13974i) q^{44} +(-1.59327 - 6.64382i) q^{45} +(0.406728 + 1.59327i) q^{46} -2.32549 q^{47} +(3.03441 - 6.22835i) q^{48} +(-0.0652529 - 0.255614i) q^{50} +(0.878195 + 7.42784i) q^{51} +(-0.713922 + 0.389907i) q^{52} +5.48108i q^{53} +(4.16739 + 6.05251i) q^{54} -9.83457i q^{55} +(-1.10383 - 9.33627i) q^{57} +(-5.10383 + 1.30290i) q^{58} -3.91306 q^{59} +(4.56822 + 6.43194i) q^{60} -10.4490 q^{61} +(-7.99494 + 2.04094i) q^{62} +(-0.568736 + 7.97976i) q^{64} -0.926283i q^{65} +(3.80163 + 9.87096i) q^{66} -7.83457i q^{67} +(-4.13974 - 7.57988i) q^{68} +(2.00000 - 0.236460i) q^{69} -4.88743 q^{71} +(-7.07144 - 4.68986i) q^{72} -2.81346 q^{73} +(-2.74054 - 10.7355i) q^{74} +(-0.320867 + 0.0379362i) q^{75} +(5.20336 + 9.52738i) q^{76} +(0.358062 + 0.929710i) q^{78} +4.00000i q^{79} +(-7.66429 - 4.92375i) q^{80} +(8.02112 - 4.08188i) q^{81} +(-3.51056 + 0.896171i) q^{82} -0.641735 q^{83} +9.83457 q^{85} +(15.1019 - 3.85520i) q^{86} +(0.757468 + 6.40673i) q^{87} +(-8.32401 - 8.93840i) q^{88} +13.9970i q^{89} +(8.54650 - 4.50723i) q^{90} +(-2.04094 + 1.11466i) q^{92} +(1.18654 + 10.0359i) q^{93} +(-0.813457 - 3.18654i) q^{94} -12.3614 q^{95} +(9.59596 + 1.97928i) q^{96} +2.00000 q^{97} +(12.5978 - 3.02112i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} + 6 q^{6} - 4 q^{9} - 4 q^{10} + 6 q^{12} + 4 q^{16} - 8 q^{18} - 16 q^{22} - 2 q^{24} - 12 q^{25} + 20 q^{30} + 16 q^{33} - 32 q^{34} - 20 q^{36} - 16 q^{37} - 20 q^{40} - 24 q^{45} - 46 q^{48}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.349801 + 1.37027i 0.247347 + 0.968927i
\(3\) 1.72007 0.203364i 0.993083 0.117412i
\(4\) −1.75528 + 0.958643i −0.877639 + 0.479321i
\(5\) 2.27740i 1.01848i −0.860624 0.509242i \(-0.829926\pi\)
0.860624 0.509242i \(-0.170074\pi\)
\(6\) 0.880346 + 2.28582i 0.359400 + 0.933184i
\(7\) 0 0
\(8\) −1.92760 2.06987i −0.681509 0.731810i
\(9\) 2.91729 0.699602i 0.972429 0.233201i
\(10\) 3.12065 0.796636i 0.986836 0.251918i
\(11\) 4.31834 1.30203 0.651014 0.759066i \(-0.274344\pi\)
0.651014 + 0.759066i \(0.274344\pi\)
\(12\) −2.82425 + 2.00589i −0.815291 + 0.579052i
\(13\) 0.406728 0.112806 0.0564031 0.998408i \(-0.482037\pi\)
0.0564031 + 0.998408i \(0.482037\pi\)
\(14\) 0 0
\(15\) −0.463141 3.91729i −0.119583 1.01144i
\(16\) 2.16201 3.36537i 0.540502 0.841343i
\(17\) 4.31834i 1.04735i 0.851918 + 0.523675i \(0.175439\pi\)
−0.851918 + 0.523675i \(0.824561\pi\)
\(18\) 1.97911 + 3.75275i 0.466481 + 0.884531i
\(19\) 5.42784i 1.24523i −0.782527 0.622616i \(-0.786070\pi\)
0.782527 0.622616i \(-0.213930\pi\)
\(20\) 2.18321 + 3.99747i 0.488181 + 0.893861i
\(21\) 0 0
\(22\) 1.51056 + 5.91729i 0.322052 + 1.26157i
\(23\) 1.16274 0.242449 0.121224 0.992625i \(-0.461318\pi\)
0.121224 + 0.992625i \(0.461318\pi\)
\(24\) −3.73654 3.16832i −0.762718 0.646731i
\(25\) −0.186543 −0.0373086
\(26\) 0.142274 + 0.557328i 0.0279022 + 0.109301i
\(27\) 4.87566 1.79664i 0.938322 0.345763i
\(28\) 0 0
\(29\) 3.72469i 0.691657i 0.938298 + 0.345829i \(0.112402\pi\)
−0.938298 + 0.345829i \(0.887598\pi\)
\(30\) 5.20573 2.00490i 0.950432 0.366043i
\(31\) 5.83457i 1.04792i 0.851743 + 0.523960i \(0.175546\pi\)
−0.851743 + 0.523960i \(0.824454\pi\)
\(32\) 5.36774 + 1.78532i 0.948891 + 0.315604i
\(33\) 7.42784 0.878195i 1.29302 0.152874i
\(34\) −5.91729 + 1.51056i −1.01481 + 0.259058i
\(35\) 0 0
\(36\) −4.44998 + 4.02463i −0.741664 + 0.670772i
\(37\) −7.83457 −1.28800 −0.643998 0.765027i \(-0.722725\pi\)
−0.643998 + 0.765027i \(0.722725\pi\)
\(38\) 7.43761 1.89866i 1.20654 0.308004i
\(39\) 0.699602 0.0827140i 0.112026 0.0132448i
\(40\) −4.71392 + 4.38991i −0.745336 + 0.694105i
\(41\) 2.56195i 0.400109i 0.979785 + 0.200054i \(0.0641119\pi\)
−0.979785 + 0.200054i \(0.935888\pi\)
\(42\) 0 0
\(43\) 11.0211i 1.68070i −0.542041 0.840352i \(-0.682348\pi\)
0.542041 0.840352i \(-0.317652\pi\)
\(44\) −7.57988 + 4.13974i −1.14271 + 0.624090i
\(45\) −1.59327 6.64382i −0.237511 0.990403i
\(46\) 0.406728 + 1.59327i 0.0599688 + 0.234915i
\(47\) −2.32549 −0.339207 −0.169603 0.985512i \(-0.554249\pi\)
−0.169603 + 0.985512i \(0.554249\pi\)
\(48\) 3.03441 6.22835i 0.437979 0.898985i
\(49\) 0 0
\(50\) −0.0652529 0.255614i −0.00922816 0.0361493i
\(51\) 0.878195 + 7.42784i 0.122972 + 1.04011i
\(52\) −0.713922 + 0.389907i −0.0990031 + 0.0540704i
\(53\) 5.48108i 0.752884i 0.926440 + 0.376442i \(0.122853\pi\)
−0.926440 + 0.376442i \(0.877147\pi\)
\(54\) 4.16739 + 6.05251i 0.567110 + 0.823642i
\(55\) 9.83457i 1.32609i
\(56\) 0 0
\(57\) −1.10383 9.33627i −0.146206 1.23662i
\(58\) −5.10383 + 1.30290i −0.670166 + 0.171079i
\(59\) −3.91306 −0.509437 −0.254719 0.967015i \(-0.581983\pi\)
−0.254719 + 0.967015i \(0.581983\pi\)
\(60\) 4.56822 + 6.43194i 0.589755 + 0.830360i
\(61\) −10.4490 −1.33785 −0.668926 0.743329i \(-0.733246\pi\)
−0.668926 + 0.743329i \(0.733246\pi\)
\(62\) −7.99494 + 2.04094i −1.01536 + 0.259199i
\(63\) 0 0
\(64\) −0.568736 + 7.97976i −0.0710920 + 0.997470i
\(65\) 0.926283i 0.114891i
\(66\) 3.80163 + 9.87096i 0.467948 + 1.21503i
\(67\) 7.83457i 0.957145i −0.878048 0.478573i \(-0.841154\pi\)
0.878048 0.478573i \(-0.158846\pi\)
\(68\) −4.13974 7.57988i −0.502018 0.919196i
\(69\) 2.00000 0.236460i 0.240772 0.0284665i
\(70\) 0 0
\(71\) −4.88743 −0.580031 −0.290016 0.957022i \(-0.593661\pi\)
−0.290016 + 0.957022i \(0.593661\pi\)
\(72\) −7.07144 4.68986i −0.833377 0.552705i
\(73\) −2.81346 −0.329290 −0.164645 0.986353i \(-0.552648\pi\)
−0.164645 + 0.986353i \(0.552648\pi\)
\(74\) −2.74054 10.7355i −0.318581 1.24797i
\(75\) −0.320867 + 0.0379362i −0.0370506 + 0.00438050i
\(76\) 5.20336 + 9.52738i 0.596867 + 1.09287i
\(77\) 0 0
\(78\) 0.358062 + 0.929710i 0.0405425 + 0.105269i
\(79\) 4.00000i 0.450035i 0.974355 + 0.225018i \(0.0722440\pi\)
−0.974355 + 0.225018i \(0.927756\pi\)
\(80\) −7.66429 4.92375i −0.856894 0.550492i
\(81\) 8.02112 4.08188i 0.891235 0.453542i
\(82\) −3.51056 + 0.896171i −0.387676 + 0.0989655i
\(83\) −0.641735 −0.0704395 −0.0352198 0.999380i \(-0.511213\pi\)
−0.0352198 + 0.999380i \(0.511213\pi\)
\(84\) 0 0
\(85\) 9.83457 1.06671
\(86\) 15.1019 3.85520i 1.62848 0.415716i
\(87\) 0.757468 + 6.40673i 0.0812091 + 0.686873i
\(88\) −8.32401 8.93840i −0.887343 0.952837i
\(89\) 13.9970i 1.48368i 0.670576 + 0.741841i \(0.266047\pi\)
−0.670576 + 0.741841i \(0.733953\pi\)
\(90\) 8.54650 4.50723i 0.900880 0.475103i
\(91\) 0 0
\(92\) −2.04094 + 1.11466i −0.212782 + 0.116211i
\(93\) 1.18654 + 10.0359i 0.123039 + 1.04067i
\(94\) −0.813457 3.18654i −0.0839017 0.328667i
\(95\) −12.3614 −1.26825
\(96\) 9.59596 + 1.97928i 0.979384 + 0.202009i
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 12.5978 3.02112i 1.26613 0.303633i
\(100\) 0.327435 0.178828i 0.0327435 0.0178828i
\(101\) 8.68476i 0.864166i 0.901834 + 0.432083i \(0.142221\pi\)
−0.901834 + 0.432083i \(0.857779\pi\)
\(102\) −9.87096 + 3.80163i −0.977370 + 0.376417i
\(103\) 10.6480i 1.04918i −0.851355 0.524591i \(-0.824218\pi\)
0.851355 0.524591i \(-0.175782\pi\)
\(104\) −0.784009 0.841876i −0.0768784 0.0825527i
\(105\) 0 0
\(106\) −7.51056 + 1.91729i −0.729490 + 0.186223i
\(107\) −8.40021 −0.812079 −0.406040 0.913855i \(-0.633090\pi\)
−0.406040 + 0.913855i \(0.633090\pi\)
\(108\) −6.83582 + 7.82762i −0.657777 + 0.753213i
\(109\) −10.4826 −1.00405 −0.502026 0.864853i \(-0.667412\pi\)
−0.502026 + 0.864853i \(0.667412\pi\)
\(110\) 13.4760 3.44014i 1.28489 0.328005i
\(111\) −13.4760 + 1.59327i −1.27909 + 0.151227i
\(112\) 0 0
\(113\) 9.56296i 0.899607i 0.893128 + 0.449804i \(0.148506\pi\)
−0.893128 + 0.449804i \(0.851494\pi\)
\(114\) 12.4071 4.77838i 1.16203 0.447536i
\(115\) 2.64803i 0.246930i
\(116\) −3.57065 6.53787i −0.331526 0.607026i
\(117\) 1.18654 0.284548i 0.109696 0.0263065i
\(118\) −1.36879 5.36195i −0.126008 0.493608i
\(119\) 0 0
\(120\) −7.21553 + 8.50959i −0.658685 + 0.776816i
\(121\) 7.64803 0.695275
\(122\) −3.65505 14.3179i −0.330913 1.29628i
\(123\) 0.521008 + 4.40673i 0.0469777 + 0.397341i
\(124\) −5.59327 10.2413i −0.502291 0.919696i
\(125\) 10.9622i 0.980485i
\(126\) 0 0
\(127\) 6.20766i 0.550841i 0.961324 + 0.275420i \(0.0888170\pi\)
−0.961324 + 0.275420i \(0.911183\pi\)
\(128\) −11.1334 + 2.01200i −0.984060 + 0.177838i
\(129\) −2.24130 18.9571i −0.197335 1.66908i
\(130\) 1.26926 0.324014i 0.111321 0.0284179i
\(131\) 14.4023 1.25833 0.629167 0.777270i \(-0.283396\pi\)
0.629167 + 0.777270i \(0.283396\pi\)
\(132\) −12.1961 + 8.66213i −1.06153 + 0.753941i
\(133\) 0 0
\(134\) 10.7355 2.74054i 0.927404 0.236747i
\(135\) −4.09166 11.1038i −0.352154 0.955665i
\(136\) 8.93840 8.32401i 0.766462 0.713778i
\(137\) 2.32549i 0.198680i 0.995054 + 0.0993398i \(0.0316731\pi\)
−0.995054 + 0.0993398i \(0.968327\pi\)
\(138\) 1.02362 + 2.65783i 0.0871360 + 0.226249i
\(139\) 9.22019i 0.782046i 0.920381 + 0.391023i \(0.127879\pi\)
−0.920381 + 0.391023i \(0.872121\pi\)
\(140\) 0 0
\(141\) −4.00000 + 0.472921i −0.336861 + 0.0398271i
\(142\) −1.70963 6.69710i −0.143469 0.562008i
\(143\) 1.75639 0.146877
\(144\) 3.95277 11.3303i 0.329398 0.944191i
\(145\) 8.48260 0.704442
\(146\) −0.984149 3.85520i −0.0814488 0.319058i
\(147\) 0 0
\(148\) 13.7519 7.51056i 1.13040 0.617364i
\(149\) 17.3891i 1.42457i −0.701891 0.712284i \(-0.747661\pi\)
0.701891 0.712284i \(-0.252339\pi\)
\(150\) −0.164223 0.426405i −0.0134087 0.0348158i
\(151\) 4.16543i 0.338978i 0.985532 + 0.169489i \(0.0542117\pi\)
−0.985532 + 0.169489i \(0.945788\pi\)
\(152\) −11.2349 + 10.4627i −0.911274 + 0.848637i
\(153\) 3.02112 + 12.5978i 0.244243 + 1.01847i
\(154\) 0 0
\(155\) 13.2876 1.06729
\(156\) −1.14870 + 0.815854i −0.0919698 + 0.0653206i
\(157\) 19.2624 1.53731 0.768654 0.639665i \(-0.220927\pi\)
0.768654 + 0.639665i \(0.220927\pi\)
\(158\) −5.48108 + 1.39920i −0.436051 + 0.111315i
\(159\) 1.11466 + 9.42784i 0.0883979 + 0.747677i
\(160\) 4.06589 12.2245i 0.321437 0.966430i
\(161\) 0 0
\(162\) 8.39906 + 9.56325i 0.659893 + 0.751360i
\(163\) 8.64803i 0.677366i −0.940901 0.338683i \(-0.890019\pi\)
0.940901 0.338683i \(-0.109981\pi\)
\(164\) −2.45599 4.49693i −0.191781 0.351151i
\(165\) −2.00000 16.9162i −0.155700 1.31692i
\(166\) −0.224479 0.879350i −0.0174230 0.0682508i
\(167\) 1.75639 0.135914 0.0679568 0.997688i \(-0.478352\pi\)
0.0679568 + 0.997688i \(0.478352\pi\)
\(168\) 0 0
\(169\) −12.8346 −0.987275
\(170\) 3.44014 + 13.4760i 0.263847 + 1.03356i
\(171\) −3.79733 15.8346i −0.290389 1.21090i
\(172\) 10.5653 + 19.3451i 0.805598 + 1.47505i
\(173\) 7.87421i 0.598665i −0.954149 0.299333i \(-0.903236\pi\)
0.954149 0.299333i \(-0.0967640\pi\)
\(174\) −8.51398 + 3.27902i −0.645443 + 0.248581i
\(175\) 0 0
\(176\) 9.33627 14.5328i 0.703748 1.09545i
\(177\) −6.73074 + 0.795777i −0.505914 + 0.0598142i
\(178\) −19.1797 + 4.89617i −1.43758 + 0.366984i
\(179\) −9.34605 −0.698557 −0.349278 0.937019i \(-0.613573\pi\)
−0.349278 + 0.937019i \(0.613573\pi\)
\(180\) 9.16569 + 10.1344i 0.683170 + 0.755372i
\(181\) −16.8893 −1.25537 −0.627687 0.778466i \(-0.715998\pi\)
−0.627687 + 0.778466i \(0.715998\pi\)
\(182\) 0 0
\(183\) −17.9729 + 2.12494i −1.32860 + 0.157080i
\(184\) −2.24130 2.40673i −0.165231 0.177426i
\(185\) 17.8424i 1.31180i
\(186\) −13.3368 + 5.13644i −0.977902 + 0.376622i
\(187\) 18.6480i 1.36368i
\(188\) 4.08188 2.22931i 0.297701 0.162589i
\(189\) 0 0
\(190\) −4.32401 16.9384i −0.313697 1.22884i
\(191\) 20.3082 1.46945 0.734725 0.678365i \(-0.237311\pi\)
0.734725 + 0.678365i \(0.237311\pi\)
\(192\) 0.644532 + 13.8414i 0.0465151 + 0.998918i
\(193\) 6.85569 0.493483 0.246742 0.969081i \(-0.420640\pi\)
0.246742 + 0.969081i \(0.420640\pi\)
\(194\) 0.699602 + 2.74054i 0.0502285 + 0.196759i
\(195\) −0.188373 1.59327i −0.0134897 0.114097i
\(196\) 0 0
\(197\) 1.96830i 0.140235i −0.997539 0.0701177i \(-0.977662\pi\)
0.997539 0.0701177i \(-0.0223375\pi\)
\(198\) 8.54647 + 16.2056i 0.607371 + 1.15168i
\(199\) 6.37309i 0.451776i −0.974153 0.225888i \(-0.927472\pi\)
0.974153 0.225888i \(-0.0725284\pi\)
\(200\) 0.359580 + 0.386120i 0.0254262 + 0.0273028i
\(201\) −1.59327 13.4760i −0.112381 0.950525i
\(202\) −11.9005 + 3.03794i −0.837314 + 0.213748i
\(203\) 0 0
\(204\) −8.66213 12.1961i −0.606470 0.853895i
\(205\) 5.83457 0.407504
\(206\) 14.5907 3.72469i 1.01658 0.259511i
\(207\) 3.39205 0.813457i 0.235764 0.0565392i
\(208\) 0.879350 1.36879i 0.0609719 0.0949087i
\(209\) 23.4393i 1.62133i
\(210\) 0 0
\(211\) 25.1306i 1.73006i 0.501717 + 0.865032i \(0.332702\pi\)
−0.501717 + 0.865032i \(0.667298\pi\)
\(212\) −5.25440 9.62082i −0.360874 0.660761i
\(213\) −8.40673 + 0.993929i −0.576020 + 0.0681029i
\(214\) −2.93840 11.5106i −0.200865 0.786846i
\(215\) −25.0995 −1.71177
\(216\) −13.1171 6.62881i −0.892507 0.451033i
\(217\) 0 0
\(218\) −3.66682 14.3640i −0.248349 0.972852i
\(219\) −4.83934 + 0.572156i −0.327013 + 0.0386627i
\(220\) 9.42784 + 17.2624i 0.635625 + 1.16383i
\(221\) 1.75639i 0.118148i
\(222\) −6.89713 17.9085i −0.462905 1.20194i
\(223\) 9.22877i 0.618004i 0.951061 + 0.309002i \(0.0999950\pi\)
−0.951061 + 0.309002i \(0.900005\pi\)
\(224\) 0 0
\(225\) −0.544200 + 0.130506i −0.0362800 + 0.00870039i
\(226\) −13.1038 + 3.34513i −0.871654 + 0.222515i
\(227\) −19.5262 −1.29600 −0.647999 0.761641i \(-0.724394\pi\)
−0.647999 + 0.761641i \(0.724394\pi\)
\(228\) 10.8877 + 15.3296i 0.721054 + 1.01523i
\(229\) −2.03364 −0.134387 −0.0671934 0.997740i \(-0.521404\pi\)
−0.0671934 + 0.997740i \(0.521404\pi\)
\(230\) 3.62851 0.926283i 0.239257 0.0610773i
\(231\) 0 0
\(232\) 7.70963 7.17970i 0.506162 0.471370i
\(233\) 3.27133i 0.214312i 0.994242 + 0.107156i \(0.0341744\pi\)
−0.994242 + 0.107156i \(0.965826\pi\)
\(234\) 0.804961 + 1.52635i 0.0526220 + 0.0997806i
\(235\) 5.29606i 0.345477i
\(236\) 6.86851 3.75123i 0.447102 0.244184i
\(237\) 0.813457 + 6.88028i 0.0528397 + 0.446922i
\(238\) 0 0
\(239\) −24.5058 −1.58515 −0.792575 0.609775i \(-0.791260\pi\)
−0.792575 + 0.609775i \(0.791260\pi\)
\(240\) −14.1844 6.91056i −0.915601 0.446075i
\(241\) −18.4153 −1.18623 −0.593117 0.805116i \(-0.702103\pi\)
−0.593117 + 0.805116i \(0.702103\pi\)
\(242\) 2.67529 + 10.4799i 0.171974 + 0.673671i
\(243\) 12.9668 8.65232i 0.831819 0.555047i
\(244\) 18.3408 10.0168i 1.17415 0.641261i
\(245\) 0 0
\(246\) −5.85616 + 2.25540i −0.373375 + 0.143799i
\(247\) 2.20766i 0.140470i
\(248\) 12.0768 11.2467i 0.766878 0.714167i
\(249\) −1.10383 + 0.130506i −0.0699523 + 0.00827047i
\(250\) 15.0211 3.83457i 0.950019 0.242520i
\(251\) 15.4443 0.974837 0.487418 0.873169i \(-0.337939\pi\)
0.487418 + 0.873169i \(0.337939\pi\)
\(252\) 0 0
\(253\) 5.02112 0.315675
\(254\) −8.50617 + 2.17144i −0.533724 + 0.136249i
\(255\) 16.9162 2.00000i 1.05933 0.125245i
\(256\) −6.65145 14.5519i −0.415716 0.909495i
\(257\) 8.96931i 0.559490i −0.960074 0.279745i \(-0.909750\pi\)
0.960074 0.279745i \(-0.0902499\pi\)
\(258\) 25.1923 9.70239i 1.56841 0.604045i
\(259\) 0 0
\(260\) 0.887974 + 1.62588i 0.0550698 + 0.100833i
\(261\) 2.60580 + 10.8660i 0.161295 + 0.672587i
\(262\) 5.03794 + 19.7350i 0.311245 + 1.21923i
\(263\) 19.3624 1.19393 0.596967 0.802265i \(-0.296372\pi\)
0.596967 + 0.802265i \(0.296372\pi\)
\(264\) −16.1356 13.6819i −0.993080 0.842061i
\(265\) 12.4826 0.766800
\(266\) 0 0
\(267\) 2.84649 + 24.0759i 0.174203 + 1.47342i
\(268\) 7.51056 + 13.7519i 0.458780 + 0.840028i
\(269\) 0.0480876i 0.00293195i 0.999999 + 0.00146598i \(0.000466635\pi\)
−0.999999 + 0.00146598i \(0.999533\pi\)
\(270\) 13.7840 9.49080i 0.838866 0.577592i
\(271\) 19.8768i 1.20743i 0.797200 + 0.603715i \(0.206313\pi\)
−0.797200 + 0.603715i \(0.793687\pi\)
\(272\) 14.5328 + 9.33627i 0.881181 + 0.566095i
\(273\) 0 0
\(274\) −3.18654 + 0.813457i −0.192506 + 0.0491427i
\(275\) −0.805556 −0.0485769
\(276\) −3.28388 + 2.33234i −0.197666 + 0.140390i
\(277\) 10.2749 0.617361 0.308681 0.951166i \(-0.400113\pi\)
0.308681 + 0.951166i \(0.400113\pi\)
\(278\) −12.6341 + 3.22523i −0.757745 + 0.193436i
\(279\) 4.08188 + 17.0211i 0.244376 + 1.01903i
\(280\) 0 0
\(281\) 6.78411i 0.404706i 0.979313 + 0.202353i \(0.0648588\pi\)
−0.979313 + 0.202353i \(0.935141\pi\)
\(282\) −2.04723 5.31565i −0.121911 0.316542i
\(283\) 5.42784i 0.322652i 0.986901 + 0.161326i \(0.0515770\pi\)
−0.986901 + 0.161326i \(0.948423\pi\)
\(284\) 8.57881 4.68530i 0.509058 0.278022i
\(285\) −21.2624 + 2.51386i −1.25948 + 0.148908i
\(286\) 0.614387 + 2.40673i 0.0363294 + 0.142313i
\(287\) 0 0
\(288\) 16.9082 + 1.45302i 0.996328 + 0.0856201i
\(289\) −1.64803 −0.0969429
\(290\) 2.96722 + 11.6235i 0.174241 + 0.682553i
\(291\) 3.44014 0.406728i 0.201665 0.0238428i
\(292\) 4.93840 2.69710i 0.288998 0.157836i
\(293\) 28.1874i 1.64673i 0.567515 + 0.823363i \(0.307905\pi\)
−0.567515 + 0.823363i \(0.692095\pi\)
\(294\) 0 0
\(295\) 8.91160i 0.518853i
\(296\) 15.1019 + 16.2166i 0.877780 + 0.942568i
\(297\) 21.0548 7.75848i 1.22172 0.450193i
\(298\) 23.8277 6.08271i 1.38030 0.352362i
\(299\) 0.472921 0.0273497
\(300\) 0.526844 0.374186i 0.0304174 0.0216036i
\(301\) 0 0
\(302\) −5.70776 + 1.45707i −0.328445 + 0.0838450i
\(303\) 1.76617 + 14.9384i 0.101464 + 0.858189i
\(304\) −18.2667 11.7350i −1.04767 0.673051i
\(305\) 23.7964i 1.36258i
\(306\) −16.2056 + 8.54647i −0.926414 + 0.488569i
\(307\) 2.24130i 0.127918i 0.997953 + 0.0639589i \(0.0203727\pi\)
−0.997953 + 0.0639589i \(0.979627\pi\)
\(308\) 0 0
\(309\) −2.16543 18.3154i −0.123187 1.04192i
\(310\) 4.64803 + 18.2077i 0.263990 + 1.03413i
\(311\) 26.4791 1.50149 0.750746 0.660591i \(-0.229694\pi\)
0.750746 + 0.660591i \(0.229694\pi\)
\(312\) −1.51976 1.28865i −0.0860393 0.0729552i
\(313\) −0.440371 −0.0248912 −0.0124456 0.999923i \(-0.503962\pi\)
−0.0124456 + 0.999923i \(0.503962\pi\)
\(314\) 6.73801 + 26.3947i 0.380248 + 1.48954i
\(315\) 0 0
\(316\) −3.83457 7.02112i −0.215712 0.394969i
\(317\) 11.7923i 0.662320i −0.943575 0.331160i \(-0.892560\pi\)
0.943575 0.331160i \(-0.107440\pi\)
\(318\) −12.5288 + 4.82525i −0.702579 + 0.270586i
\(319\) 16.0845i 0.900557i
\(320\) 18.1731 + 1.29524i 1.01591 + 0.0724060i
\(321\) −14.4490 + 1.70830i −0.806462 + 0.0953482i
\(322\) 0 0
\(323\) 23.4393 1.30419
\(324\) −10.1662 + 14.8542i −0.564791 + 0.825234i
\(325\) −0.0758724 −0.00420864
\(326\) 11.8501 3.02509i 0.656318 0.167544i
\(327\) −18.0308 + 2.13179i −0.997106 + 0.117888i
\(328\) 5.30290 4.93840i 0.292804 0.272678i
\(329\) 0 0
\(330\) 22.4801 8.65783i 1.23749 0.476598i
\(331\) 1.30974i 0.0719899i −0.999352 0.0359949i \(-0.988540\pi\)
0.999352 0.0359949i \(-0.0114600\pi\)
\(332\) 1.12642 0.615195i 0.0618205 0.0337632i
\(333\) −22.8557 + 5.48108i −1.25248 + 0.300361i
\(334\) 0.614387 + 2.40673i 0.0336177 + 0.131690i
\(335\) −17.8424 −0.974837
\(336\) 0 0
\(337\) −15.4615 −0.842241 −0.421120 0.907005i \(-0.638363\pi\)
−0.421120 + 0.907005i \(0.638363\pi\)
\(338\) −4.48954 17.5868i −0.244199 0.956597i
\(339\) 1.94476 + 16.4490i 0.105625 + 0.893385i
\(340\) −17.2624 + 9.42784i −0.936186 + 0.511297i
\(341\) 25.1956i 1.36442i
\(342\) 20.3693 10.7423i 1.10145 0.580878i
\(343\) 0 0
\(344\) −22.8123 + 21.2443i −1.22996 + 1.14541i
\(345\) −0.538514 4.55480i −0.0289926 0.245222i
\(346\) 10.7898 2.75441i 0.580063 0.148078i
\(347\) 27.6614 1.48494 0.742471 0.669878i \(-0.233654\pi\)
0.742471 + 0.669878i \(0.233654\pi\)
\(348\) −7.47133 10.5195i −0.400506 0.563902i
\(349\) 18.9316 1.01338 0.506692 0.862127i \(-0.330868\pi\)
0.506692 + 0.862127i \(0.330868\pi\)
\(350\) 0 0
\(351\) 1.98307 0.730743i 0.105849 0.0390042i
\(352\) 23.1797 + 7.70963i 1.23548 + 0.410925i
\(353\) 1.99285i 0.106069i 0.998593 + 0.0530344i \(0.0168893\pi\)
−0.998593 + 0.0530344i \(0.983111\pi\)
\(354\) −3.44485 8.94457i −0.183092 0.475399i
\(355\) 11.1306i 0.590752i
\(356\) −13.4182 24.5687i −0.711161 1.30214i
\(357\) 0 0
\(358\) −3.26926 12.8066i −0.172786 0.676851i
\(359\) −2.35004 −0.124030 −0.0620151 0.998075i \(-0.519753\pi\)
−0.0620151 + 0.998075i \(0.519753\pi\)
\(360\) −10.6807 + 16.1045i −0.562921 + 0.848781i
\(361\) −10.4615 −0.550605
\(362\) −5.90790 23.1429i −0.310512 1.21637i
\(363\) 13.1551 1.55534i 0.690466 0.0816339i
\(364\) 0 0
\(365\) 6.40736i 0.335377i
\(366\) −9.19870 23.8845i −0.480824 1.24846i
\(367\) 34.1940i 1.78491i −0.451135 0.892455i \(-0.648981\pi\)
0.451135 0.892455i \(-0.351019\pi\)
\(368\) 2.51386 3.91306i 0.131044 0.203982i
\(369\) 1.79234 + 7.47393i 0.0933056 + 0.389077i
\(370\) −24.4490 + 6.24130i −1.27104 + 0.324470i
\(371\) 0 0
\(372\) −11.7035 16.4783i −0.606800 0.854359i
\(373\) −17.6691 −0.914874 −0.457437 0.889242i \(-0.651232\pi\)
−0.457437 + 0.889242i \(0.651232\pi\)
\(374\) −25.5528 + 6.52310i −1.32131 + 0.337301i
\(375\) −2.22931 18.8557i −0.115121 0.973703i
\(376\) 4.48260 + 4.81346i 0.231172 + 0.248235i
\(377\) 1.51494i 0.0780232i
\(378\) 0 0
\(379\) 5.39420i 0.277082i −0.990357 0.138541i \(-0.955759\pi\)
0.990357 0.138541i \(-0.0442412\pi\)
\(380\) 21.6976 11.8501i 1.11307 0.607899i
\(381\) 1.26242 + 10.6776i 0.0646755 + 0.547031i
\(382\) 7.10383 + 27.8277i 0.363464 + 1.42379i
\(383\) −1.85257 −0.0946617 −0.0473308 0.998879i \(-0.515072\pi\)
−0.0473308 + 0.998879i \(0.515072\pi\)
\(384\) −18.7410 + 5.72492i −0.956373 + 0.292149i
\(385\) 0 0
\(386\) 2.39812 + 9.39414i 0.122061 + 0.478149i
\(387\) −7.71039 32.1517i −0.391941 1.63437i
\(388\) −3.51056 + 1.91729i −0.178222 + 0.0973354i
\(389\) 5.38490i 0.273025i 0.990638 + 0.136513i \(0.0435895\pi\)
−0.990638 + 0.136513i \(0.956411\pi\)
\(390\) 2.11732 0.815449i 0.107215 0.0412919i
\(391\) 5.02112i 0.253929i
\(392\) 0 0
\(393\) 24.7730 2.92891i 1.24963 0.147744i
\(394\) 2.69710 0.688513i 0.135878 0.0346868i
\(395\) 9.10959 0.458353
\(396\) −19.2165 + 17.3797i −0.965666 + 0.873363i
\(397\) 21.6355 1.08585 0.542927 0.839780i \(-0.317316\pi\)
0.542927 + 0.839780i \(0.317316\pi\)
\(398\) 8.73285 2.22931i 0.437738 0.111745i
\(399\) 0 0
\(400\) −0.403308 + 0.627787i −0.0201654 + 0.0313893i
\(401\) 38.2714i 1.91118i 0.294697 + 0.955591i \(0.404781\pi\)
−0.294697 + 0.955591i \(0.595219\pi\)
\(402\) 17.9085 6.89713i 0.893192 0.343998i
\(403\) 2.37309i 0.118212i
\(404\) −8.32558 15.2442i −0.414213 0.758426i
\(405\) −9.29606 18.2673i −0.461925 0.907708i
\(406\) 0 0
\(407\) −33.8323 −1.67701
\(408\) 13.6819 16.1356i 0.677354 0.798833i
\(409\) −4.77123 −0.235922 −0.117961 0.993018i \(-0.537636\pi\)
−0.117961 + 0.993018i \(0.537636\pi\)
\(410\) 2.04094 + 7.99494i 0.100795 + 0.394842i
\(411\) 0.472921 + 4.00000i 0.0233275 + 0.197305i
\(412\) 10.2077 + 18.6903i 0.502895 + 0.920803i
\(413\) 0 0
\(414\) 2.30120 + 4.36348i 0.113098 + 0.214453i
\(415\) 1.46149i 0.0717415i
\(416\) 2.18321 + 0.726142i 0.107041 + 0.0356020i
\(417\) 1.87506 + 15.8594i 0.0918219 + 0.776637i
\(418\) 32.1181 8.19907i 1.57095 0.401030i
\(419\) 8.33257 0.407072 0.203536 0.979067i \(-0.434757\pi\)
0.203536 + 0.979067i \(0.434757\pi\)
\(420\) 0 0
\(421\) −20.7325 −1.01044 −0.505220 0.862991i \(-0.668589\pi\)
−0.505220 + 0.862991i \(0.668589\pi\)
\(422\) −34.4357 + 8.79071i −1.67631 + 0.427925i
\(423\) −6.78411 + 1.62691i −0.329855 + 0.0791033i
\(424\) 11.3451 10.5653i 0.550968 0.513097i
\(425\) 0.805556i 0.0390752i
\(426\) −4.30263 11.1718i −0.208463 0.541276i
\(427\) 0 0
\(428\) 14.7447 8.05280i 0.712713 0.389247i
\(429\) 3.02112 0.357187i 0.145861 0.0172451i
\(430\) −8.77981 34.3930i −0.423400 1.65858i
\(431\) −34.9951 −1.68565 −0.842826 0.538186i \(-0.819110\pi\)
−0.842826 + 0.538186i \(0.819110\pi\)
\(432\) 4.49487 20.2928i 0.216260 0.976336i
\(433\) −17.3383 −0.833225 −0.416612 0.909084i \(-0.636783\pi\)
−0.416612 + 0.909084i \(0.636783\pi\)
\(434\) 0 0
\(435\) 14.5907 1.72506i 0.699569 0.0827102i
\(436\) 18.3999 10.0491i 0.881195 0.481263i
\(437\) 6.31119i 0.301905i
\(438\) −2.47682 6.43107i −0.118347 0.307288i
\(439\) 33.2961i 1.58913i −0.607176 0.794567i \(-0.707698\pi\)
0.607176 0.794567i \(-0.292302\pi\)
\(440\) −20.3563 + 18.9571i −0.970449 + 0.903744i
\(441\) 0 0
\(442\) −2.40673 + 0.614387i −0.114476 + 0.0292234i
\(443\) −8.87313 −0.421575 −0.210788 0.977532i \(-0.567603\pi\)
−0.210788 + 0.977532i \(0.567603\pi\)
\(444\) 22.1268 15.7153i 1.05009 0.745816i
\(445\) 31.8768 1.51111
\(446\) −12.6459 + 3.22823i −0.598801 + 0.152861i
\(447\) −3.53632 29.9104i −0.167262 1.41472i
\(448\) 0 0
\(449\) 26.3829i 1.24509i −0.782585 0.622544i \(-0.786099\pi\)
0.782585 0.622544i \(-0.213901\pi\)
\(450\) −0.369190 0.700049i −0.0174038 0.0330006i
\(451\) 11.0633i 0.520953i
\(452\) −9.16746 16.7857i −0.431201 0.789531i
\(453\) 0.847099 + 7.16483i 0.0398002 + 0.336633i
\(454\) −6.83028 26.7562i −0.320561 1.25573i
\(455\) 0 0
\(456\) −17.1971 + 20.2814i −0.805330 + 0.949762i
\(457\) 30.2499 1.41503 0.707515 0.706698i \(-0.249816\pi\)
0.707515 + 0.706698i \(0.249816\pi\)
\(458\) −0.711370 2.78664i −0.0332401 0.130211i
\(459\) 7.75848 + 21.0548i 0.362135 + 0.982752i
\(460\) 2.53851 + 4.64803i 0.118359 + 0.216715i
\(461\) 1.56302i 0.0727973i 0.999337 + 0.0363987i \(0.0115886\pi\)
−0.999337 + 0.0363987i \(0.988411\pi\)
\(462\) 0 0
\(463\) 33.2961i 1.54740i −0.633553 0.773700i \(-0.718404\pi\)
0.633553 0.773700i \(-0.281596\pi\)
\(464\) 12.5350 + 8.05280i 0.581921 + 0.373842i
\(465\) 22.8557 2.70223i 1.05991 0.125313i
\(466\) −4.48260 + 1.14431i −0.207652 + 0.0530093i
\(467\) 17.2969 0.800404 0.400202 0.916427i \(-0.368940\pi\)
0.400202 + 0.916427i \(0.368940\pi\)
\(468\) −1.80993 + 1.63693i −0.0836642 + 0.0756672i
\(469\) 0 0
\(470\) −7.25703 + 1.85257i −0.334742 + 0.0854525i
\(471\) 33.1327 3.91729i 1.52667 0.180499i
\(472\) 7.54281 + 8.09954i 0.347186 + 0.372811i
\(473\) 47.5929i 2.18832i
\(474\) −9.14330 + 3.52138i −0.419965 + 0.161743i
\(475\) 1.01253i 0.0464579i
\(476\) 0 0
\(477\) 3.83457 + 15.9899i 0.175573 + 0.732126i
\(478\) −8.57216 33.5796i −0.392081 1.53589i
\(479\) −16.6081 −0.758842 −0.379421 0.925224i \(-0.623877\pi\)
−0.379421 + 0.925224i \(0.623877\pi\)
\(480\) 4.50760 21.8538i 0.205743 0.997486i
\(481\) −3.18654 −0.145294
\(482\) −6.44169 25.2340i −0.293411 1.14938i
\(483\) 0 0
\(484\) −13.4244 + 7.33173i −0.610201 + 0.333260i
\(485\) 4.55480i 0.206823i
\(486\) 16.3918 + 14.7414i 0.743547 + 0.668683i
\(487\) 24.2499i 1.09887i −0.835537 0.549434i \(-0.814844\pi\)
0.835537 0.549434i \(-0.185156\pi\)
\(488\) 20.1414 + 21.6280i 0.911758 + 0.979054i
\(489\) −1.75870 14.8752i −0.0795311 0.672681i
\(490\) 0 0
\(491\) 20.3082 0.916497 0.458248 0.888824i \(-0.348477\pi\)
0.458248 + 0.888824i \(0.348477\pi\)
\(492\) −5.13899 7.23558i −0.231684 0.326205i
\(493\) −16.0845 −0.724408
\(494\) 3.02509 0.772241i 0.136105 0.0347447i
\(495\) −6.88028 28.6903i −0.309246 1.28953i
\(496\) 19.6355 + 12.6144i 0.881660 + 0.566403i
\(497\) 0 0
\(498\) −0.564949 1.46689i −0.0253160 0.0657330i
\(499\) 10.5385i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(500\) 10.5088 + 19.2416i 0.469968 + 0.860512i
\(501\) 3.02112 0.357187i 0.134973 0.0159579i
\(502\) 5.40243 + 21.1629i 0.241122 + 0.944546i
\(503\) −27.6664 −1.23358 −0.616792 0.787126i \(-0.711568\pi\)
−0.616792 + 0.787126i \(0.711568\pi\)
\(504\) 0 0
\(505\) 19.7787 0.880139
\(506\) 1.75639 + 6.88028i 0.0780811 + 0.305866i
\(507\) −22.0764 + 2.61009i −0.980446 + 0.115918i
\(508\) −5.95093 10.8962i −0.264030 0.483439i
\(509\) 28.1874i 1.24939i −0.780871 0.624693i \(-0.785224\pi\)
0.780871 0.624693i \(-0.214776\pi\)
\(510\) 8.65783 + 22.4801i 0.383375 + 0.995436i
\(511\) 0 0
\(512\) 17.6134 14.2046i 0.778408 0.627758i
\(513\) −9.75186 26.4643i −0.430555 1.16843i
\(514\) 12.2904 3.13747i 0.542105 0.138388i
\(515\) −24.2498 −1.06857
\(516\) 22.1072 + 31.1264i 0.973215 + 1.37026i
\(517\) −10.0422 −0.441657
\(518\) 0 0
\(519\) −1.60133 13.5442i −0.0702907 0.594524i
\(520\) −1.91729 + 1.78550i −0.0840786 + 0.0782994i
\(521\) 24.0133i 1.05204i −0.850471 0.526022i \(-0.823683\pi\)
0.850471 0.526022i \(-0.176317\pi\)
\(522\) −13.9778 + 7.37158i −0.611793 + 0.322645i
\(523\) 2.77981i 0.121553i −0.998151 0.0607764i \(-0.980642\pi\)
0.998151 0.0607764i \(-0.0193577\pi\)
\(524\) −25.2801 + 13.8067i −1.10436 + 0.603147i
\(525\) 0 0
\(526\) 6.77297 + 26.5317i 0.295316 + 1.15684i
\(527\) −25.1956 −1.09754
\(528\) 13.1036 26.8961i 0.570261 1.17050i
\(529\) −21.6480 −0.941219
\(530\) 4.36642 + 17.1045i 0.189665 + 0.742973i
\(531\) −11.4155 + 2.73758i −0.495391 + 0.118801i
\(532\) 0 0
\(533\) 1.04202i 0.0451347i
\(534\) −31.9947 + 12.3222i −1.38455 + 0.533235i
\(535\) 19.1306i 0.827089i
\(536\) −16.2166 + 15.1019i −0.700449 + 0.652303i
\(537\) −16.0759 + 1.90065i −0.693725 + 0.0820192i
\(538\) −0.0658929 + 0.0168211i −0.00284085 + 0.000725208i
\(539\) 0 0
\(540\) 17.8266 + 15.5679i 0.767135 + 0.669935i
\(541\) 8.31717 0.357583 0.178792 0.983887i \(-0.442781\pi\)
0.178792 + 0.983887i \(0.442781\pi\)
\(542\) −27.2366 + 6.95292i −1.16991 + 0.298654i
\(543\) −29.0508 + 3.43469i −1.24669 + 0.147396i
\(544\) −7.70963 + 23.1797i −0.330548 + 0.993822i
\(545\) 23.8731i 1.02261i
\(546\) 0 0
\(547\) 15.4364i 0.660014i −0.943978 0.330007i \(-0.892949\pi\)
0.943978 0.330007i \(-0.107051\pi\)
\(548\) −2.22931 4.08188i −0.0952314 0.174369i
\(549\) −30.4826 + 7.31011i −1.30097 + 0.311988i
\(550\) −0.281784 1.10383i −0.0120153 0.0470674i
\(551\) 20.2170 0.861274
\(552\) −4.34464 3.68394i −0.184920 0.156799i
\(553\) 0 0
\(554\) 3.59418 + 14.0794i 0.152702 + 0.598178i
\(555\) 3.62851 + 30.6903i 0.154022 + 1.30273i
\(556\) −8.83887 16.1840i −0.374851 0.686354i
\(557\) 13.4525i 0.570000i −0.958528 0.285000i \(-0.908006\pi\)
0.958528 0.285000i \(-0.0919936\pi\)
\(558\) −21.8957 + 11.5473i −0.926918 + 0.488835i
\(559\) 4.48260i 0.189594i
\(560\) 0 0
\(561\) 3.79234 + 32.0759i 0.160113 + 1.35425i
\(562\) −9.29606 + 2.37309i −0.392131 + 0.100103i
\(563\) −34.0011 −1.43298 −0.716488 0.697599i \(-0.754252\pi\)
−0.716488 + 0.697599i \(0.754252\pi\)
\(564\) 6.56775 4.66468i 0.276552 0.196418i
\(565\) 21.7787 0.916235
\(566\) −7.43761 + 1.89866i −0.312626 + 0.0798068i
\(567\) 0 0
\(568\) 9.42100 + 10.1164i 0.395296 + 0.424473i
\(569\) 26.5948i 1.11491i −0.830206 0.557457i \(-0.811777\pi\)
0.830206 0.557457i \(-0.188223\pi\)
\(570\) −10.8823 28.2559i −0.455808 1.18351i
\(571\) 8.23271i 0.344528i 0.985051 + 0.172264i \(0.0551083\pi\)
−0.985051 + 0.172264i \(0.944892\pi\)
\(572\) −3.08295 + 1.68375i −0.128905 + 0.0704012i
\(573\) 34.9316 4.12996i 1.45929 0.172532i
\(574\) 0 0
\(575\) −0.216902 −0.00904543
\(576\) 3.92349 + 23.6771i 0.163479 + 0.986547i
\(577\) −1.58468 −0.0659712 −0.0329856 0.999456i \(-0.510502\pi\)
−0.0329856 + 0.999456i \(0.510502\pi\)
\(578\) −0.576482 2.25824i −0.0239785 0.0939306i
\(579\) 11.7923 1.39420i 0.490070 0.0579410i
\(580\) −14.8893 + 8.13179i −0.618246 + 0.337654i
\(581\) 0 0
\(582\) 1.76069 + 4.57165i 0.0729830 + 0.189501i
\(583\) 23.6691i 0.980276i
\(584\) 5.42321 + 5.82349i 0.224414 + 0.240978i
\(585\) −0.648029 2.70223i −0.0267927 0.111724i
\(586\) −38.6244 + 9.85998i −1.59556 + 0.407312i
\(587\) 30.8651 1.27394 0.636969 0.770889i \(-0.280188\pi\)
0.636969 + 0.770889i \(0.280188\pi\)
\(588\) 0 0
\(589\) 31.6691 1.30490
\(590\) −12.2113 + 3.11729i −0.502731 + 0.128337i
\(591\) −0.400282 3.38561i −0.0164654 0.139266i
\(592\) −16.9384 + 26.3662i −0.696164 + 1.08365i
\(593\) 6.45147i 0.264930i −0.991188 0.132465i \(-0.957711\pi\)
0.991188 0.132465i \(-0.0422892\pi\)
\(594\) 17.9962 + 26.1368i 0.738392 + 1.07240i
\(595\) 0 0
\(596\) 16.6699 + 30.5227i 0.682826 + 1.25026i
\(597\) −1.29606 10.9622i −0.0530441 0.448651i
\(598\) 0.165428 + 0.648029i 0.00676485 + 0.0264999i
\(599\) 12.8097 0.523391 0.261696 0.965150i \(-0.415718\pi\)
0.261696 + 0.965150i \(0.415718\pi\)
\(600\) 0.697026 + 0.591029i 0.0284560 + 0.0241286i
\(601\) 37.2710 1.52032 0.760158 0.649738i \(-0.225122\pi\)
0.760158 + 0.649738i \(0.225122\pi\)
\(602\) 0 0
\(603\) −5.48108 22.8557i −0.223207 0.930756i
\(604\) −3.99316 7.31149i −0.162479 0.297500i
\(605\) 17.4176i 0.708126i
\(606\) −19.8518 + 7.64559i −0.806426 + 0.310581i
\(607\) 20.8135i 0.844792i 0.906411 + 0.422396i \(0.138811\pi\)
−0.906411 + 0.422396i \(0.861189\pi\)
\(608\) 9.69046 29.1352i 0.393000 1.18159i
\(609\) 0 0
\(610\) −32.6075 + 8.32401i −1.32024 + 0.337029i
\(611\) −0.945841 −0.0382646
\(612\) −17.3797 19.2165i −0.702533 0.776782i
\(613\) 19.2288 0.776643 0.388321 0.921524i \(-0.373055\pi\)
0.388321 + 0.921524i \(0.373055\pi\)
\(614\) −3.07119 + 0.784009i −0.123943 + 0.0316400i
\(615\) 10.0359 1.18654i 0.404686 0.0478460i
\(616\) 0 0
\(617\) 29.3933i 1.18333i 0.806185 + 0.591664i \(0.201529\pi\)
−0.806185 + 0.591664i \(0.798471\pi\)
\(618\) 24.3395 9.37395i 0.979079 0.377076i
\(619\) 19.9241i 0.800818i 0.916336 + 0.400409i \(0.131132\pi\)
−0.916336 + 0.400409i \(0.868868\pi\)
\(620\) −23.3235 + 12.7381i −0.936695 + 0.511575i
\(621\) 5.66914 2.08903i 0.227495 0.0838297i
\(622\) 9.26242 + 36.2835i 0.371389 + 1.45484i
\(623\) 0 0
\(624\) 1.23418 2.53325i 0.0494068 0.101411i
\(625\) −25.8979 −1.03592
\(626\) −0.154042 0.603426i −0.00615676 0.0241178i
\(627\) −4.76671 40.3172i −0.190364 1.61011i
\(628\) −33.8109 + 18.4658i −1.34920 + 0.736865i
\(629\) 33.8323i 1.34898i
\(630\) 0 0
\(631\) 17.6269i 0.701716i −0.936429 0.350858i \(-0.885890\pi\)
0.936429 0.350858i \(-0.114110\pi\)
\(632\) 8.27949 7.71039i 0.329340 0.306703i
\(633\) 5.11067 + 43.2265i 0.203131 + 1.71810i
\(634\) 16.1586 4.12494i 0.641739 0.163822i
\(635\) 14.1373 0.561022
\(636\) −10.9945 15.4799i −0.435959 0.613819i
\(637\) 0 0
\(638\) −22.0401 + 5.62636i −0.872574 + 0.222750i
\(639\) −14.2580 + 3.41926i −0.564039 + 0.135264i
\(640\) 4.58214 + 25.3551i 0.181125 + 1.00225i
\(641\) 21.9439i 0.866731i −0.901218 0.433365i \(-0.857326\pi\)
0.901218 0.433365i \(-0.142674\pi\)
\(642\) −7.39509 19.2014i −0.291861 0.757819i
\(643\) 49.5796i 1.95523i −0.210406 0.977614i \(-0.567479\pi\)
0.210406 0.977614i \(-0.432521\pi\)
\(644\) 0 0
\(645\) −43.1729 + 5.10433i −1.69993 + 0.200983i
\(646\) 8.19907 + 32.1181i 0.322588 + 1.26367i
\(647\) 23.9122 0.940085 0.470042 0.882644i \(-0.344239\pi\)
0.470042 + 0.882644i \(0.344239\pi\)
\(648\) −23.9104 8.73446i −0.939291 0.343122i
\(649\) −16.8979 −0.663301
\(650\) −0.0265402 0.103966i −0.00104099 0.00407787i
\(651\) 0 0
\(652\) 8.29037 + 15.1797i 0.324676 + 0.594483i
\(653\) 46.6666i 1.82621i 0.407730 + 0.913103i \(0.366320\pi\)
−0.407730 + 0.913103i \(0.633680\pi\)
\(654\) −9.22832 23.9614i −0.360856 0.936964i
\(655\) 32.7998i 1.28159i
\(656\) 8.62190 + 5.53895i 0.336629 + 0.216260i
\(657\) −8.20766 + 1.96830i −0.320211 + 0.0767907i
\(658\) 0 0
\(659\) 30.4598 1.18655 0.593273 0.805001i \(-0.297835\pi\)
0.593273 + 0.805001i \(0.297835\pi\)
\(660\) 19.7271 + 27.7753i 0.767877 + 1.08115i
\(661\) 49.3046 1.91773 0.958864 0.283865i \(-0.0916168\pi\)
0.958864 + 0.283865i \(0.0916168\pi\)
\(662\) 1.79470 0.458148i 0.0697529 0.0178064i
\(663\) 0.357187 + 3.02112i 0.0138720 + 0.117330i
\(664\) 1.23701 + 1.32831i 0.0480052 + 0.0515484i
\(665\) 0 0
\(666\) −15.5055 29.4012i −0.600826 1.13927i
\(667\) 4.33086i 0.167691i
\(668\) −3.08295 + 1.68375i −0.119283 + 0.0651463i
\(669\) 1.87680 + 15.8741i 0.0725614 + 0.613730i
\(670\) −6.24130 24.4490i −0.241122 0.944546i
\(671\) −45.1221 −1.74192
\(672\) 0 0
\(673\) −19.4364 −0.749219 −0.374610 0.927183i \(-0.622223\pi\)
−0.374610 + 0.927183i \(0.622223\pi\)
\(674\) −5.40844 21.1864i −0.208325 0.816070i
\(675\) −0.909522 + 0.335150i −0.0350075 + 0.0128999i
\(676\) 22.5283 12.3038i 0.866471 0.473222i
\(677\) 9.96823i 0.383110i −0.981482 0.191555i \(-0.938647\pi\)
0.981482 0.191555i \(-0.0613531\pi\)
\(678\) −21.8592 + 8.41871i −0.839499 + 0.323319i
\(679\) 0 0
\(680\) −18.9571 20.3563i −0.726971 0.780628i
\(681\) −33.5864 + 3.97093i −1.28703 + 0.152166i
\(682\) −34.5248 + 8.81346i −1.32202 + 0.337485i
\(683\) 29.6102 1.13300 0.566501 0.824061i \(-0.308297\pi\)
0.566501 + 0.824061i \(0.308297\pi\)
\(684\) 21.8451 + 24.1538i 0.835267 + 0.923544i
\(685\) 5.29606 0.202352
\(686\) 0 0
\(687\) −3.49801 + 0.413570i −0.133457 + 0.0157787i
\(688\) −37.0901 23.8277i −1.41405 0.908424i
\(689\) 2.22931i 0.0849300i
\(690\) 6.05293 2.33118i 0.230431 0.0887466i
\(691\) 44.1603i 1.67994i −0.542634 0.839969i \(-0.682573\pi\)
0.542634 0.839969i \(-0.317427\pi\)
\(692\) 7.54856 + 13.8214i 0.286953 + 0.525412i
\(693\) 0 0
\(694\) 9.67599 + 37.9036i 0.367295 + 1.43880i
\(695\) 20.9980 0.796501
\(696\) 11.8010 13.9175i 0.447316 0.527540i
\(697\) −11.0633 −0.419054
\(698\) 6.62227 + 25.9413i 0.250657 + 0.981894i
\(699\) 0.665271 + 5.62691i 0.0251629 + 0.212829i
\(700\) 0 0
\(701\) 38.2714i 1.44549i −0.691115 0.722745i \(-0.742880\pi\)
0.691115 0.722745i \(-0.257120\pi\)
\(702\) 1.69499 + 2.46173i 0.0639735 + 0.0929119i
\(703\) 42.5248i 1.60385i
\(704\) −2.45599 + 34.4593i −0.0925637 + 1.29873i
\(705\) 1.07703 + 9.10959i 0.0405632 + 0.343087i
\(706\) −2.73074 + 0.697101i −0.102773 + 0.0262357i
\(707\) 0 0
\(708\) 11.0515 7.84919i 0.415339 0.294991i
\(709\) 6.89792 0.259057 0.129528 0.991576i \(-0.458654\pi\)
0.129528 + 0.991576i \(0.458654\pi\)
\(710\) −15.2520 + 3.89350i −0.572396 + 0.146121i
\(711\) 2.79841 + 11.6691i 0.104948 + 0.437627i
\(712\) 28.9720 26.9806i 1.08577 1.01114i
\(713\) 6.78411i 0.254067i
\(714\) 0 0
\(715\) 4.00000i 0.149592i
\(716\) 16.4049 8.95953i 0.613081 0.334833i
\(717\) −42.1517 + 4.98361i −1.57419 + 0.186116i
\(718\) −0.822045 3.22019i −0.0306784 0.120176i
\(719\) −28.2355 −1.05301 −0.526503 0.850173i \(-0.676497\pi\)
−0.526503 + 0.850173i \(0.676497\pi\)
\(720\) −25.8036 9.00204i −0.961643 0.335486i
\(721\) 0 0
\(722\) −3.65944 14.3351i −0.136190 0.533496i
\(723\) −31.6756 + 3.74502i −1.17803 + 0.139279i
\(724\) 29.6455 16.1908i 1.10177 0.601728i
\(725\) 0.694815i 0.0258048i
\(726\) 6.73291 + 17.4820i 0.249882 + 0.648820i
\(727\) 27.3942i 1.01599i −0.861359 0.507997i \(-0.830386\pi\)
0.861359 0.507997i \(-0.169614\pi\)
\(728\) 0 0
\(729\) 20.5442 17.5196i 0.760896 0.648874i
\(730\) −8.77981 + 2.24130i −0.324956 + 0.0829543i
\(731\) 47.5929 1.76029
\(732\) 29.5105 20.9595i 1.09074 0.774686i
\(733\) 29.7028 1.09710 0.548549 0.836119i \(-0.315181\pi\)
0.548549 + 0.836119i \(0.315181\pi\)
\(734\) 46.8550 11.9611i 1.72945 0.441492i
\(735\) 0 0
\(736\) 6.24130 + 2.07587i 0.230057 + 0.0765177i
\(737\) 33.8323i 1.24623i
\(738\) −9.61434 + 5.07038i −0.353909 + 0.186643i
\(739\) 27.4364i 1.00927i 0.863334 + 0.504633i \(0.168372\pi\)
−0.863334 + 0.504633i \(0.831628\pi\)
\(740\) −17.1045 31.3185i −0.628775 1.15129i
\(741\) −0.448959 3.79733i −0.0164929 0.139498i
\(742\) 0 0
\(743\) −2.30093 −0.0844131 −0.0422065 0.999109i \(-0.513439\pi\)
−0.0422065 + 0.999109i \(0.513439\pi\)
\(744\) 18.4858 21.8011i 0.677722 0.799268i
\(745\) −39.6019 −1.45090
\(746\) −6.18068 24.2115i −0.226291 0.886446i
\(747\) −1.87212 + 0.448959i −0.0684974 + 0.0164265i
\(748\) −17.8768 32.7325i −0.653641 1.19682i
\(749\) 0 0
\(750\) 25.0576 9.65049i 0.914973 0.352386i
\(751\) 19.4193i 0.708619i −0.935128 0.354309i \(-0.884716\pi\)
0.935128 0.354309i \(-0.115284\pi\)
\(752\) −5.02772 + 7.82612i −0.183342 + 0.285389i
\(753\) 26.5653 3.14082i 0.968094 0.114458i
\(754\) −2.07587 + 0.529926i −0.0755988 + 0.0192988i
\(755\) 9.48634 0.345243
\(756\) 0 0
\(757\) 13.9327 0.506393 0.253197 0.967415i \(-0.418518\pi\)
0.253197 + 0.967415i \(0.418518\pi\)
\(758\) 7.39151 1.88690i 0.268472 0.0685352i
\(759\) 8.63667 1.02112i 0.313491 0.0370641i
\(760\) 23.8277 + 25.5864i 0.864323 + 0.928117i
\(761\) 12.3859i 0.448989i 0.974475 + 0.224495i \(0.0720731\pi\)
−0.974475 + 0.224495i \(0.927927\pi\)
\(762\) −14.1896 + 5.46489i −0.514035 + 0.197972i
\(763\) 0 0
\(764\) −35.6466 + 19.4683i −1.28965 + 0.704339i
\(765\) 28.6903 6.88028i 1.03730 0.248757i
\(766\) −0.648029 2.53851i −0.0234142 0.0917203i
\(767\) −1.59155 −0.0574677
\(768\) −14.4003 23.6777i −0.519626 0.854394i
\(769\) −45.0074 −1.62301 −0.811505 0.584346i \(-0.801351\pi\)
−0.811505 + 0.584346i \(0.801351\pi\)
\(770\) 0 0
\(771\) −1.82404 15.4278i −0.0656911 0.555620i
\(772\) −12.0336 + 6.57216i −0.433100 + 0.236537i
\(773\) 51.4814i 1.85166i −0.377944 0.925828i \(-0.623369\pi\)
0.377944 0.925828i \(-0.376631\pi\)
\(774\) 41.3595 21.8120i 1.48664 0.784017i
\(775\) 1.08840i 0.0390965i
\(776\) −3.85520 4.13974i −0.138393 0.148608i
\(777\) 0 0
\(778\) −7.37877 + 1.88364i −0.264542 + 0.0675319i
\(779\) 13.9058 0.498229
\(780\) 1.85803 + 2.61605i 0.0665280 + 0.0936697i
\(781\) −21.1056 −0.755217
\(782\) −6.88028 + 1.75639i −0.246038 + 0.0628084i
\(783\) 6.69191 + 18.1603i 0.239149 + 0.648997i
\(784\) 0 0
\(785\) 43.8682i 1.56572i
\(786\) 12.6790 + 32.9211i 0.452245 + 1.17426i
\(787\) 41.2202i 1.46934i −0.678424 0.734670i \(-0.737337\pi\)
0.678424 0.734670i \(-0.262663\pi\)
\(788\) 1.88690 + 3.45491i 0.0672179 + 0.123076i
\(789\) 33.3046 3.93761i 1.18568 0.140183i
\(790\) 3.18654 + 12.4826i 0.113372 + 0.444111i
\(791\) 0 0
\(792\) −30.5369 20.2524i −1.08508 0.719637i
\(793\) −4.24989 −0.150918
\(794\) 7.56812 + 29.6465i 0.268582 + 1.05211i
\(795\) 21.4710 2.53851i 0.761496 0.0900318i
\(796\) 6.10951 + 11.1865i 0.216546 + 0.396497i
\(797\) 37.0164i 1.31119i 0.755113 + 0.655595i \(0.227582\pi\)
−0.755113 + 0.655595i \(0.772418\pi\)
\(798\) 0 0
\(799\) 10.0422i 0.355269i
\(800\) −1.00131 0.333040i −0.0354018 0.0117747i
\(801\) 9.79234 + 40.8333i 0.345995 + 1.44277i
\(802\) −52.4421 + 13.3874i −1.85180 + 0.472724i
\(803\) −12.1495 −0.428745
\(804\) 15.7153 + 22.1268i 0.554237 + 0.780352i
\(805\) 0 0
\(806\) −3.25177 + 0.830108i −0.114539 + 0.0292393i
\(807\) 0.00977929 + 0.0827140i 0.000344247 + 0.00291167i
\(808\) 17.9763 16.7407i 0.632405 0.588937i
\(809\) 52.3125i 1.83921i 0.392844 + 0.919605i \(0.371491\pi\)
−0.392844 + 0.919605i \(0.628509\pi\)
\(810\) 21.7793 19.1280i 0.765248 0.672090i
\(811\) 25.3719i 0.890929i 0.895300 + 0.445464i \(0.146961\pi\)
−0.895300 + 0.445464i \(0.853039\pi\)
\(812\) 0 0
\(813\) 4.04223 + 34.1895i 0.141767 + 1.19908i
\(814\) −11.8346 46.3594i −0.414802 1.62490i
\(815\) −19.6950 −0.689886
\(816\) 26.8961 + 13.1036i 0.941552 + 0.458718i
\(817\) −59.8209 −2.09287
\(818\) −1.66898 6.53787i −0.0583545 0.228591i
\(819\) 0 0
\(820\) −10.2413 + 5.59327i −0.357642 + 0.195326i
\(821\) 29.0656i 1.01440i 0.861829 + 0.507198i \(0.169319\pi\)
−0.861829 + 0.507198i \(0.830681\pi\)
\(822\) −5.31565 + 2.04723i −0.185405 + 0.0714054i
\(823\) 28.6343i 0.998131i 0.866564 + 0.499065i \(0.166323\pi\)
−0.866564 + 0.499065i \(0.833677\pi\)
\(824\) −22.0401 + 20.5251i −0.767802 + 0.715026i
\(825\) −1.38561 + 0.163821i −0.0482409 + 0.00570352i
\(826\) 0 0
\(827\) 4.88743 0.169953 0.0849763 0.996383i \(-0.472919\pi\)
0.0849763 + 0.996383i \(0.472919\pi\)
\(828\) −5.17419 + 4.67961i −0.179815 + 0.162628i
\(829\) 38.9316 1.35215 0.676074 0.736833i \(-0.263680\pi\)
0.676074 + 0.736833i \(0.263680\pi\)
\(830\) −2.00263 + 0.511229i −0.0695123 + 0.0177450i
\(831\) 17.6736 2.08956i 0.613091 0.0724859i
\(832\) −0.231321 + 3.24559i −0.00801961 + 0.112521i
\(833\) 0 0
\(834\) −21.0757 + 8.11695i −0.729793 + 0.281067i
\(835\) 4.00000i 0.138426i
\(836\) 22.4699 + 41.1424i 0.777137 + 1.42294i
\(837\) 10.4826 + 28.4474i 0.362332 + 0.983286i
\(838\) 2.91474 + 11.4179i 0.100688 + 0.394424i
\(839\) 49.3493 1.70373 0.851863 0.523765i \(-0.175473\pi\)
0.851863 + 0.523765i \(0.175473\pi\)
\(840\) 0 0
\(841\) 15.1267 0.521610
\(842\) −7.25224 28.4091i −0.249929 0.979042i
\(843\) 1.37964 + 11.6691i 0.0475175 + 0.401907i
\(844\) −24.0913 44.1113i −0.829257 1.51837i
\(845\) 29.2294i 1.00552i
\(846\) −4.60240 8.72696i −0.158234 0.300039i
\(847\) 0 0
\(848\) 18.4459 + 11.8501i 0.633434 + 0.406935i
\(849\) 1.10383 + 9.33627i 0.0378833 + 0.320420i
\(850\) 1.10383 0.281784i 0.0378610 0.00966512i
\(851\) −9.10959 −0.312273
\(852\) 13.8033 9.80367i 0.472894 0.335868i
\(853\) −36.4912 −1.24943 −0.624717 0.780851i \(-0.714786\pi\)
−0.624717 + 0.780851i \(0.714786\pi\)
\(854\) 0 0
\(855\) −36.0616 + 8.64803i −1.23328 + 0.295756i
\(856\) 16.1922 + 17.3874i 0.553439 + 0.594288i
\(857\) 36.4434i 1.24488i −0.782667 0.622441i \(-0.786141\pi\)
0.782667 0.622441i \(-0.213859\pi\)
\(858\) 1.54623 + 4.01480i 0.0527875 + 0.137063i
\(859\) 11.8682i 0.404938i −0.979289 0.202469i \(-0.935103\pi\)
0.979289 0.202469i \(-0.0648966\pi\)
\(860\) 44.0566 24.0614i 1.50232 0.820488i
\(861\) 0 0
\(862\) −12.2413 47.9527i −0.416940 1.63327i
\(863\) 16.3225 0.555625 0.277812 0.960635i \(-0.410391\pi\)
0.277812 + 0.960635i \(0.410391\pi\)
\(864\) 29.3789 0.939234i 0.999489 0.0319534i
\(865\) −17.9327 −0.609731
\(866\) −6.06495 23.7581i −0.206095 0.807334i
\(867\) −2.83473 + 0.335150i −0.0962723 + 0.0113823i
\(868\) 0 0
\(869\) 17.2733i 0.585958i
\(870\) 7.46762 + 19.3897i 0.253176 + 0.657373i
\(871\) 3.18654i 0.107972i
\(872\) 20.2062 + 21.6976i 0.684269 + 0.734775i
\(873\) 5.83457 1.39920i 0.197470 0.0473559i
\(874\) 8.64803 2.20766i 0.292524 0.0746752i
\(875\) 0 0
\(876\) 7.94591 5.64350i 0.268467 0.190676i
\(877\) 6.81346 0.230074 0.115037 0.993361i \(-0.463301\pi\)
0.115037 + 0.993361i \(0.463301\pi\)
\(878\) 45.6246 11.6470i 1.53976 0.393067i
\(879\) 5.73231 + 48.4843i 0.193346 + 1.63534i
\(880\) −33.0970 21.2624i −1.11570 0.716756i
\(881\) 10.1075i 0.340530i −0.985398 0.170265i \(-0.945538\pi\)
0.985398 0.170265i \(-0.0544624\pi\)
\(882\) 0 0
\(883\) 29.4615i 0.991458i 0.868477 + 0.495729i \(0.165099\pi\)
−0.868477 + 0.495729i \(0.834901\pi\)
\(884\) −1.68375 3.08295i −0.0566307 0.103691i
\(885\) 1.81230 + 15.3286i 0.0609198 + 0.515265i
\(886\) −3.10383 12.1586i −0.104275 0.408476i
\(887\) −44.4668 −1.49305 −0.746525 0.665357i \(-0.768279\pi\)
−0.746525 + 0.665357i \(0.768279\pi\)
\(888\) 29.2742 + 24.8224i 0.982378 + 0.832986i
\(889\) 0 0
\(890\) 11.1505 + 43.6798i 0.373767 + 1.46415i
\(891\) 34.6379 17.6269i 1.16041 0.590524i
\(892\) −8.84710 16.1991i −0.296223 0.542385i
\(893\) 12.6224i 0.422392i
\(894\) 39.7484 15.3084i 1.32938 0.511990i
\(895\) 21.2847i 0.711469i
\(896\) 0 0
\(897\) 0.813457 0.0961751i 0.0271605 0.00321119i
\(898\) 36.1517 9.22877i 1.20640 0.307968i
\(899\) −21.7320 −0.724802
\(900\) 0.830114 0.750767i 0.0276705 0.0250256i
\(901\) −23.6691 −0.788534
\(902\) −15.1598 + 3.86997i −0.504765 + 0.128856i
\(903\) 0 0
\(904\) 19.7941 18.4335i 0.658342 0.613090i
\(905\) 38.4637i 1.27858i
\(906\) −9.52144 + 3.66702i −0.316328 + 0.121829i
\(907\) 55.9190i 1.85676i −0.371631 0.928380i \(-0.621201\pi\)
0.371631 0.928380i \(-0.378799\pi\)
\(908\) 34.2739 18.7186i 1.13742 0.621200i
\(909\) 6.07587 + 25.3359i 0.201524 + 0.840340i
\(910\) 0 0
\(911\) −7.71538 −0.255622 −0.127811 0.991799i \(-0.540795\pi\)
−0.127811 + 0.991799i \(0.540795\pi\)
\(912\) −33.8065 16.4703i −1.11945 0.545386i
\(913\) −2.77123 −0.0917142
\(914\) 10.5814 + 41.4505i 0.350003 + 1.37106i
\(915\) 4.83934 + 40.9316i 0.159984 + 1.35316i
\(916\) 3.56961 1.94954i 0.117943 0.0644145i
\(917\) 0 0
\(918\) −26.1368 + 17.9962i −0.862642 + 0.593962i
\(919\) 10.0422i 0.331263i −0.986188 0.165631i \(-0.947034\pi\)
0.986188 0.165631i \(-0.0529662\pi\)
\(920\) −5.48108 + 5.10433i −0.180706 + 0.168285i
\(921\) 0.455800 + 3.85520i 0.0150191 + 0.127033i
\(922\) −2.14177 + 0.546747i −0.0705353 + 0.0180062i
\(923\) −1.98786 −0.0654311
\(924\) 0 0
\(925\) 1.46149 0.0480534
\(926\) 45.6246 11.6470i 1.49932 0.382744i
\(927\) −7.44938 31.0633i −0.244670 1.02025i
\(928\) −6.64978 + 19.9932i −0.218290 + 0.656308i
\(929\) 3.13104i 0.102726i 0.998680 + 0.0513631i \(0.0163566\pi\)
−0.998680 + 0.0513631i \(0.983643\pi\)
\(930\) 11.6977 + 30.3732i 0.383583 + 0.995977i
\(931\) 0 0
\(932\) −3.13603 5.74209i −0.102724 0.188088i
\(933\) 45.5459 5.38490i 1.49111 0.176294i
\(934\) 6.05046 + 23.7014i 0.197977 + 0.775533i
\(935\) 42.4690 1.38888
\(936\) −2.87616 1.90750i −0.0940101 0.0623485i
\(937\) 47.0325 1.53648 0.768242 0.640159i \(-0.221132\pi\)
0.768242 + 0.640159i \(0.221132\pi\)
\(938\) 0 0
\(939\) −0.757468 + 0.0895556i −0.0247190 + 0.00292254i
\(940\) −5.07703 9.29606i −0.165594 0.303204i
\(941\) 22.2530i 0.725426i 0.931901 + 0.362713i \(0.118150\pi\)
−0.931901 + 0.362713i \(0.881850\pi\)
\(942\) 16.9576 + 44.0305i 0.552508 + 1.43459i
\(943\) 2.97888i 0.0970058i
\(944\) −8.46007 + 13.1689i −0.275352 + 0.428611i
\(945\) 0 0
\(946\) 65.2151 16.6480i 2.12033 0.541274i
\(947\) −33.9335 −1.10269 −0.551345 0.834277i \(-0.685885\pi\)
−0.551345 + 0.834277i \(0.685885\pi\)
\(948\) −8.02358 11.2970i −0.260594 0.366909i
\(949\) −1.14431 −0.0371460
\(950\) −1.38744 + 0.354183i −0.0450143 + 0.0114912i
\(951\) −2.39812 20.2835i −0.0777645 0.657739i
\(952\) 0 0
\(953\) 20.2641i 0.656419i −0.944605 0.328209i \(-0.893555\pi\)
0.944605 0.328209i \(-0.106445\pi\)
\(954\) −20.5691 + 10.8477i −0.665949 + 0.351206i
\(955\) 46.2499i 1.49661i
\(956\) 43.0145 23.4923i 1.39119 0.759796i
\(957\) 3.27100 + 27.6664i 0.105737 + 0.894328i
\(958\) −5.80952 22.7575i −0.187697 0.735263i
\(959\) 0 0
\(960\) 31.5224 1.46786i 1.01738 0.0473748i
\(961\) −3.04223 −0.0981365
\(962\) −1.11466 4.36642i −0.0359379 0.140779i
\(963\) −24.5058 + 5.87680i −0.789689 + 0.189377i
\(964\) 32.3240 17.6537i 1.04109 0.568588i
\(965\) 15.6131i 0.502604i
\(966\) 0 0
\(967\) 43.5882i 1.40170i 0.713308 + 0.700851i \(0.247196\pi\)
−0.713308 + 0.700851i \(0.752804\pi\)
\(968\) −14.7423 15.8304i −0.473836 0.508810i
\(969\) 40.3172 4.76671i 1.29517 0.153129i
\(970\) 6.24130 1.59327i 0.200396 0.0511569i
\(971\) −3.67161 −0.117828 −0.0589138 0.998263i \(-0.518764\pi\)
−0.0589138 + 0.998263i \(0.518764\pi\)
\(972\) −14.4658 + 27.6177i −0.463991 + 0.885840i
\(973\) 0 0
\(974\) 33.2289 8.48263i 1.06472 0.271801i
\(975\) −0.130506 + 0.0154297i −0.00417953 + 0.000494147i
\(976\) −22.5907 + 35.1646i −0.723111 + 1.12559i
\(977\) 34.0738i 1.09012i −0.838398 0.545058i \(-0.816508\pi\)
0.838398 0.545058i \(-0.183492\pi\)
\(978\) 19.7679 7.61326i 0.632107 0.243445i
\(979\) 60.4439i 1.93179i
\(980\) 0 0
\(981\) −30.5807 + 7.33364i −0.976368 + 0.234145i
\(982\) 7.10383 + 27.8277i 0.226692 + 0.888019i
\(983\) 54.2808 1.73129 0.865645 0.500659i \(-0.166909\pi\)
0.865645 + 0.500659i \(0.166909\pi\)
\(984\) 8.11707 9.57282i 0.258763 0.305170i
\(985\) −4.48260 −0.142828
\(986\) −5.62636 22.0401i −0.179180 0.701898i
\(987\) 0 0
\(988\) 2.11636 + 3.87506i 0.0673303 + 0.123282i
\(989\) 12.8147i 0.407485i
\(990\) 36.9067 19.4637i 1.17297 0.618598i
\(991\) 10.5077i 0.333787i −0.985975 0.166893i \(-0.946626\pi\)
0.985975 0.166893i \(-0.0533736\pi\)
\(992\) −10.4166 + 31.3185i −0.330727 + 0.994362i
\(993\) −0.266354 2.25285i −0.00845250 0.0714919i
\(994\) 0 0
\(995\) −14.5141 −0.460127
\(996\) 1.81242 1.28725i 0.0574287 0.0407881i
\(997\) −21.4564 −0.679531 −0.339765 0.940510i \(-0.610348\pi\)
−0.339765 + 0.940510i \(0.610348\pi\)
\(998\) −14.4406 + 3.68638i −0.457109 + 0.116690i
\(999\) −38.1987 + 14.0759i −1.20855 + 0.445341i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.c.491.8 12
3.2 odd 2 inner 588.2.e.c.491.5 12
4.3 odd 2 inner 588.2.e.c.491.6 12
7.2 even 3 588.2.n.g.263.9 24
7.3 odd 6 588.2.n.f.275.2 24
7.4 even 3 588.2.n.g.275.2 24
7.5 odd 6 588.2.n.f.263.9 24
7.6 odd 2 84.2.e.a.71.8 yes 12
12.11 even 2 inner 588.2.e.c.491.7 12
21.2 odd 6 588.2.n.g.263.4 24
21.5 even 6 588.2.n.f.263.4 24
21.11 odd 6 588.2.n.g.275.11 24
21.17 even 6 588.2.n.f.275.11 24
21.20 even 2 84.2.e.a.71.5 12
28.3 even 6 588.2.n.f.275.4 24
28.11 odd 6 588.2.n.g.275.4 24
28.19 even 6 588.2.n.f.263.11 24
28.23 odd 6 588.2.n.g.263.11 24
28.27 even 2 84.2.e.a.71.6 yes 12
56.13 odd 2 1344.2.h.h.575.11 12
56.27 even 2 1344.2.h.h.575.2 12
84.11 even 6 588.2.n.g.275.9 24
84.23 even 6 588.2.n.g.263.2 24
84.47 odd 6 588.2.n.f.263.2 24
84.59 odd 6 588.2.n.f.275.9 24
84.83 odd 2 84.2.e.a.71.7 yes 12
168.83 odd 2 1344.2.h.h.575.12 12
168.125 even 2 1344.2.h.h.575.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.e.a.71.5 12 21.20 even 2
84.2.e.a.71.6 yes 12 28.27 even 2
84.2.e.a.71.7 yes 12 84.83 odd 2
84.2.e.a.71.8 yes 12 7.6 odd 2
588.2.e.c.491.5 12 3.2 odd 2 inner
588.2.e.c.491.6 12 4.3 odd 2 inner
588.2.e.c.491.7 12 12.11 even 2 inner
588.2.e.c.491.8 12 1.1 even 1 trivial
588.2.n.f.263.2 24 84.47 odd 6
588.2.n.f.263.4 24 21.5 even 6
588.2.n.f.263.9 24 7.5 odd 6
588.2.n.f.263.11 24 28.19 even 6
588.2.n.f.275.2 24 7.3 odd 6
588.2.n.f.275.4 24 28.3 even 6
588.2.n.f.275.9 24 84.59 odd 6
588.2.n.f.275.11 24 21.17 even 6
588.2.n.g.263.2 24 84.23 even 6
588.2.n.g.263.4 24 21.2 odd 6
588.2.n.g.263.9 24 7.2 even 3
588.2.n.g.263.11 24 28.23 odd 6
588.2.n.g.275.2 24 7.4 even 3
588.2.n.g.275.4 24 28.11 odd 6
588.2.n.g.275.9 24 84.11 even 6
588.2.n.g.275.11 24 21.11 odd 6
1344.2.h.h.575.1 12 168.125 even 2
1344.2.h.h.575.2 12 56.27 even 2
1344.2.h.h.575.11 12 56.13 odd 2
1344.2.h.h.575.12 12 168.83 odd 2