Properties

Label 588.2.e.c.491.5
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(491,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-4,0,6,0,0,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.2593100598870016.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} + x^{8} + 4x^{6} + 4x^{4} - 32x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.5
Root \(-1.37027 + 0.349801i\) of defining polynomial
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.c.491.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.349801 - 1.37027i) q^{2} +(-1.72007 - 0.203364i) q^{3} +(-1.75528 + 0.958643i) q^{4} +2.27740i q^{5} +(0.323018 + 2.42810i) q^{6} +(1.92760 + 2.06987i) q^{8} +(2.91729 + 0.699602i) q^{9} +(3.12065 - 0.796636i) q^{10} -4.31834 q^{11} +(3.21416 - 1.29197i) q^{12} +0.406728 q^{13} +(0.463141 - 3.91729i) q^{15} +(2.16201 - 3.36537i) q^{16} -4.31834i q^{17} +(-0.0618260 - 4.24219i) q^{18} -5.42784i q^{19} +(-2.18321 - 3.99747i) q^{20} +(1.51056 + 5.91729i) q^{22} -1.16274 q^{23} +(-2.89467 - 3.95233i) q^{24} -0.186543 q^{25} +(-0.142274 - 0.557328i) q^{26} +(-4.87566 - 1.79664i) q^{27} -3.72469i q^{29} +(-5.52975 + 0.735641i) q^{30} +5.83457i q^{31} +(-5.36774 - 1.78532i) q^{32} +(7.42784 + 0.878195i) q^{33} +(-5.91729 + 1.51056i) q^{34} +(-5.79132 + 1.56864i) q^{36} -7.83457 q^{37} +(-7.43761 + 1.89866i) q^{38} +(-0.699602 - 0.0827140i) q^{39} +(-4.71392 + 4.38991i) q^{40} -2.56195i q^{41} -11.0211i q^{43} +(7.57988 - 4.13974i) q^{44} +(-1.59327 + 6.64382i) q^{45} +(0.406728 + 1.59327i) q^{46} +2.32549 q^{47} +(-4.40320 + 5.34900i) q^{48} +(0.0652529 + 0.255614i) q^{50} +(-0.878195 + 7.42784i) q^{51} +(-0.713922 + 0.389907i) q^{52} -5.48108i q^{53} +(-0.756365 + 7.30944i) q^{54} -9.83457i q^{55} +(-1.10383 + 9.33627i) q^{57} +(-5.10383 + 1.30290i) q^{58} +3.91306 q^{59} +(2.94234 + 7.31992i) q^{60} -10.4490 q^{61} +(7.99494 - 2.04094i) q^{62} +(-0.568736 + 7.97976i) q^{64} +0.926283i q^{65} +(-1.39490 - 10.4853i) q^{66} -7.83457i q^{67} +(4.13974 + 7.57988i) q^{68} +(2.00000 + 0.236460i) q^{69} +4.88743 q^{71} +(4.17527 + 7.38696i) q^{72} -2.81346 q^{73} +(2.74054 + 10.7355i) q^{74} +(0.320867 + 0.0379362i) q^{75} +(5.20336 + 9.52738i) q^{76} +(0.131381 + 0.987576i) q^{78} +4.00000i q^{79} +(7.66429 + 4.92375i) q^{80} +(8.02112 + 4.08188i) q^{81} +(-3.51056 + 0.896171i) q^{82} +0.641735 q^{83} +9.83457 q^{85} +(-15.1019 + 3.85520i) q^{86} +(-0.757468 + 6.40673i) q^{87} +(-8.32401 - 8.93840i) q^{88} -13.9970i q^{89} +(9.66116 - 0.140802i) q^{90} +(2.04094 - 1.11466i) q^{92} +(1.18654 - 10.0359i) q^{93} +(-0.813457 - 3.18654i) q^{94} +12.3614 q^{95} +(8.86982 + 4.16249i) q^{96} +2.00000 q^{97} +(-12.5978 - 3.02112i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} + 6 q^{6} - 4 q^{9} - 4 q^{10} + 6 q^{12} + 4 q^{16} - 8 q^{18} - 16 q^{22} - 2 q^{24} - 12 q^{25} + 20 q^{30} + 16 q^{33} - 32 q^{34} - 20 q^{36} - 16 q^{37} - 20 q^{40} - 24 q^{45} - 46 q^{48}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.349801 1.37027i −0.247347 0.968927i
\(3\) −1.72007 0.203364i −0.993083 0.117412i
\(4\) −1.75528 + 0.958643i −0.877639 + 0.479321i
\(5\) 2.27740i 1.01848i 0.860624 + 0.509242i \(0.170074\pi\)
−0.860624 + 0.509242i \(0.829926\pi\)
\(6\) 0.323018 + 2.42810i 0.131872 + 0.991267i
\(7\) 0 0
\(8\) 1.92760 + 2.06987i 0.681509 + 0.731810i
\(9\) 2.91729 + 0.699602i 0.972429 + 0.233201i
\(10\) 3.12065 0.796636i 0.986836 0.251918i
\(11\) −4.31834 −1.30203 −0.651014 0.759066i \(-0.725656\pi\)
−0.651014 + 0.759066i \(0.725656\pi\)
\(12\) 3.21416 1.29197i 0.927847 0.372960i
\(13\) 0.406728 0.112806 0.0564031 0.998408i \(-0.482037\pi\)
0.0564031 + 0.998408i \(0.482037\pi\)
\(14\) 0 0
\(15\) 0.463141 3.91729i 0.119583 1.01144i
\(16\) 2.16201 3.36537i 0.540502 0.841343i
\(17\) 4.31834i 1.04735i −0.851918 0.523675i \(-0.824561\pi\)
0.851918 0.523675i \(-0.175439\pi\)
\(18\) −0.0618260 4.24219i −0.0145725 0.999894i
\(19\) 5.42784i 1.24523i −0.782527 0.622616i \(-0.786070\pi\)
0.782527 0.622616i \(-0.213930\pi\)
\(20\) −2.18321 3.99747i −0.488181 0.893861i
\(21\) 0 0
\(22\) 1.51056 + 5.91729i 0.322052 + 1.26157i
\(23\) −1.16274 −0.242449 −0.121224 0.992625i \(-0.538682\pi\)
−0.121224 + 0.992625i \(0.538682\pi\)
\(24\) −2.89467 3.95233i −0.590871 0.806766i
\(25\) −0.186543 −0.0373086
\(26\) −0.142274 0.557328i −0.0279022 0.109301i
\(27\) −4.87566 1.79664i −0.938322 0.345763i
\(28\) 0 0
\(29\) 3.72469i 0.691657i −0.938298 0.345829i \(-0.887598\pi\)
0.938298 0.345829i \(-0.112402\pi\)
\(30\) −5.52975 + 0.735641i −1.00959 + 0.134309i
\(31\) 5.83457i 1.04792i 0.851743 + 0.523960i \(0.175546\pi\)
−0.851743 + 0.523960i \(0.824454\pi\)
\(32\) −5.36774 1.78532i −0.948891 0.315604i
\(33\) 7.42784 + 0.878195i 1.29302 + 0.152874i
\(34\) −5.91729 + 1.51056i −1.01481 + 0.259058i
\(35\) 0 0
\(36\) −5.79132 + 1.56864i −0.965220 + 0.261440i
\(37\) −7.83457 −1.28800 −0.643998 0.765027i \(-0.722725\pi\)
−0.643998 + 0.765027i \(0.722725\pi\)
\(38\) −7.43761 + 1.89866i −1.20654 + 0.308004i
\(39\) −0.699602 0.0827140i −0.112026 0.0132448i
\(40\) −4.71392 + 4.38991i −0.745336 + 0.694105i
\(41\) 2.56195i 0.400109i −0.979785 0.200054i \(-0.935888\pi\)
0.979785 0.200054i \(-0.0641119\pi\)
\(42\) 0 0
\(43\) 11.0211i 1.68070i −0.542041 0.840352i \(-0.682348\pi\)
0.542041 0.840352i \(-0.317652\pi\)
\(44\) 7.57988 4.13974i 1.14271 0.624090i
\(45\) −1.59327 + 6.64382i −0.237511 + 0.990403i
\(46\) 0.406728 + 1.59327i 0.0599688 + 0.234915i
\(47\) 2.32549 0.339207 0.169603 0.985512i \(-0.445751\pi\)
0.169603 + 0.985512i \(0.445751\pi\)
\(48\) −4.40320 + 5.34900i −0.635547 + 0.772062i
\(49\) 0 0
\(50\) 0.0652529 + 0.255614i 0.00922816 + 0.0361493i
\(51\) −0.878195 + 7.42784i −0.122972 + 1.04011i
\(52\) −0.713922 + 0.389907i −0.0990031 + 0.0540704i
\(53\) 5.48108i 0.752884i −0.926440 0.376442i \(-0.877147\pi\)
0.926440 0.376442i \(-0.122853\pi\)
\(54\) −0.756365 + 7.30944i −0.102928 + 0.994689i
\(55\) 9.83457i 1.32609i
\(56\) 0 0
\(57\) −1.10383 + 9.33627i −0.146206 + 1.23662i
\(58\) −5.10383 + 1.30290i −0.670166 + 0.171079i
\(59\) 3.91306 0.509437 0.254719 0.967015i \(-0.418017\pi\)
0.254719 + 0.967015i \(0.418017\pi\)
\(60\) 2.94234 + 7.31992i 0.379854 + 0.944997i
\(61\) −10.4490 −1.33785 −0.668926 0.743329i \(-0.733246\pi\)
−0.668926 + 0.743329i \(0.733246\pi\)
\(62\) 7.99494 2.04094i 1.01536 0.259199i
\(63\) 0 0
\(64\) −0.568736 + 7.97976i −0.0710920 + 0.997470i
\(65\) 0.926283i 0.114891i
\(66\) −1.39490 10.4853i −0.171701 1.29066i
\(67\) 7.83457i 0.957145i −0.878048 0.478573i \(-0.841154\pi\)
0.878048 0.478573i \(-0.158846\pi\)
\(68\) 4.13974 + 7.57988i 0.502018 + 0.919196i
\(69\) 2.00000 + 0.236460i 0.240772 + 0.0284665i
\(70\) 0 0
\(71\) 4.88743 0.580031 0.290016 0.957022i \(-0.406339\pi\)
0.290016 + 0.957022i \(0.406339\pi\)
\(72\) 4.17527 + 7.38696i 0.492060 + 0.870561i
\(73\) −2.81346 −0.329290 −0.164645 0.986353i \(-0.552648\pi\)
−0.164645 + 0.986353i \(0.552648\pi\)
\(74\) 2.74054 + 10.7355i 0.318581 + 1.24797i
\(75\) 0.320867 + 0.0379362i 0.0370506 + 0.00438050i
\(76\) 5.20336 + 9.52738i 0.596867 + 1.09287i
\(77\) 0 0
\(78\) 0.131381 + 0.987576i 0.0148759 + 0.111821i
\(79\) 4.00000i 0.450035i 0.974355 + 0.225018i \(0.0722440\pi\)
−0.974355 + 0.225018i \(0.927756\pi\)
\(80\) 7.66429 + 4.92375i 0.856894 + 0.550492i
\(81\) 8.02112 + 4.08188i 0.891235 + 0.453542i
\(82\) −3.51056 + 0.896171i −0.387676 + 0.0989655i
\(83\) 0.641735 0.0704395 0.0352198 0.999380i \(-0.488787\pi\)
0.0352198 + 0.999380i \(0.488787\pi\)
\(84\) 0 0
\(85\) 9.83457 1.06671
\(86\) −15.1019 + 3.85520i −1.62848 + 0.415716i
\(87\) −0.757468 + 6.40673i −0.0812091 + 0.686873i
\(88\) −8.32401 8.93840i −0.887343 0.952837i
\(89\) 13.9970i 1.48368i −0.670576 0.741841i \(-0.733953\pi\)
0.670576 0.741841i \(-0.266047\pi\)
\(90\) 9.66116 0.140802i 1.01838 0.0148419i
\(91\) 0 0
\(92\) 2.04094 1.11466i 0.212782 0.116211i
\(93\) 1.18654 10.0359i 0.123039 1.04067i
\(94\) −0.813457 3.18654i −0.0839017 0.328667i
\(95\) 12.3614 1.26825
\(96\) 8.86982 + 4.16249i 0.905272 + 0.424832i
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) −12.5978 3.02112i −1.26613 0.303633i
\(100\) 0.327435 0.178828i 0.0327435 0.0178828i
\(101\) 8.68476i 0.864166i −0.901834 0.432083i \(-0.857779\pi\)
0.901834 0.432083i \(-0.142221\pi\)
\(102\) 10.4853 1.39490i 1.03820 0.138116i
\(103\) 10.6480i 1.04918i −0.851355 0.524591i \(-0.824218\pi\)
0.851355 0.524591i \(-0.175782\pi\)
\(104\) 0.784009 + 0.841876i 0.0768784 + 0.0825527i
\(105\) 0 0
\(106\) −7.51056 + 1.91729i −0.729490 + 0.186223i
\(107\) 8.40021 0.812079 0.406040 0.913855i \(-0.366910\pi\)
0.406040 + 0.913855i \(0.366910\pi\)
\(108\) 10.2805 1.52042i 0.989240 0.146303i
\(109\) −10.4826 −1.00405 −0.502026 0.864853i \(-0.667412\pi\)
−0.502026 + 0.864853i \(0.667412\pi\)
\(110\) −13.4760 + 3.44014i −1.28489 + 0.328005i
\(111\) 13.4760 + 1.59327i 1.27909 + 0.151227i
\(112\) 0 0
\(113\) 9.56296i 0.899607i −0.893128 0.449804i \(-0.851494\pi\)
0.893128 0.449804i \(-0.148506\pi\)
\(114\) 13.1793 1.75329i 1.23436 0.164211i
\(115\) 2.64803i 0.246930i
\(116\) 3.57065 + 6.53787i 0.331526 + 0.607026i
\(117\) 1.18654 + 0.284548i 0.109696 + 0.0263065i
\(118\) −1.36879 5.36195i −0.126008 0.493608i
\(119\) 0 0
\(120\) 9.00103 6.59231i 0.821678 0.601793i
\(121\) 7.64803 0.695275
\(122\) 3.65505 + 14.3179i 0.330913 + 1.29628i
\(123\) −0.521008 + 4.40673i −0.0469777 + 0.397341i
\(124\) −5.59327 10.2413i −0.502291 0.919696i
\(125\) 10.9622i 0.980485i
\(126\) 0 0
\(127\) 6.20766i 0.550841i 0.961324 + 0.275420i \(0.0888170\pi\)
−0.961324 + 0.275420i \(0.911183\pi\)
\(128\) 11.1334 2.01200i 0.984060 0.177838i
\(129\) −2.24130 + 18.9571i −0.197335 + 1.66908i
\(130\) 1.26926 0.324014i 0.111321 0.0284179i
\(131\) −14.4023 −1.25833 −0.629167 0.777270i \(-0.716604\pi\)
−0.629167 + 0.777270i \(0.716604\pi\)
\(132\) −13.8798 + 5.57917i −1.20808 + 0.485605i
\(133\) 0 0
\(134\) −10.7355 + 2.74054i −0.927404 + 0.236747i
\(135\) 4.09166 11.1038i 0.352154 0.955665i
\(136\) 8.93840 8.32401i 0.766462 0.713778i
\(137\) 2.32549i 0.198680i −0.995054 0.0993398i \(-0.968327\pi\)
0.995054 0.0993398i \(-0.0316731\pi\)
\(138\) −0.375587 2.82325i −0.0319721 0.240331i
\(139\) 9.22019i 0.782046i 0.920381 + 0.391023i \(0.127879\pi\)
−0.920381 + 0.391023i \(0.872121\pi\)
\(140\) 0 0
\(141\) −4.00000 0.472921i −0.336861 0.0398271i
\(142\) −1.70963 6.69710i −0.143469 0.562008i
\(143\) −1.75639 −0.146877
\(144\) 8.66161 8.30521i 0.721801 0.692101i
\(145\) 8.48260 0.704442
\(146\) 0.984149 + 3.85520i 0.0814488 + 0.319058i
\(147\) 0 0
\(148\) 13.7519 7.51056i 1.13040 0.617364i
\(149\) 17.3891i 1.42457i 0.701891 + 0.712284i \(0.252339\pi\)
−0.701891 + 0.712284i \(0.747661\pi\)
\(150\) −0.0602568 0.452945i −0.00491995 0.0369828i
\(151\) 4.16543i 0.338978i 0.985532 + 0.169489i \(0.0542117\pi\)
−0.985532 + 0.169489i \(0.945788\pi\)
\(152\) 11.2349 10.4627i 0.911274 0.848637i
\(153\) 3.02112 12.5978i 0.244243 1.01847i
\(154\) 0 0
\(155\) −13.2876 −1.06729
\(156\) 1.30729 0.525482i 0.104667 0.0420722i
\(157\) 19.2624 1.53731 0.768654 0.639665i \(-0.220927\pi\)
0.768654 + 0.639665i \(0.220927\pi\)
\(158\) 5.48108 1.39920i 0.436051 0.111315i
\(159\) −1.11466 + 9.42784i −0.0883979 + 0.747677i
\(160\) 4.06589 12.2245i 0.321437 0.966430i
\(161\) 0 0
\(162\) 2.78748 12.4189i 0.219005 0.975724i
\(163\) 8.64803i 0.677366i −0.940901 0.338683i \(-0.890019\pi\)
0.940901 0.338683i \(-0.109981\pi\)
\(164\) 2.45599 + 4.49693i 0.191781 + 0.351151i
\(165\) −2.00000 + 16.9162i −0.155700 + 1.31692i
\(166\) −0.224479 0.879350i −0.0174230 0.0682508i
\(167\) −1.75639 −0.135914 −0.0679568 0.997688i \(-0.521648\pi\)
−0.0679568 + 0.997688i \(0.521648\pi\)
\(168\) 0 0
\(169\) −12.8346 −0.987275
\(170\) −3.44014 13.4760i −0.263847 1.03356i
\(171\) 3.79733 15.8346i 0.290389 1.21090i
\(172\) 10.5653 + 19.3451i 0.805598 + 1.47505i
\(173\) 7.87421i 0.598665i 0.954149 + 0.299333i \(0.0967640\pi\)
−0.954149 + 0.299333i \(0.903236\pi\)
\(174\) 9.04391 1.20314i 0.685617 0.0912100i
\(175\) 0 0
\(176\) −9.33627 + 14.5328i −0.703748 + 1.09545i
\(177\) −6.73074 0.795777i −0.505914 0.0598142i
\(178\) −19.1797 + 4.89617i −1.43758 + 0.366984i
\(179\) 9.34605 0.698557 0.349278 0.937019i \(-0.386427\pi\)
0.349278 + 0.937019i \(0.386427\pi\)
\(180\) −3.57242 13.1891i −0.266272 0.983060i
\(181\) −16.8893 −1.25537 −0.627687 0.778466i \(-0.715998\pi\)
−0.627687 + 0.778466i \(0.715998\pi\)
\(182\) 0 0
\(183\) 17.9729 + 2.12494i 1.32860 + 0.157080i
\(184\) −2.24130 2.40673i −0.165231 0.177426i
\(185\) 17.8424i 1.31180i
\(186\) −14.1669 + 1.88467i −1.03877 + 0.138191i
\(187\) 18.6480i 1.36368i
\(188\) −4.08188 + 2.22931i −0.297701 + 0.162589i
\(189\) 0 0
\(190\) −4.32401 16.9384i −0.313697 1.22884i
\(191\) −20.3082 −1.46945 −0.734725 0.678365i \(-0.762689\pi\)
−0.734725 + 0.678365i \(0.762689\pi\)
\(192\) 2.60106 13.6101i 0.187716 0.982223i
\(193\) 6.85569 0.493483 0.246742 0.969081i \(-0.420640\pi\)
0.246742 + 0.969081i \(0.420640\pi\)
\(194\) −0.699602 2.74054i −0.0502285 0.196759i
\(195\) 0.188373 1.59327i 0.0134897 0.114097i
\(196\) 0 0
\(197\) 1.96830i 0.140235i 0.997539 + 0.0701177i \(0.0223375\pi\)
−0.997539 + 0.0701177i \(0.977662\pi\)
\(198\) 0.266986 + 18.3192i 0.0189738 + 1.30189i
\(199\) 6.37309i 0.451776i −0.974153 0.225888i \(-0.927472\pi\)
0.974153 0.225888i \(-0.0725284\pi\)
\(200\) −0.359580 0.386120i −0.0254262 0.0273028i
\(201\) −1.59327 + 13.4760i −0.112381 + 0.950525i
\(202\) −11.9005 + 3.03794i −0.837314 + 0.213748i
\(203\) 0 0
\(204\) −5.57917 13.8798i −0.390620 0.971781i
\(205\) 5.83457 0.407504
\(206\) −14.5907 + 3.72469i −1.01658 + 0.259511i
\(207\) −3.39205 0.813457i −0.235764 0.0565392i
\(208\) 0.879350 1.36879i 0.0609719 0.0949087i
\(209\) 23.4393i 1.62133i
\(210\) 0 0
\(211\) 25.1306i 1.73006i 0.501717 + 0.865032i \(0.332702\pi\)
−0.501717 + 0.865032i \(0.667298\pi\)
\(212\) 5.25440 + 9.62082i 0.360874 + 0.660761i
\(213\) −8.40673 0.993929i −0.576020 0.0681029i
\(214\) −2.93840 11.5106i −0.200865 0.786846i
\(215\) 25.0995 1.71177
\(216\) −5.67951 13.5552i −0.386442 0.922314i
\(217\) 0 0
\(218\) 3.66682 + 14.3640i 0.248349 + 0.972852i
\(219\) 4.83934 + 0.572156i 0.327013 + 0.0386627i
\(220\) 9.42784 + 17.2624i 0.635625 + 1.16383i
\(221\) 1.75639i 0.118148i
\(222\) −2.53071 19.0231i −0.169850 1.27675i
\(223\) 9.22877i 0.618004i 0.951061 + 0.309002i \(0.0999950\pi\)
−0.951061 + 0.309002i \(0.900005\pi\)
\(224\) 0 0
\(225\) −0.544200 0.130506i −0.0362800 0.00870039i
\(226\) −13.1038 + 3.34513i −0.871654 + 0.222515i
\(227\) 19.5262 1.29600 0.647999 0.761641i \(-0.275606\pi\)
0.647999 + 0.761641i \(0.275606\pi\)
\(228\) −7.01263 17.4459i −0.464423 1.15539i
\(229\) −2.03364 −0.134387 −0.0671934 0.997740i \(-0.521404\pi\)
−0.0671934 + 0.997740i \(0.521404\pi\)
\(230\) −3.62851 + 0.926283i −0.239257 + 0.0610773i
\(231\) 0 0
\(232\) 7.70963 7.17970i 0.506162 0.471370i
\(233\) 3.27133i 0.214312i −0.994242 0.107156i \(-0.965826\pi\)
0.994242 0.107156i \(-0.0341744\pi\)
\(234\) −0.0251464 1.72542i −0.00164387 0.112794i
\(235\) 5.29606i 0.345477i
\(236\) −6.86851 + 3.75123i −0.447102 + 0.244184i
\(237\) 0.813457 6.88028i 0.0528397 0.446922i
\(238\) 0 0
\(239\) 24.5058 1.58515 0.792575 0.609775i \(-0.208740\pi\)
0.792575 + 0.609775i \(0.208740\pi\)
\(240\) −12.1818 10.0278i −0.786332 0.647294i
\(241\) −18.4153 −1.18623 −0.593117 0.805116i \(-0.702103\pi\)
−0.593117 + 0.805116i \(0.702103\pi\)
\(242\) −2.67529 10.4799i −0.171974 0.673671i
\(243\) −12.9668 8.65232i −0.831819 0.555047i
\(244\) 18.3408 10.0168i 1.17415 0.641261i
\(245\) 0 0
\(246\) 6.22066 0.827555i 0.396615 0.0527630i
\(247\) 2.20766i 0.140470i
\(248\) −12.0768 + 11.2467i −0.766878 + 0.714167i
\(249\) −1.10383 0.130506i −0.0699523 0.00827047i
\(250\) 15.0211 3.83457i 0.950019 0.242520i
\(251\) −15.4443 −0.974837 −0.487418 0.873169i \(-0.662061\pi\)
−0.487418 + 0.873169i \(0.662061\pi\)
\(252\) 0 0
\(253\) 5.02112 0.315675
\(254\) 8.50617 2.17144i 0.533724 0.136249i
\(255\) −16.9162 2.00000i −1.05933 0.125245i
\(256\) −6.65145 14.5519i −0.415716 0.909495i
\(257\) 8.96931i 0.559490i 0.960074 + 0.279745i \(0.0902499\pi\)
−0.960074 + 0.279745i \(0.909750\pi\)
\(258\) 26.7603 3.56002i 1.66603 0.221637i
\(259\) 0 0
\(260\) −0.887974 1.62588i −0.0550698 0.100833i
\(261\) 2.60580 10.8660i 0.161295 0.672587i
\(262\) 5.03794 + 19.7350i 0.311245 + 1.21923i
\(263\) −19.3624 −1.19393 −0.596967 0.802265i \(-0.703628\pi\)
−0.596967 + 0.802265i \(0.703628\pi\)
\(264\) 12.5001 + 17.0675i 0.769331 + 1.05043i
\(265\) 12.4826 0.766800
\(266\) 0 0
\(267\) −2.84649 + 24.0759i −0.174203 + 1.47342i
\(268\) 7.51056 + 13.7519i 0.458780 + 0.840028i
\(269\) 0.0480876i 0.00293195i −0.999999 0.00146598i \(-0.999533\pi\)
0.999999 0.00146598i \(-0.000466635\pi\)
\(270\) −16.6465 1.72254i −1.01307 0.104831i
\(271\) 19.8768i 1.20743i 0.797200 + 0.603715i \(0.206313\pi\)
−0.797200 + 0.603715i \(0.793687\pi\)
\(272\) −14.5328 9.33627i −0.881181 0.566095i
\(273\) 0 0
\(274\) −3.18654 + 0.813457i −0.192506 + 0.0491427i
\(275\) 0.805556 0.0485769
\(276\) −3.73724 + 1.50223i −0.224955 + 0.0904238i
\(277\) 10.2749 0.617361 0.308681 0.951166i \(-0.400113\pi\)
0.308681 + 0.951166i \(0.400113\pi\)
\(278\) 12.6341 3.22523i 0.757745 0.193436i
\(279\) −4.08188 + 17.0211i −0.244376 + 1.01903i
\(280\) 0 0
\(281\) 6.78411i 0.404706i −0.979313 0.202353i \(-0.935141\pi\)
0.979313 0.202353i \(-0.0648588\pi\)
\(282\) 0.751174 + 5.64651i 0.0447318 + 0.336245i
\(283\) 5.42784i 0.322652i 0.986901 + 0.161326i \(0.0515770\pi\)
−0.986901 + 0.161326i \(0.948423\pi\)
\(284\) −8.57881 + 4.68530i −0.509058 + 0.278022i
\(285\) −21.2624 2.51386i −1.25948 0.148908i
\(286\) 0.614387 + 2.40673i 0.0363294 + 0.142313i
\(287\) 0 0
\(288\) −14.4102 8.96358i −0.849130 0.528184i
\(289\) −1.64803 −0.0969429
\(290\) −2.96722 11.6235i −0.174241 0.682553i
\(291\) −3.44014 0.406728i −0.201665 0.0238428i
\(292\) 4.93840 2.69710i 0.288998 0.157836i
\(293\) 28.1874i 1.64673i −0.567515 0.823363i \(-0.692095\pi\)
0.567515 0.823363i \(-0.307905\pi\)
\(294\) 0 0
\(295\) 8.91160i 0.518853i
\(296\) −15.1019 16.2166i −0.877780 0.942568i
\(297\) 21.0548 + 7.75848i 1.22172 + 0.450193i
\(298\) 23.8277 6.08271i 1.38030 0.352362i
\(299\) −0.472921 −0.0273497
\(300\) −0.599579 + 0.241009i −0.0346167 + 0.0139146i
\(301\) 0 0
\(302\) 5.70776 1.45707i 0.328445 0.0838450i
\(303\) −1.76617 + 14.9384i −0.101464 + 0.858189i
\(304\) −18.2667 11.7350i −1.04767 0.673051i
\(305\) 23.7964i 1.36258i
\(306\) −18.3192 + 0.266986i −1.04724 + 0.0152625i
\(307\) 2.24130i 0.127918i 0.997953 + 0.0639589i \(0.0203727\pi\)
−0.997953 + 0.0639589i \(0.979627\pi\)
\(308\) 0 0
\(309\) −2.16543 + 18.3154i −0.123187 + 1.04192i
\(310\) 4.64803 + 18.2077i 0.263990 + 1.03413i
\(311\) −26.4791 −1.50149 −0.750746 0.660591i \(-0.770306\pi\)
−0.750746 + 0.660591i \(0.770306\pi\)
\(312\) −1.17734 1.60752i −0.0666539 0.0910082i
\(313\) −0.440371 −0.0248912 −0.0124456 0.999923i \(-0.503962\pi\)
−0.0124456 + 0.999923i \(0.503962\pi\)
\(314\) −6.73801 26.3947i −0.380248 1.48954i
\(315\) 0 0
\(316\) −3.83457 7.02112i −0.215712 0.394969i
\(317\) 11.7923i 0.662320i 0.943575 + 0.331160i \(0.107440\pi\)
−0.943575 + 0.331160i \(0.892560\pi\)
\(318\) 13.3086 1.77049i 0.746309 0.0992841i
\(319\) 16.0845i 0.900557i
\(320\) −18.1731 1.29524i −1.01591 0.0724060i
\(321\) −14.4490 1.70830i −0.806462 0.0953482i
\(322\) 0 0
\(323\) −23.4393 −1.30419
\(324\) −17.9924 + 0.524555i −0.999575 + 0.0291420i
\(325\) −0.0758724 −0.00420864
\(326\) −11.8501 + 3.02509i −0.656318 + 0.167544i
\(327\) 18.0308 + 2.13179i 0.997106 + 0.117888i
\(328\) 5.30290 4.93840i 0.292804 0.272678i
\(329\) 0 0
\(330\) 23.8793 3.17675i 1.31451 0.174874i
\(331\) 1.30974i 0.0719899i −0.999352 0.0359949i \(-0.988540\pi\)
0.999352 0.0359949i \(-0.0114600\pi\)
\(332\) −1.12642 + 0.615195i −0.0618205 + 0.0337632i
\(333\) −22.8557 5.48108i −1.25248 0.300361i
\(334\) 0.614387 + 2.40673i 0.0336177 + 0.131690i
\(335\) 17.8424 0.974837
\(336\) 0 0
\(337\) −15.4615 −0.842241 −0.421120 0.907005i \(-0.638363\pi\)
−0.421120 + 0.907005i \(0.638363\pi\)
\(338\) 4.48954 + 17.5868i 0.244199 + 0.956597i
\(339\) −1.94476 + 16.4490i −0.105625 + 0.893385i
\(340\) −17.2624 + 9.42784i −0.936186 + 0.511297i
\(341\) 25.1956i 1.36442i
\(342\) −23.0259 + 0.335582i −1.24510 + 0.0181462i
\(343\) 0 0
\(344\) 22.8123 21.2443i 1.22996 1.14541i
\(345\) −0.538514 + 4.55480i −0.0289926 + 0.245222i
\(346\) 10.7898 2.75441i 0.580063 0.148078i
\(347\) −27.6614 −1.48494 −0.742471 0.669878i \(-0.766346\pi\)
−0.742471 + 0.669878i \(0.766346\pi\)
\(348\) −4.81220 11.9717i −0.257961 0.641752i
\(349\) 18.9316 1.01338 0.506692 0.862127i \(-0.330868\pi\)
0.506692 + 0.862127i \(0.330868\pi\)
\(350\) 0 0
\(351\) −1.98307 0.730743i −0.105849 0.0390042i
\(352\) 23.1797 + 7.70963i 1.23548 + 0.410925i
\(353\) 1.99285i 0.106069i −0.998593 0.0530344i \(-0.983111\pi\)
0.998593 0.0530344i \(-0.0168893\pi\)
\(354\) 1.26399 + 9.50130i 0.0671803 + 0.504988i
\(355\) 11.1306i 0.590752i
\(356\) 13.4182 + 24.5687i 0.711161 + 1.30214i
\(357\) 0 0
\(358\) −3.26926 12.8066i −0.172786 0.676851i
\(359\) 2.35004 0.124030 0.0620151 0.998075i \(-0.480247\pi\)
0.0620151 + 0.998075i \(0.480247\pi\)
\(360\) −16.8230 + 9.50875i −0.886652 + 0.501155i
\(361\) −10.4615 −0.550605
\(362\) 5.90790 + 23.1429i 0.310512 + 1.21637i
\(363\) −13.1551 1.55534i −0.690466 0.0816339i
\(364\) 0 0
\(365\) 6.40736i 0.335377i
\(366\) −3.37520 25.3711i −0.176425 1.32617i
\(367\) 34.1940i 1.78491i −0.451135 0.892455i \(-0.648981\pi\)
0.451135 0.892455i \(-0.351019\pi\)
\(368\) −2.51386 + 3.91306i −0.131044 + 0.203982i
\(369\) 1.79234 7.47393i 0.0933056 0.389077i
\(370\) −24.4490 + 6.24130i −1.27104 + 0.324470i
\(371\) 0 0
\(372\) 7.53811 + 18.7532i 0.390833 + 0.972310i
\(373\) −17.6691 −0.914874 −0.457437 0.889242i \(-0.651232\pi\)
−0.457437 + 0.889242i \(0.651232\pi\)
\(374\) 25.5528 6.52310i 1.32131 0.337301i
\(375\) 2.22931 18.8557i 0.115121 0.973703i
\(376\) 4.48260 + 4.81346i 0.231172 + 0.248235i
\(377\) 1.51494i 0.0780232i
\(378\) 0 0
\(379\) 5.39420i 0.277082i −0.990357 0.138541i \(-0.955759\pi\)
0.990357 0.138541i \(-0.0442412\pi\)
\(380\) −21.6976 + 11.8501i −1.11307 + 0.607899i
\(381\) 1.26242 10.6776i 0.0646755 0.547031i
\(382\) 7.10383 + 27.8277i 0.363464 + 1.42379i
\(383\) 1.85257 0.0946617 0.0473308 0.998879i \(-0.484928\pi\)
0.0473308 + 0.998879i \(0.484928\pi\)
\(384\) −19.5593 + 1.19666i −0.998134 + 0.0610669i
\(385\) 0 0
\(386\) −2.39812 9.39414i −0.122061 0.478149i
\(387\) 7.71039 32.1517i 0.391941 1.63437i
\(388\) −3.51056 + 1.91729i −0.178222 + 0.0973354i
\(389\) 5.38490i 0.273025i −0.990638 0.136513i \(-0.956411\pi\)
0.990638 0.136513i \(-0.0435895\pi\)
\(390\) −2.24910 + 0.299206i −0.113888 + 0.0151509i
\(391\) 5.02112i 0.253929i
\(392\) 0 0
\(393\) 24.7730 + 2.92891i 1.24963 + 0.147744i
\(394\) 2.69710 0.688513i 0.135878 0.0346868i
\(395\) −9.10959 −0.458353
\(396\) 25.0089 6.77391i 1.25674 0.340402i
\(397\) 21.6355 1.08585 0.542927 0.839780i \(-0.317316\pi\)
0.542927 + 0.839780i \(0.317316\pi\)
\(398\) −8.73285 + 2.22931i −0.437738 + 0.111745i
\(399\) 0 0
\(400\) −0.403308 + 0.627787i −0.0201654 + 0.0313893i
\(401\) 38.2714i 1.91118i −0.294697 0.955591i \(-0.595219\pi\)
0.294697 0.955591i \(-0.404781\pi\)
\(402\) 19.0231 2.53071i 0.948786 0.126220i
\(403\) 2.37309i 0.118212i
\(404\) 8.32558 + 15.2442i 0.414213 + 0.758426i
\(405\) −9.29606 + 18.2673i −0.461925 + 0.907708i
\(406\) 0 0
\(407\) 33.8323 1.67701
\(408\) −17.0675 + 12.5001i −0.844967 + 0.618849i
\(409\) −4.77123 −0.235922 −0.117961 0.993018i \(-0.537636\pi\)
−0.117961 + 0.993018i \(0.537636\pi\)
\(410\) −2.04094 7.99494i −0.100795 0.394842i
\(411\) −0.472921 + 4.00000i −0.0233275 + 0.197305i
\(412\) 10.2077 + 18.6903i 0.502895 + 0.920803i
\(413\) 0 0
\(414\) 0.0718878 + 4.93258i 0.00353309 + 0.242423i
\(415\) 1.46149i 0.0717415i
\(416\) −2.18321 0.726142i −0.107041 0.0356020i
\(417\) 1.87506 15.8594i 0.0918219 0.776637i
\(418\) 32.1181 8.19907i 1.57095 0.401030i
\(419\) −8.33257 −0.407072 −0.203536 0.979067i \(-0.565243\pi\)
−0.203536 + 0.979067i \(0.565243\pi\)
\(420\) 0 0
\(421\) −20.7325 −1.01044 −0.505220 0.862991i \(-0.668589\pi\)
−0.505220 + 0.862991i \(0.668589\pi\)
\(422\) 34.4357 8.79071i 1.67631 0.427925i
\(423\) 6.78411 + 1.62691i 0.329855 + 0.0791033i
\(424\) 11.3451 10.5653i 0.550968 0.513097i
\(425\) 0.805556i 0.0390752i
\(426\) 1.57873 + 11.8672i 0.0764897 + 0.574966i
\(427\) 0 0
\(428\) −14.7447 + 8.05280i −0.712713 + 0.389247i
\(429\) 3.02112 + 0.357187i 0.145861 + 0.0172451i
\(430\) −8.77981 34.3930i −0.423400 1.65858i
\(431\) 34.9951 1.68565 0.842826 0.538186i \(-0.180890\pi\)
0.842826 + 0.538186i \(0.180890\pi\)
\(432\) −16.5876 + 12.5241i −0.798070 + 0.602565i
\(433\) −17.3383 −0.833225 −0.416612 0.909084i \(-0.636783\pi\)
−0.416612 + 0.909084i \(0.636783\pi\)
\(434\) 0 0
\(435\) −14.5907 1.72506i −0.699569 0.0827102i
\(436\) 18.3999 10.0491i 0.881195 0.481263i
\(437\) 6.31119i 0.301905i
\(438\) −0.908798 6.83135i −0.0434240 0.326414i
\(439\) 33.2961i 1.58913i −0.607176 0.794567i \(-0.707698\pi\)
0.607176 0.794567i \(-0.292302\pi\)
\(440\) 20.3563 18.9571i 0.970449 0.903744i
\(441\) 0 0
\(442\) −2.40673 + 0.614387i −0.114476 + 0.0292234i
\(443\) 8.87313 0.421575 0.210788 0.977532i \(-0.432397\pi\)
0.210788 + 0.977532i \(0.432397\pi\)
\(444\) −25.1815 + 10.1221i −1.19506 + 0.480371i
\(445\) 31.8768 1.51111
\(446\) 12.6459 3.22823i 0.598801 0.152861i
\(447\) 3.53632 29.9104i 0.167262 1.41472i
\(448\) 0 0
\(449\) 26.3829i 1.24509i 0.782585 + 0.622544i \(0.213901\pi\)
−0.782585 + 0.622544i \(0.786099\pi\)
\(450\) 0.0115332 + 0.791351i 0.000543681 + 0.0373047i
\(451\) 11.0633i 0.520953i
\(452\) 9.16746 + 16.7857i 0.431201 + 0.789531i
\(453\) 0.847099 7.16483i 0.0398002 0.336633i
\(454\) −6.83028 26.7562i −0.320561 1.25573i
\(455\) 0 0
\(456\) −21.4526 + 15.7118i −1.00461 + 0.735772i
\(457\) 30.2499 1.41503 0.707515 0.706698i \(-0.249816\pi\)
0.707515 + 0.706698i \(0.249816\pi\)
\(458\) 0.711370 + 2.78664i 0.0332401 + 0.130211i
\(459\) −7.75848 + 21.0548i −0.362135 + 0.982752i
\(460\) 2.53851 + 4.64803i 0.118359 + 0.216715i
\(461\) 1.56302i 0.0727973i −0.999337 0.0363987i \(-0.988411\pi\)
0.999337 0.0363987i \(-0.0115886\pi\)
\(462\) 0 0
\(463\) 33.2961i 1.54740i −0.633553 0.773700i \(-0.718404\pi\)
0.633553 0.773700i \(-0.281596\pi\)
\(464\) −12.5350 8.05280i −0.581921 0.373842i
\(465\) 22.8557 + 2.70223i 1.05991 + 0.125313i
\(466\) −4.48260 + 1.14431i −0.207652 + 0.0530093i
\(467\) −17.2969 −0.800404 −0.400202 0.916427i \(-0.631060\pi\)
−0.400202 + 0.916427i \(0.631060\pi\)
\(468\) −2.35549 + 0.638010i −0.108883 + 0.0294920i
\(469\) 0 0
\(470\) 7.25703 1.85257i 0.334742 0.0854525i
\(471\) −33.1327 3.91729i −1.52667 0.180499i
\(472\) 7.54281 + 8.09954i 0.347186 + 0.372811i
\(473\) 47.5929i 2.18832i
\(474\) −9.71239 + 1.29207i −0.446105 + 0.0593469i
\(475\) 1.01253i 0.0464579i
\(476\) 0 0
\(477\) 3.83457 15.9899i 0.175573 0.732126i
\(478\) −8.57216 33.5796i −0.392081 1.53589i
\(479\) 16.6081 0.758842 0.379421 0.925224i \(-0.376123\pi\)
0.379421 + 0.925224i \(0.376123\pi\)
\(480\) −9.47964 + 20.2001i −0.432685 + 0.922005i
\(481\) −3.18654 −0.145294
\(482\) 6.44169 + 25.2340i 0.293411 + 1.14938i
\(483\) 0 0
\(484\) −13.4244 + 7.33173i −0.610201 + 0.333260i
\(485\) 4.55480i 0.206823i
\(486\) −7.32023 + 20.7946i −0.332052 + 0.943261i
\(487\) 24.2499i 1.09887i −0.835537 0.549434i \(-0.814844\pi\)
0.835537 0.549434i \(-0.185156\pi\)
\(488\) −20.1414 21.6280i −0.911758 0.979054i
\(489\) −1.75870 + 14.8752i −0.0795311 + 0.672681i
\(490\) 0 0
\(491\) −20.3082 −0.916497 −0.458248 0.888824i \(-0.651523\pi\)
−0.458248 + 0.888824i \(0.651523\pi\)
\(492\) −3.30996 8.23450i −0.149225 0.371240i
\(493\) −16.0845 −0.724408
\(494\) −3.02509 + 0.772241i −0.136105 + 0.0347447i
\(495\) 6.88028 28.6903i 0.309246 1.28953i
\(496\) 19.6355 + 12.6144i 0.881660 + 0.566403i
\(497\) 0 0
\(498\) 0.207292 + 1.55819i 0.00928898 + 0.0698244i
\(499\) 10.5385i 0.471769i 0.971781 + 0.235884i \(0.0757987\pi\)
−0.971781 + 0.235884i \(0.924201\pi\)
\(500\) −10.5088 19.2416i −0.469968 0.860512i
\(501\) 3.02112 + 0.357187i 0.134973 + 0.0159579i
\(502\) 5.40243 + 21.1629i 0.241122 + 0.944546i
\(503\) 27.6664 1.23358 0.616792 0.787126i \(-0.288432\pi\)
0.616792 + 0.787126i \(0.288432\pi\)
\(504\) 0 0
\(505\) 19.7787 0.880139
\(506\) −1.75639 6.88028i −0.0780811 0.305866i
\(507\) 22.0764 + 2.61009i 0.980446 + 0.115918i
\(508\) −5.95093 10.8962i −0.264030 0.483439i
\(509\) 28.1874i 1.24939i 0.780871 + 0.624693i \(0.214776\pi\)
−0.780871 + 0.624693i \(0.785224\pi\)
\(510\) 3.17675 + 23.8793i 0.140669 + 1.05739i
\(511\) 0 0
\(512\) −17.6134 + 14.2046i −0.778408 + 0.627758i
\(513\) −9.75186 + 26.4643i −0.430555 + 1.16843i
\(514\) 12.2904 3.13747i 0.542105 0.138388i
\(515\) 24.2498 1.06857
\(516\) −14.2390 35.4236i −0.626836 1.55944i
\(517\) −10.0422 −0.441657
\(518\) 0 0
\(519\) 1.60133 13.5442i 0.0702907 0.594524i
\(520\) −1.91729 + 1.78550i −0.0840786 + 0.0782994i
\(521\) 24.0133i 1.05204i 0.850471 + 0.526022i \(0.176317\pi\)
−0.850471 + 0.526022i \(0.823683\pi\)
\(522\) −15.8008 + 0.230283i −0.691584 + 0.0100792i
\(523\) 2.77981i 0.121553i −0.998151 0.0607764i \(-0.980642\pi\)
0.998151 0.0607764i \(-0.0193577\pi\)
\(524\) 25.2801 13.8067i 1.10436 0.603147i
\(525\) 0 0
\(526\) 6.77297 + 26.5317i 0.295316 + 1.15684i
\(527\) 25.1956 1.09754
\(528\) 19.0145 23.0988i 0.827500 1.00525i
\(529\) −21.6480 −0.941219
\(530\) −4.36642 17.1045i −0.189665 0.742973i
\(531\) 11.4155 + 2.73758i 0.495391 + 0.118801i
\(532\) 0 0
\(533\) 1.04202i 0.0451347i
\(534\) 33.9861 4.52129i 1.47072 0.195656i
\(535\) 19.1306i 0.827089i
\(536\) 16.2166 15.1019i 0.700449 0.652303i
\(537\) −16.0759 1.90065i −0.693725 0.0820192i
\(538\) −0.0658929 + 0.0168211i −0.00284085 + 0.000725208i
\(539\) 0 0
\(540\) 3.46261 + 23.4128i 0.149007 + 1.00752i
\(541\) 8.31717 0.357583 0.178792 0.983887i \(-0.442781\pi\)
0.178792 + 0.983887i \(0.442781\pi\)
\(542\) 27.2366 6.95292i 1.16991 0.298654i
\(543\) 29.0508 + 3.43469i 1.24669 + 0.147396i
\(544\) −7.70963 + 23.1797i −0.330548 + 0.993822i
\(545\) 23.8731i 1.02261i
\(546\) 0 0
\(547\) 15.4364i 0.660014i −0.943978 0.330007i \(-0.892949\pi\)
0.943978 0.330007i \(-0.107051\pi\)
\(548\) 2.22931 + 4.08188i 0.0952314 + 0.174369i
\(549\) −30.4826 7.31011i −1.30097 0.311988i
\(550\) −0.281784 1.10383i −0.0120153 0.0470674i
\(551\) −20.2170 −0.861274
\(552\) 3.36575 + 4.59554i 0.143256 + 0.195599i
\(553\) 0 0
\(554\) −3.59418 14.0794i −0.152702 0.598178i
\(555\) −3.62851 + 30.6903i −0.154022 + 1.30273i
\(556\) −8.83887 16.1840i −0.374851 0.686354i
\(557\) 13.4525i 0.570000i 0.958528 + 0.285000i \(0.0919936\pi\)
−0.958528 + 0.285000i \(0.908006\pi\)
\(558\) 24.7514 0.360728i 1.04781 0.0152708i
\(559\) 4.48260i 0.189594i
\(560\) 0 0
\(561\) 3.79234 32.0759i 0.160113 1.35425i
\(562\) −9.29606 + 2.37309i −0.392131 + 0.100103i
\(563\) 34.0011 1.43298 0.716488 0.697599i \(-0.245748\pi\)
0.716488 + 0.697599i \(0.245748\pi\)
\(564\) 7.47448 3.00446i 0.314732 0.126511i
\(565\) 21.7787 0.916235
\(566\) 7.43761 1.89866i 0.312626 0.0798068i
\(567\) 0 0
\(568\) 9.42100 + 10.1164i 0.395296 + 0.424473i
\(569\) 26.5948i 1.11491i 0.830206 + 0.557457i \(0.188223\pi\)
−0.830206 + 0.557457i \(0.811777\pi\)
\(570\) 3.99295 + 30.0146i 0.167246 + 1.25717i
\(571\) 8.23271i 0.344528i 0.985051 + 0.172264i \(0.0551083\pi\)
−0.985051 + 0.172264i \(0.944892\pi\)
\(572\) 3.08295 1.68375i 0.128905 0.0704012i
\(573\) 34.9316 + 4.12996i 1.45929 + 0.172532i
\(574\) 0 0
\(575\) 0.216902 0.00904543
\(576\) −7.24182 + 22.8813i −0.301742 + 0.953390i
\(577\) −1.58468 −0.0659712 −0.0329856 0.999456i \(-0.510502\pi\)
−0.0329856 + 0.999456i \(0.510502\pi\)
\(578\) 0.576482 + 2.25824i 0.0239785 + 0.0939306i
\(579\) −11.7923 1.39420i −0.490070 0.0579410i
\(580\) −14.8893 + 8.13179i −0.618246 + 0.337654i
\(581\) 0 0
\(582\) 0.646037 + 4.85620i 0.0267791 + 0.201296i
\(583\) 23.6691i 0.980276i
\(584\) −5.42321 5.82349i −0.224414 0.240978i
\(585\) −0.648029 + 2.70223i −0.0267927 + 0.111724i
\(586\) −38.6244 + 9.85998i −1.59556 + 0.407312i
\(587\) −30.8651 −1.27394 −0.636969 0.770889i \(-0.719812\pi\)
−0.636969 + 0.770889i \(0.719812\pi\)
\(588\) 0 0
\(589\) 31.6691 1.30490
\(590\) 12.2113 3.11729i 0.502731 0.128337i
\(591\) 0.400282 3.38561i 0.0164654 0.139266i
\(592\) −16.9384 + 26.3662i −0.696164 + 1.08365i
\(593\) 6.45147i 0.264930i 0.991188 + 0.132465i \(0.0422892\pi\)
−0.991188 + 0.132465i \(0.957711\pi\)
\(594\) 3.26624 31.5646i 0.134015 1.29511i
\(595\) 0 0
\(596\) −16.6699 30.5227i −0.682826 1.25026i
\(597\) −1.29606 + 10.9622i −0.0530441 + 0.448651i
\(598\) 0.165428 + 0.648029i 0.00676485 + 0.0264999i
\(599\) −12.8097 −0.523391 −0.261696 0.965150i \(-0.584282\pi\)
−0.261696 + 0.965150i \(0.584282\pi\)
\(600\) 0.539980 + 0.737280i 0.0220446 + 0.0300993i
\(601\) 37.2710 1.52032 0.760158 0.649738i \(-0.225122\pi\)
0.760158 + 0.649738i \(0.225122\pi\)
\(602\) 0 0
\(603\) 5.48108 22.8557i 0.223207 0.930756i
\(604\) −3.99316 7.31149i −0.162479 0.297500i
\(605\) 17.4176i 0.708126i
\(606\) 21.0874 2.80534i 0.856619 0.113959i
\(607\) 20.8135i 0.844792i 0.906411 + 0.422396i \(0.138811\pi\)
−0.906411 + 0.422396i \(0.861189\pi\)
\(608\) −9.69046 + 29.1352i −0.393000 + 1.18159i
\(609\) 0 0
\(610\) −32.6075 + 8.32401i −1.32024 + 0.337029i
\(611\) 0.945841 0.0382646
\(612\) 6.77391 + 25.0089i 0.273819 + 1.01092i
\(613\) 19.2288 0.776643 0.388321 0.921524i \(-0.373055\pi\)
0.388321 + 0.921524i \(0.373055\pi\)
\(614\) 3.07119 0.784009i 0.123943 0.0316400i
\(615\) −10.0359 1.18654i −0.404686 0.0478460i
\(616\) 0 0
\(617\) 29.3933i 1.18333i −0.806185 0.591664i \(-0.798471\pi\)
0.806185 0.591664i \(-0.201529\pi\)
\(618\) 25.8545 3.43951i 1.04002 0.138357i
\(619\) 19.9241i 0.800818i 0.916336 + 0.400409i \(0.131132\pi\)
−0.916336 + 0.400409i \(0.868868\pi\)
\(620\) 23.3235 12.7381i 0.936695 0.511575i
\(621\) 5.66914 + 2.08903i 0.227495 + 0.0838297i
\(622\) 9.26242 + 36.2835i 0.371389 + 1.45484i
\(623\) 0 0
\(624\) −1.79091 + 2.17559i −0.0716937 + 0.0870933i
\(625\) −25.8979 −1.03592
\(626\) 0.154042 + 0.603426i 0.00615676 + 0.0241178i
\(627\) 4.76671 40.3172i 0.190364 1.61011i
\(628\) −33.8109 + 18.4658i −1.34920 + 0.736865i
\(629\) 33.8323i 1.34898i
\(630\) 0 0
\(631\) 17.6269i 0.701716i −0.936429 0.350858i \(-0.885890\pi\)
0.936429 0.350858i \(-0.114110\pi\)
\(632\) −8.27949 + 7.71039i −0.329340 + 0.306703i
\(633\) 5.11067 43.2265i 0.203131 1.71810i
\(634\) 16.1586 4.12494i 0.641739 0.163822i
\(635\) −14.1373 −0.561022
\(636\) −7.08141 17.6171i −0.280796 0.698561i
\(637\) 0 0
\(638\) 22.0401 5.62636i 0.872574 0.222750i
\(639\) 14.2580 + 3.41926i 0.564039 + 0.135264i
\(640\) 4.58214 + 25.3551i 0.181125 + 1.00225i
\(641\) 21.9439i 0.866731i 0.901218 + 0.433365i \(0.142674\pi\)
−0.901218 + 0.433365i \(0.857326\pi\)
\(642\) 2.71342 + 20.3965i 0.107090 + 0.804987i
\(643\) 49.5796i 1.95523i −0.210406 0.977614i \(-0.567479\pi\)
0.210406 0.977614i \(-0.432521\pi\)
\(644\) 0 0
\(645\) −43.1729 5.10433i −1.69993 0.200983i
\(646\) 8.19907 + 32.1181i 0.322588 + 1.26367i
\(647\) −23.9122 −0.940085 −0.470042 0.882644i \(-0.655761\pi\)
−0.470042 + 0.882644i \(0.655761\pi\)
\(648\) 7.01252 + 24.4709i 0.275478 + 0.961307i
\(649\) −16.8979 −0.663301
\(650\) 0.0265402 + 0.103966i 0.00104099 + 0.00407787i
\(651\) 0 0
\(652\) 8.29037 + 15.1797i 0.324676 + 0.594483i
\(653\) 46.6666i 1.82621i −0.407730 0.913103i \(-0.633680\pi\)
0.407730 0.913103i \(-0.366320\pi\)
\(654\) −3.38607 25.4528i −0.132406 0.995282i
\(655\) 32.7998i 1.28159i
\(656\) −8.62190 5.53895i −0.336629 0.216260i
\(657\) −8.20766 1.96830i −0.320211 0.0767907i
\(658\) 0 0
\(659\) −30.4598 −1.18655 −0.593273 0.805001i \(-0.702165\pi\)
−0.593273 + 0.805001i \(0.702165\pi\)
\(660\) −12.7060 31.6099i −0.494580 1.23041i
\(661\) 49.3046 1.91773 0.958864 0.283865i \(-0.0916168\pi\)
0.958864 + 0.283865i \(0.0916168\pi\)
\(662\) −1.79470 + 0.458148i −0.0697529 + 0.0178064i
\(663\) −0.357187 + 3.02112i −0.0138720 + 0.117330i
\(664\) 1.23701 + 1.32831i 0.0480052 + 0.0515484i
\(665\) 0 0
\(666\) 0.484380 + 33.2357i 0.0187694 + 1.28786i
\(667\) 4.33086i 0.167691i
\(668\) 3.08295 1.68375i 0.119283 0.0651463i
\(669\) 1.87680 15.8741i 0.0725614 0.613730i
\(670\) −6.24130 24.4490i −0.241122 0.944546i
\(671\) 45.1221 1.74192
\(672\) 0 0
\(673\) −19.4364 −0.749219 −0.374610 0.927183i \(-0.622223\pi\)
−0.374610 + 0.927183i \(0.622223\pi\)
\(674\) 5.40844 + 21.1864i 0.208325 + 0.816070i
\(675\) 0.909522 + 0.335150i 0.0350075 + 0.0128999i
\(676\) 22.5283 12.3038i 0.866471 0.473222i
\(677\) 9.96823i 0.383110i 0.981482 + 0.191555i \(0.0613531\pi\)
−0.981482 + 0.191555i \(0.938647\pi\)
\(678\) 23.2198 3.08901i 0.891751 0.118633i
\(679\) 0 0
\(680\) 18.9571 + 20.3563i 0.726971 + 0.780628i
\(681\) −33.5864 3.97093i −1.28703 0.152166i
\(682\) −34.5248 + 8.81346i −1.32202 + 0.337485i
\(683\) −29.6102 −1.13300 −0.566501 0.824061i \(-0.691703\pi\)
−0.566501 + 0.824061i \(0.691703\pi\)
\(684\) 8.51433 + 31.4344i 0.325554 + 1.20192i
\(685\) 5.29606 0.202352
\(686\) 0 0
\(687\) 3.49801 + 0.413570i 0.133457 + 0.0157787i
\(688\) −37.0901 23.8277i −1.41405 0.908424i
\(689\) 2.22931i 0.0849300i
\(690\) 6.42967 0.855362i 0.244773 0.0325631i
\(691\) 44.1603i 1.67994i −0.542634 0.839969i \(-0.682573\pi\)
0.542634 0.839969i \(-0.317427\pi\)
\(692\) −7.54856 13.8214i −0.286953 0.525412i
\(693\) 0 0
\(694\) 9.67599 + 37.9036i 0.367295 + 1.43880i
\(695\) −20.9980 −0.796501
\(696\) −14.7212 + 10.7817i −0.558006 + 0.408680i
\(697\) −11.0633 −0.419054
\(698\) −6.62227 25.9413i −0.250657 0.981894i
\(699\) −0.665271 + 5.62691i −0.0251629 + 0.212829i
\(700\) 0 0
\(701\) 38.2714i 1.44549i 0.691115 + 0.722745i \(0.257120\pi\)
−0.691115 + 0.722745i \(0.742880\pi\)
\(702\) −0.307635 + 2.97296i −0.0116109 + 0.112207i
\(703\) 42.5248i 1.60385i
\(704\) 2.45599 34.4593i 0.0925637 1.29873i
\(705\) 1.07703 9.10959i 0.0405632 0.343087i
\(706\) −2.73074 + 0.697101i −0.102773 + 0.0262357i
\(707\) 0 0
\(708\) 12.5772 5.05557i 0.472680 0.190000i
\(709\) 6.89792 0.259057 0.129528 0.991576i \(-0.458654\pi\)
0.129528 + 0.991576i \(0.458654\pi\)
\(710\) 15.2520 3.89350i 0.572396 0.146121i
\(711\) −2.79841 + 11.6691i −0.104948 + 0.437627i
\(712\) 28.9720 26.9806i 1.08577 1.01114i
\(713\) 6.78411i 0.254067i
\(714\) 0 0
\(715\) 4.00000i 0.149592i
\(716\) −16.4049 + 8.95953i −0.613081 + 0.334833i
\(717\) −42.1517 4.98361i −1.57419 0.186116i
\(718\) −0.822045 3.22019i −0.0306784 0.120176i
\(719\) 28.2355 1.05301 0.526503 0.850173i \(-0.323503\pi\)
0.526503 + 0.850173i \(0.323503\pi\)
\(720\) 18.9143 + 19.7259i 0.704893 + 0.735142i
\(721\) 0 0
\(722\) 3.65944 + 14.3351i 0.136190 + 0.533496i
\(723\) 31.6756 + 3.74502i 1.17803 + 0.139279i
\(724\) 29.6455 16.1908i 1.10177 0.601728i
\(725\) 0.694815i 0.0258048i
\(726\) 2.47045 + 18.5702i 0.0916871 + 0.689203i
\(727\) 27.3942i 1.01599i −0.861359 0.507997i \(-0.830386\pi\)
0.861359 0.507997i \(-0.169614\pi\)
\(728\) 0 0
\(729\) 20.5442 + 17.5196i 0.760896 + 0.648874i
\(730\) −8.77981 + 2.24130i −0.324956 + 0.0829543i
\(731\) −47.5929 −1.76029
\(732\) −33.5846 + 13.4998i −1.24132 + 0.498966i
\(733\) 29.7028 1.09710 0.548549 0.836119i \(-0.315181\pi\)
0.548549 + 0.836119i \(0.315181\pi\)
\(734\) −46.8550 + 11.9611i −1.72945 + 0.441492i
\(735\) 0 0
\(736\) 6.24130 + 2.07587i 0.230057 + 0.0765177i
\(737\) 33.8323i 1.24623i
\(738\) −10.8683 + 0.158395i −0.400066 + 0.00583060i
\(739\) 27.4364i 1.00927i 0.863334 + 0.504633i \(0.168372\pi\)
−0.863334 + 0.504633i \(0.831628\pi\)
\(740\) 17.1045 + 31.3185i 0.628775 + 1.15129i
\(741\) −0.448959 + 3.79733i −0.0164929 + 0.139498i
\(742\) 0 0
\(743\) 2.30093 0.0844131 0.0422065 0.999109i \(-0.486561\pi\)
0.0422065 + 0.999109i \(0.486561\pi\)
\(744\) 23.0602 16.8891i 0.845426 0.619186i
\(745\) −39.6019 −1.45090
\(746\) 6.18068 + 24.2115i 0.226291 + 0.886446i
\(747\) 1.87212 + 0.448959i 0.0684974 + 0.0164265i
\(748\) −17.8768 32.7325i −0.653641 1.19682i
\(749\) 0 0
\(750\) −26.6172 + 3.54098i −0.971922 + 0.129298i
\(751\) 19.4193i 0.708619i −0.935128 0.354309i \(-0.884716\pi\)
0.935128 0.354309i \(-0.115284\pi\)
\(752\) 5.02772 7.82612i 0.183342 0.285389i
\(753\) 26.5653 + 3.14082i 0.968094 + 0.114458i
\(754\) −2.07587 + 0.529926i −0.0755988 + 0.0192988i
\(755\) −9.48634 −0.345243
\(756\) 0 0
\(757\) 13.9327 0.506393 0.253197 0.967415i \(-0.418518\pi\)
0.253197 + 0.967415i \(0.418518\pi\)
\(758\) −7.39151 + 1.88690i −0.268472 + 0.0685352i
\(759\) −8.63667 1.02112i −0.313491 0.0370641i
\(760\) 23.8277 + 25.5864i 0.864323 + 0.928117i
\(761\) 12.3859i 0.448989i −0.974475 0.224495i \(-0.927927\pi\)
0.974475 0.224495i \(-0.0720731\pi\)
\(762\) −15.0728 + 2.00519i −0.546030 + 0.0726403i
\(763\) 0 0
\(764\) 35.6466 19.4683i 1.28965 0.704339i
\(765\) 28.6903 + 6.88028i 1.03730 + 0.248757i
\(766\) −0.648029 2.53851i −0.0234142 0.0917203i
\(767\) 1.59155 0.0574677
\(768\) 8.48162 + 26.3830i 0.306054 + 0.952014i
\(769\) −45.0074 −1.62301 −0.811505 0.584346i \(-0.801351\pi\)
−0.811505 + 0.584346i \(0.801351\pi\)
\(770\) 0 0
\(771\) 1.82404 15.4278i 0.0656911 0.555620i
\(772\) −12.0336 + 6.57216i −0.433100 + 0.236537i
\(773\) 51.4814i 1.85166i 0.377944 + 0.925828i \(0.376631\pi\)
−0.377944 + 0.925828i \(0.623369\pi\)
\(774\) −46.7537 + 0.681392i −1.68053 + 0.0244921i
\(775\) 1.08840i 0.0390965i
\(776\) 3.85520 + 4.13974i 0.138393 + 0.148608i
\(777\) 0 0
\(778\) −7.37877 + 1.88364i −0.264542 + 0.0675319i
\(779\) −13.9058 −0.498229
\(780\) 1.19673 + 2.97722i 0.0428499 + 0.106602i
\(781\) −21.1056 −0.755217
\(782\) 6.88028 1.75639i 0.246038 0.0628084i
\(783\) −6.69191 + 18.1603i −0.239149 + 0.648997i
\(784\) 0 0
\(785\) 43.8682i 1.56572i
\(786\) −4.65221 34.9702i −0.165939 1.24735i
\(787\) 41.2202i 1.46934i −0.678424 0.734670i \(-0.737337\pi\)
0.678424 0.734670i \(-0.262663\pi\)
\(788\) −1.88690 3.45491i −0.0672179 0.123076i
\(789\) 33.3046 + 3.93761i 1.18568 + 0.140183i
\(790\) 3.18654 + 12.4826i 0.113372 + 0.444111i
\(791\) 0 0
\(792\) −18.0302 31.8994i −0.640676 1.13349i
\(793\) −4.24989 −0.150918
\(794\) −7.56812 29.6465i −0.268582 1.05211i
\(795\) −21.4710 2.53851i −0.761496 0.0900318i
\(796\) 6.10951 + 11.1865i 0.216546 + 0.396497i
\(797\) 37.0164i 1.31119i −0.755113 0.655595i \(-0.772418\pi\)
0.755113 0.655595i \(-0.227582\pi\)
\(798\) 0 0
\(799\) 10.0422i 0.355269i
\(800\) 1.00131 + 0.333040i 0.0354018 + 0.0117747i
\(801\) 9.79234 40.8333i 0.345995 1.44277i
\(802\) −52.4421 + 13.3874i −1.85180 + 0.472724i
\(803\) 12.1495 0.428745
\(804\) −10.1221 25.1815i −0.356977 0.888085i
\(805\) 0 0
\(806\) 3.25177 0.830108i 0.114539 0.0292393i
\(807\) −0.00977929 + 0.0827140i −0.000344247 + 0.00291167i
\(808\) 17.9763 16.7407i 0.632405 0.588937i
\(809\) 52.3125i 1.83921i −0.392844 0.919605i \(-0.628509\pi\)
0.392844 0.919605i \(-0.371491\pi\)
\(810\) 28.2829 + 6.34820i 0.993759 + 0.223053i
\(811\) 25.3719i 0.890929i 0.895300 + 0.445464i \(0.146961\pi\)
−0.895300 + 0.445464i \(0.853039\pi\)
\(812\) 0 0
\(813\) 4.04223 34.1895i 0.141767 1.19908i
\(814\) −11.8346 46.3594i −0.414802 1.62490i
\(815\) 19.6950 0.689886
\(816\) 23.0988 + 19.0145i 0.808619 + 0.665641i
\(817\) −59.8209 −2.09287
\(818\) 1.66898 + 6.53787i 0.0583545 + 0.228591i
\(819\) 0 0
\(820\) −10.2413 + 5.59327i −0.357642 + 0.195326i
\(821\) 29.0656i 1.01440i −0.861829 0.507198i \(-0.830681\pi\)
0.861829 0.507198i \(-0.169319\pi\)
\(822\) 5.64651 0.751174i 0.196945 0.0262002i
\(823\) 28.6343i 0.998131i 0.866564 + 0.499065i \(0.166323\pi\)
−0.866564 + 0.499065i \(0.833677\pi\)
\(824\) 22.0401 20.5251i 0.767802 0.715026i
\(825\) −1.38561 0.163821i −0.0482409 0.00570352i
\(826\) 0 0
\(827\) −4.88743 −0.169953 −0.0849763 0.996383i \(-0.527081\pi\)
−0.0849763 + 0.996383i \(0.527081\pi\)
\(828\) 6.73381 1.82392i 0.234016 0.0633858i
\(829\) 38.9316 1.35215 0.676074 0.736833i \(-0.263680\pi\)
0.676074 + 0.736833i \(0.263680\pi\)
\(830\) 2.00263 0.511229i 0.0695123 0.0177450i
\(831\) −17.6736 2.08956i −0.613091 0.0724859i
\(832\) −0.231321 + 3.24559i −0.00801961 + 0.112521i
\(833\) 0 0
\(834\) −22.3875 + 2.97829i −0.775216 + 0.103130i
\(835\) 4.00000i 0.138426i
\(836\) −22.4699 41.1424i −0.777137 1.42294i
\(837\) 10.4826 28.4474i 0.362332 0.983286i
\(838\) 2.91474 + 11.4179i 0.100688 + 0.394424i
\(839\) −49.3493 −1.70373 −0.851863 0.523765i \(-0.824527\pi\)
−0.851863 + 0.523765i \(0.824527\pi\)
\(840\) 0 0
\(841\) 15.1267 0.521610
\(842\) 7.25224 + 28.4091i 0.249929 + 0.979042i
\(843\) −1.37964 + 11.6691i −0.0475175 + 0.401907i
\(844\) −24.0913 44.1113i −0.829257 1.51837i
\(845\) 29.2294i 1.00552i
\(846\) −0.143776 9.86515i −0.00494310 0.339171i
\(847\) 0 0
\(848\) −18.4459 11.8501i −0.633434 0.406935i
\(849\) 1.10383 9.33627i 0.0378833 0.320420i
\(850\) 1.10383 0.281784i 0.0378610 0.00966512i
\(851\) 9.10959 0.312273
\(852\) 15.7090 6.31443i 0.538181 0.216329i
\(853\) −36.4912 −1.24943 −0.624717 0.780851i \(-0.714786\pi\)
−0.624717 + 0.780851i \(0.714786\pi\)
\(854\) 0 0
\(855\) 36.0616 + 8.64803i 1.23328 + 0.295756i
\(856\) 16.1922 + 17.3874i 0.553439 + 0.594288i
\(857\) 36.4434i 1.24488i 0.782667 + 0.622441i \(0.213859\pi\)
−0.782667 + 0.622441i \(0.786141\pi\)
\(858\) −0.567346 4.26469i −0.0193689 0.145594i
\(859\) 11.8682i 0.404938i −0.979289 0.202469i \(-0.935103\pi\)
0.979289 0.202469i \(-0.0648966\pi\)
\(860\) −44.0566 + 24.0614i −1.50232 + 0.820488i
\(861\) 0 0
\(862\) −12.2413 47.9527i −0.416940 1.63327i
\(863\) −16.3225 −0.555625 −0.277812 0.960635i \(-0.589609\pi\)
−0.277812 + 0.960635i \(0.589609\pi\)
\(864\) 22.9637 + 18.3485i 0.781241 + 0.624229i
\(865\) −17.9327 −0.609731
\(866\) 6.06495 + 23.7581i 0.206095 + 0.807334i
\(867\) 2.83473 + 0.335150i 0.0962723 + 0.0113823i
\(868\) 0 0
\(869\) 17.2733i 0.585958i
\(870\) 2.74003 + 20.5966i 0.0928959 + 0.698290i
\(871\) 3.18654i 0.107972i
\(872\) −20.2062 21.6976i −0.684269 0.734775i
\(873\) 5.83457 + 1.39920i 0.197470 + 0.0473559i
\(874\) 8.64803 2.20766i 0.292524 0.0746752i
\(875\) 0 0
\(876\) −9.04289 + 3.63491i −0.305531 + 0.122812i
\(877\) 6.81346 0.230074 0.115037 0.993361i \(-0.463301\pi\)
0.115037 + 0.993361i \(0.463301\pi\)
\(878\) −45.6246 + 11.6470i −1.53976 + 0.393067i
\(879\) −5.73231 + 48.4843i −0.193346 + 1.63534i
\(880\) −33.0970 21.2624i −1.11570 0.716756i
\(881\) 10.1075i 0.340530i 0.985398 + 0.170265i \(0.0544624\pi\)
−0.985398 + 0.170265i \(0.945538\pi\)
\(882\) 0 0
\(883\) 29.4615i 0.991458i 0.868477 + 0.495729i \(0.165099\pi\)
−0.868477 + 0.495729i \(0.834901\pi\)
\(884\) 1.68375 + 3.08295i 0.0566307 + 0.103691i
\(885\) 1.81230 15.3286i 0.0609198 0.515265i
\(886\) −3.10383 12.1586i −0.104275 0.408476i
\(887\) 44.4668 1.49305 0.746525 0.665357i \(-0.231721\pi\)
0.746525 + 0.665357i \(0.231721\pi\)
\(888\) 22.6785 + 30.9648i 0.761040 + 1.03911i
\(889\) 0 0
\(890\) −11.1505 43.6798i −0.373767 1.46415i
\(891\) −34.6379 17.6269i −1.16041 0.590524i
\(892\) −8.84710 16.1991i −0.296223 0.542385i
\(893\) 12.6224i 0.422392i
\(894\) −42.2224 + 5.61699i −1.41213 + 0.187860i
\(895\) 21.2847i 0.711469i
\(896\) 0 0
\(897\) 0.813457 + 0.0961751i 0.0271605 + 0.00321119i
\(898\) 36.1517 9.22877i 1.20640 0.307968i
\(899\) 21.7320 0.724802
\(900\) 1.08033 0.292619i 0.0360110 0.00975397i
\(901\) −23.6691 −0.788534
\(902\) 15.1598 3.86997i 0.504765 0.128856i
\(903\) 0 0
\(904\) 19.7941 18.4335i 0.658342 0.613090i
\(905\) 38.4637i 1.27858i
\(906\) −10.1141 + 1.34551i −0.336017 + 0.0447016i
\(907\) 55.9190i 1.85676i −0.371631 0.928380i \(-0.621201\pi\)
0.371631 0.928380i \(-0.378799\pi\)
\(908\) −34.2739 + 18.7186i −1.13742 + 0.621200i
\(909\) 6.07587 25.3359i 0.201524 0.840340i
\(910\) 0 0
\(911\) 7.71538 0.255622 0.127811 0.991799i \(-0.459205\pi\)
0.127811 + 0.991799i \(0.459205\pi\)
\(912\) 29.0335 + 23.8999i 0.961397 + 0.791404i
\(913\) −2.77123 −0.0917142
\(914\) −10.5814 41.4505i −0.350003 1.37106i
\(915\) −4.83934 + 40.9316i −0.159984 + 1.35316i
\(916\) 3.56961 1.94954i 0.117943 0.0644145i
\(917\) 0 0
\(918\) 31.5646 + 3.26624i 1.04179 + 0.107802i
\(919\) 10.0422i 0.331263i −0.986188 0.165631i \(-0.947034\pi\)
0.986188 0.165631i \(-0.0529662\pi\)
\(920\) 5.48108 5.10433i 0.180706 0.168285i
\(921\) 0.455800 3.85520i 0.0150191 0.127033i
\(922\) −2.14177 + 0.546747i −0.0705353 + 0.0180062i
\(923\) 1.98786 0.0654311
\(924\) 0 0
\(925\) 1.46149 0.0480534
\(926\) −45.6246 + 11.6470i −1.49932 + 0.382744i
\(927\) 7.44938 31.0633i 0.244670 1.02025i
\(928\) −6.64978 + 19.9932i −0.218290 + 0.656308i
\(929\) 3.13104i 0.102726i −0.998680 0.0513631i \(-0.983643\pi\)
0.998680 0.0513631i \(-0.0163566\pi\)
\(930\) −4.29215 32.2637i −0.140745 1.05797i
\(931\) 0 0
\(932\) 3.13603 + 5.74209i 0.102724 + 0.188088i
\(933\) 45.5459 + 5.38490i 1.49111 + 0.176294i
\(934\) 6.05046 + 23.7014i 0.197977 + 0.775533i
\(935\) −42.4690 −1.38888
\(936\) 1.69820 + 3.00449i 0.0555074 + 0.0982047i
\(937\) 47.0325 1.53648 0.768242 0.640159i \(-0.221132\pi\)
0.768242 + 0.640159i \(0.221132\pi\)
\(938\) 0 0
\(939\) 0.757468 + 0.0895556i 0.0247190 + 0.00292254i
\(940\) −5.07703 9.29606i −0.165594 0.303204i
\(941\) 22.2530i 0.725426i −0.931901 0.362713i \(-0.881850\pi\)
0.931901 0.362713i \(-0.118150\pi\)
\(942\) 6.22211 + 46.7710i 0.202727 + 1.52388i
\(943\) 2.97888i 0.0970058i
\(944\) 8.46007 13.1689i 0.275352 0.428611i
\(945\) 0 0
\(946\) 65.2151 16.6480i 2.12033 0.541274i
\(947\) 33.9335 1.10269 0.551345 0.834277i \(-0.314115\pi\)
0.551345 + 0.834277i \(0.314115\pi\)
\(948\) 5.16789 + 12.8566i 0.167845 + 0.417564i
\(949\) −1.14431 −0.0371460
\(950\) 1.38744 0.354183i 0.0450143 0.0114912i
\(951\) 2.39812 20.2835i 0.0777645 0.657739i
\(952\) 0 0
\(953\) 20.2641i 0.656419i 0.944605 + 0.328209i \(0.106445\pi\)
−0.944605 + 0.328209i \(0.893555\pi\)
\(954\) −23.2518 + 0.338873i −0.752804 + 0.0109714i
\(955\) 46.2499i 1.49661i
\(956\) −43.0145 + 23.4923i −1.39119 + 0.759796i
\(957\) 3.27100 27.6664i 0.105737 0.894328i
\(958\) −5.80952 22.7575i −0.187697 0.735263i
\(959\) 0 0
\(960\) 30.9956 + 5.92366i 1.00038 + 0.191185i
\(961\) −3.04223 −0.0981365
\(962\) 1.11466 + 4.36642i 0.0359379 + 0.140779i
\(963\) 24.5058 + 5.87680i 0.789689 + 0.189377i
\(964\) 32.3240 17.6537i 1.04109 0.568588i
\(965\) 15.6131i 0.502604i
\(966\) 0 0
\(967\) 43.5882i 1.40170i 0.713308 + 0.700851i \(0.247196\pi\)
−0.713308 + 0.700851i \(0.752804\pi\)
\(968\) 14.7423 + 15.8304i 0.473836 + 0.508810i
\(969\) 40.3172 + 4.76671i 1.29517 + 0.153129i
\(970\) 6.24130 1.59327i 0.200396 0.0511569i
\(971\) 3.67161 0.117828 0.0589138 0.998263i \(-0.481236\pi\)
0.0589138 + 0.998263i \(0.481236\pi\)
\(972\) 31.0548 + 2.75673i 0.996083 + 0.0884221i
\(973\) 0 0
\(974\) −33.2289 + 8.48263i −1.06472 + 0.271801i
\(975\) 0.130506 + 0.0154297i 0.00417953 + 0.000494147i
\(976\) −22.5907 + 35.1646i −0.723111 + 1.12559i
\(977\) 34.0738i 1.09012i 0.838398 + 0.545058i \(0.183492\pi\)
−0.838398 + 0.545058i \(0.816508\pi\)
\(978\) 20.9983 2.79347i 0.671450 0.0893254i
\(979\) 60.4439i 1.93179i
\(980\) 0 0
\(981\) −30.5807 7.33364i −0.976368 0.234145i
\(982\) 7.10383 + 27.8277i 0.226692 + 0.888019i
\(983\) −54.2808 −1.73129 −0.865645 0.500659i \(-0.833091\pi\)
−0.865645 + 0.500659i \(0.833091\pi\)
\(984\) −10.1257 + 7.41598i −0.322794 + 0.236413i
\(985\) −4.48260 −0.142828
\(986\) 5.62636 + 22.0401i 0.179180 + 0.701898i
\(987\) 0 0
\(988\) 2.11636 + 3.87506i 0.0673303 + 0.123282i
\(989\) 12.8147i 0.407485i
\(990\) −41.7201 + 0.608032i −1.32595 + 0.0193245i
\(991\) 10.5077i 0.333787i −0.985975 0.166893i \(-0.946626\pi\)
0.985975 0.166893i \(-0.0533736\pi\)
\(992\) 10.4166 31.3185i 0.330727 0.994362i
\(993\) −0.266354 + 2.25285i −0.00845250 + 0.0714919i
\(994\) 0 0
\(995\) 14.5141 0.460127
\(996\) 2.06264 0.829104i 0.0653571 0.0262712i
\(997\) −21.4564 −0.679531 −0.339765 0.940510i \(-0.610348\pi\)
−0.339765 + 0.940510i \(0.610348\pi\)
\(998\) 14.4406 3.68638i 0.457109 0.116690i
\(999\) 38.1987 + 14.0759i 1.20855 + 0.445341i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.c.491.5 12
3.2 odd 2 inner 588.2.e.c.491.8 12
4.3 odd 2 inner 588.2.e.c.491.7 12
7.2 even 3 588.2.n.g.263.4 24
7.3 odd 6 588.2.n.f.275.11 24
7.4 even 3 588.2.n.g.275.11 24
7.5 odd 6 588.2.n.f.263.4 24
7.6 odd 2 84.2.e.a.71.5 12
12.11 even 2 inner 588.2.e.c.491.6 12
21.2 odd 6 588.2.n.g.263.9 24
21.5 even 6 588.2.n.f.263.9 24
21.11 odd 6 588.2.n.g.275.2 24
21.17 even 6 588.2.n.f.275.2 24
21.20 even 2 84.2.e.a.71.8 yes 12
28.3 even 6 588.2.n.f.275.9 24
28.11 odd 6 588.2.n.g.275.9 24
28.19 even 6 588.2.n.f.263.2 24
28.23 odd 6 588.2.n.g.263.2 24
28.27 even 2 84.2.e.a.71.7 yes 12
56.13 odd 2 1344.2.h.h.575.1 12
56.27 even 2 1344.2.h.h.575.12 12
84.11 even 6 588.2.n.g.275.4 24
84.23 even 6 588.2.n.g.263.11 24
84.47 odd 6 588.2.n.f.263.11 24
84.59 odd 6 588.2.n.f.275.4 24
84.83 odd 2 84.2.e.a.71.6 yes 12
168.83 odd 2 1344.2.h.h.575.2 12
168.125 even 2 1344.2.h.h.575.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.e.a.71.5 12 7.6 odd 2
84.2.e.a.71.6 yes 12 84.83 odd 2
84.2.e.a.71.7 yes 12 28.27 even 2
84.2.e.a.71.8 yes 12 21.20 even 2
588.2.e.c.491.5 12 1.1 even 1 trivial
588.2.e.c.491.6 12 12.11 even 2 inner
588.2.e.c.491.7 12 4.3 odd 2 inner
588.2.e.c.491.8 12 3.2 odd 2 inner
588.2.n.f.263.2 24 28.19 even 6
588.2.n.f.263.4 24 7.5 odd 6
588.2.n.f.263.9 24 21.5 even 6
588.2.n.f.263.11 24 84.47 odd 6
588.2.n.f.275.2 24 21.17 even 6
588.2.n.f.275.4 24 84.59 odd 6
588.2.n.f.275.9 24 28.3 even 6
588.2.n.f.275.11 24 7.3 odd 6
588.2.n.g.263.2 24 28.23 odd 6
588.2.n.g.263.4 24 7.2 even 3
588.2.n.g.263.9 24 21.2 odd 6
588.2.n.g.263.11 24 84.23 even 6
588.2.n.g.275.2 24 21.11 odd 6
588.2.n.g.275.4 24 84.11 even 6
588.2.n.g.275.9 24 28.11 odd 6
588.2.n.g.275.11 24 7.4 even 3
1344.2.h.h.575.1 12 56.13 odd 2
1344.2.h.h.575.2 12 168.83 odd 2
1344.2.h.h.575.11 12 168.125 even 2
1344.2.h.h.575.12 12 56.27 even 2