Properties

Label 576.2.y.a.527.11
Level $576$
Weight $2$
Character 576.527
Analytic conductor $4.599$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,2,Mod(47,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 527.11
Character \(\chi\) \(=\) 576.527
Dual form 576.2.y.a.47.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.256373 + 1.71297i) q^{3} +(0.546024 + 2.03779i) q^{5} +(0.0638076 + 0.110518i) q^{7} +(-2.86855 + 0.878321i) q^{9} +(0.181856 - 0.678695i) q^{11} +(0.493860 + 1.84311i) q^{13} +(-3.35069 + 1.45776i) q^{15} +4.32243i q^{17} +(3.97707 + 3.97707i) q^{19} +(-0.172956 + 0.137635i) q^{21} +(-6.81589 - 3.93516i) q^{23} +(0.475689 - 0.274639i) q^{25} +(-2.23996 - 4.68856i) q^{27} +(-0.248377 + 0.926957i) q^{29} +(-4.91353 - 2.83683i) q^{31} +(1.20921 + 0.137514i) q^{33} +(-0.190372 + 0.190372i) q^{35} +(-6.64358 - 6.64358i) q^{37} +(-3.03058 + 1.31849i) q^{39} +(-4.61325 + 7.99038i) q^{41} +(10.8712 + 2.91294i) q^{43} +(-3.35613 - 5.36590i) q^{45} +(5.92267 + 10.2584i) q^{47} +(3.49186 - 6.04807i) q^{49} +(-7.40421 + 1.10816i) q^{51} +(-0.00259022 + 0.00259022i) q^{53} +1.48233 q^{55} +(-5.79299 + 7.83221i) q^{57} +(4.09587 - 1.09748i) q^{59} +(4.44908 + 1.19213i) q^{61} +(-0.280105 - 0.260982i) q^{63} +(-3.48621 + 2.01276i) q^{65} +(-2.01106 + 0.538862i) q^{67} +(4.99340 - 12.6843i) q^{69} +3.80683i q^{71} -1.87674i q^{73} +(0.592403 + 0.744431i) q^{75} +(0.0866118 - 0.0232076i) q^{77} +(3.00919 - 1.73736i) q^{79} +(7.45710 - 5.03901i) q^{81} +(1.47149 + 0.394284i) q^{83} +(-8.80821 + 2.36015i) q^{85} +(-1.65153 - 0.187816i) q^{87} +10.5967 q^{89} +(-0.172185 + 0.172185i) q^{91} +(3.59971 - 9.14402i) q^{93} +(-5.93284 + 10.2760i) q^{95} +(3.31795 + 5.74685i) q^{97} +(0.0744506 + 2.10659i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7} + 6 q^{11} - 2 q^{13} + 8 q^{19} + 2 q^{21} + 12 q^{23} + 16 q^{27} - 6 q^{29} - 8 q^{33} - 8 q^{37} + 32 q^{39} + 2 q^{43} + 6 q^{45} - 24 q^{49} + 12 q^{51} + 16 q^{55}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.256373 + 1.71297i 0.148017 + 0.988985i
\(4\) 0 0
\(5\) 0.546024 + 2.03779i 0.244189 + 0.911327i 0.973789 + 0.227452i \(0.0730396\pi\)
−0.729600 + 0.683874i \(0.760294\pi\)
\(6\) 0 0
\(7\) 0.0638076 + 0.110518i 0.0241170 + 0.0417719i 0.877832 0.478969i \(-0.158989\pi\)
−0.853715 + 0.520741i \(0.825656\pi\)
\(8\) 0 0
\(9\) −2.86855 + 0.878321i −0.956182 + 0.292774i
\(10\) 0 0
\(11\) 0.181856 0.678695i 0.0548316 0.204634i −0.933076 0.359680i \(-0.882886\pi\)
0.987907 + 0.155046i \(0.0495525\pi\)
\(12\) 0 0
\(13\) 0.493860 + 1.84311i 0.136972 + 0.511187i 0.999982 + 0.00599967i \(0.00190977\pi\)
−0.863010 + 0.505187i \(0.831424\pi\)
\(14\) 0 0
\(15\) −3.35069 + 1.45776i −0.865144 + 0.376391i
\(16\) 0 0
\(17\) 4.32243i 1.04834i 0.851612 + 0.524172i \(0.175625\pi\)
−0.851612 + 0.524172i \(0.824375\pi\)
\(18\) 0 0
\(19\) 3.97707 + 3.97707i 0.912401 + 0.912401i 0.996461 0.0840594i \(-0.0267886\pi\)
−0.0840594 + 0.996461i \(0.526789\pi\)
\(20\) 0 0
\(21\) −0.172956 + 0.137635i −0.0377420 + 0.0300343i
\(22\) 0 0
\(23\) −6.81589 3.93516i −1.42121 0.820537i −0.424809 0.905283i \(-0.639659\pi\)
−0.996403 + 0.0847463i \(0.972992\pi\)
\(24\) 0 0
\(25\) 0.475689 0.274639i 0.0951377 0.0549278i
\(26\) 0 0
\(27\) −2.23996 4.68856i −0.431080 0.902314i
\(28\) 0 0
\(29\) −0.248377 + 0.926957i −0.0461225 + 0.172132i −0.985145 0.171724i \(-0.945066\pi\)
0.939023 + 0.343855i \(0.111733\pi\)
\(30\) 0 0
\(31\) −4.91353 2.83683i −0.882496 0.509509i −0.0110152 0.999939i \(-0.503506\pi\)
−0.871480 + 0.490430i \(0.836840\pi\)
\(32\) 0 0
\(33\) 1.20921 + 0.137514i 0.210496 + 0.0239382i
\(34\) 0 0
\(35\) −0.190372 + 0.190372i −0.0321787 + 0.0321787i
\(36\) 0 0
\(37\) −6.64358 6.64358i −1.09220 1.09220i −0.995294 0.0969037i \(-0.969106\pi\)
−0.0969037 0.995294i \(-0.530894\pi\)
\(38\) 0 0
\(39\) −3.03058 + 1.31849i −0.485281 + 0.211128i
\(40\) 0 0
\(41\) −4.61325 + 7.99038i −0.720469 + 1.24789i 0.240344 + 0.970688i \(0.422740\pi\)
−0.960812 + 0.277200i \(0.910593\pi\)
\(42\) 0 0
\(43\) 10.8712 + 2.91294i 1.65785 + 0.444219i 0.961795 0.273772i \(-0.0882713\pi\)
0.696053 + 0.717991i \(0.254938\pi\)
\(44\) 0 0
\(45\) −3.35613 5.36590i −0.500302 0.799902i
\(46\) 0 0
\(47\) 5.92267 + 10.2584i 0.863910 + 1.49634i 0.868125 + 0.496345i \(0.165325\pi\)
−0.00421475 + 0.999991i \(0.501342\pi\)
\(48\) 0 0
\(49\) 3.49186 6.04807i 0.498837 0.864011i
\(50\) 0 0
\(51\) −7.40421 + 1.10816i −1.03680 + 0.155173i
\(52\) 0 0
\(53\) −0.00259022 + 0.00259022i −0.000355794 + 0.000355794i −0.707285 0.706929i \(-0.750080\pi\)
0.706929 + 0.707285i \(0.250080\pi\)
\(54\) 0 0
\(55\) 1.48233 0.199878
\(56\) 0 0
\(57\) −5.79299 + 7.83221i −0.767300 + 1.03740i
\(58\) 0 0
\(59\) 4.09587 1.09748i 0.533237 0.142880i 0.0178541 0.999841i \(-0.494317\pi\)
0.515382 + 0.856960i \(0.327650\pi\)
\(60\) 0 0
\(61\) 4.44908 + 1.19213i 0.569646 + 0.152636i 0.532134 0.846660i \(-0.321390\pi\)
0.0375117 + 0.999296i \(0.488057\pi\)
\(62\) 0 0
\(63\) −0.280105 0.260982i −0.0352900 0.0328807i
\(64\) 0 0
\(65\) −3.48621 + 2.01276i −0.432411 + 0.249652i
\(66\) 0 0
\(67\) −2.01106 + 0.538862i −0.245690 + 0.0658325i −0.379563 0.925166i \(-0.623925\pi\)
0.133872 + 0.990999i \(0.457259\pi\)
\(68\) 0 0
\(69\) 4.99340 12.6843i 0.601134 1.52701i
\(70\) 0 0
\(71\) 3.80683i 0.451788i 0.974152 + 0.225894i \(0.0725303\pi\)
−0.974152 + 0.225894i \(0.927470\pi\)
\(72\) 0 0
\(73\) 1.87674i 0.219656i −0.993951 0.109828i \(-0.964970\pi\)
0.993951 0.109828i \(-0.0350300\pi\)
\(74\) 0 0
\(75\) 0.592403 + 0.744431i 0.0684048 + 0.0859595i
\(76\) 0 0
\(77\) 0.0866118 0.0232076i 0.00987033 0.00264475i
\(78\) 0 0
\(79\) 3.00919 1.73736i 0.338560 0.195468i −0.321075 0.947054i \(-0.604044\pi\)
0.659635 + 0.751586i \(0.270711\pi\)
\(80\) 0 0
\(81\) 7.45710 5.03901i 0.828567 0.559890i
\(82\) 0 0
\(83\) 1.47149 + 0.394284i 0.161517 + 0.0432783i 0.338671 0.940905i \(-0.390023\pi\)
−0.177155 + 0.984183i \(0.556689\pi\)
\(84\) 0 0
\(85\) −8.80821 + 2.36015i −0.955384 + 0.255994i
\(86\) 0 0
\(87\) −1.65153 0.187816i −0.177062 0.0201360i
\(88\) 0 0
\(89\) 10.5967 1.12325 0.561624 0.827392i \(-0.310177\pi\)
0.561624 + 0.827392i \(0.310177\pi\)
\(90\) 0 0
\(91\) −0.172185 + 0.172185i −0.0180499 + 0.0180499i
\(92\) 0 0
\(93\) 3.59971 9.14402i 0.373272 0.948191i
\(94\) 0 0
\(95\) −5.93284 + 10.2760i −0.608697 + 1.05429i
\(96\) 0 0
\(97\) 3.31795 + 5.74685i 0.336886 + 0.583504i 0.983845 0.179021i \(-0.0572928\pi\)
−0.646959 + 0.762525i \(0.723960\pi\)
\(98\) 0 0
\(99\) 0.0744506 + 2.10659i 0.00748257 + 0.211721i
\(100\) 0 0
\(101\) 12.0922 + 3.24008i 1.20321 + 0.322400i 0.804096 0.594499i \(-0.202650\pi\)
0.399118 + 0.916899i \(0.369316\pi\)
\(102\) 0 0
\(103\) 4.21850 7.30665i 0.415661 0.719946i −0.579837 0.814733i \(-0.696884\pi\)
0.995498 + 0.0947868i \(0.0302169\pi\)
\(104\) 0 0
\(105\) −0.374908 0.277295i −0.0365873 0.0270613i
\(106\) 0 0
\(107\) 7.25071 + 7.25071i 0.700953 + 0.700953i 0.964615 0.263662i \(-0.0849304\pi\)
−0.263662 + 0.964615i \(0.584930\pi\)
\(108\) 0 0
\(109\) 10.2850 10.2850i 0.985128 0.985128i −0.0147630 0.999891i \(-0.504699\pi\)
0.999891 + 0.0147630i \(0.00469937\pi\)
\(110\) 0 0
\(111\) 9.67702 13.0835i 0.918503 1.24183i
\(112\) 0 0
\(113\) −18.2964 10.5634i −1.72118 0.993722i −0.916526 0.399976i \(-0.869019\pi\)
−0.804652 0.593747i \(-0.797648\pi\)
\(114\) 0 0
\(115\) 4.29738 16.0380i 0.400732 1.49555i
\(116\) 0 0
\(117\) −3.03550 4.85328i −0.280632 0.448685i
\(118\) 0 0
\(119\) −0.477707 + 0.275804i −0.0437913 + 0.0252829i
\(120\) 0 0
\(121\) 9.09872 + 5.25315i 0.827157 + 0.477559i
\(122\) 0 0
\(123\) −14.8700 5.85384i −1.34078 0.527823i
\(124\) 0 0
\(125\) 8.27822 + 8.27822i 0.740426 + 0.740426i
\(126\) 0 0
\(127\) 13.1109i 1.16340i −0.813403 0.581700i \(-0.802388\pi\)
0.813403 0.581700i \(-0.197612\pi\)
\(128\) 0 0
\(129\) −2.20269 + 19.3689i −0.193936 + 1.70534i
\(130\) 0 0
\(131\) −1.27247 4.74891i −0.111176 0.414914i 0.887797 0.460236i \(-0.152235\pi\)
−0.998972 + 0.0453222i \(0.985569\pi\)
\(132\) 0 0
\(133\) −0.185770 + 0.693305i −0.0161083 + 0.0601171i
\(134\) 0 0
\(135\) 8.33122 7.12462i 0.717037 0.613190i
\(136\) 0 0
\(137\) −3.41217 5.91005i −0.291521 0.504930i 0.682648 0.730747i \(-0.260828\pi\)
−0.974170 + 0.225817i \(0.927495\pi\)
\(138\) 0 0
\(139\) 2.77132 + 10.3427i 0.235061 + 0.877258i 0.978121 + 0.208035i \(0.0667066\pi\)
−0.743061 + 0.669224i \(0.766627\pi\)
\(140\) 0 0
\(141\) −16.0539 + 12.7753i −1.35198 + 1.07588i
\(142\) 0 0
\(143\) 1.34072 0.112117
\(144\) 0 0
\(145\) −2.02456 −0.168131
\(146\) 0 0
\(147\) 11.2554 + 4.43089i 0.928330 + 0.365453i
\(148\) 0 0
\(149\) −0.0546714 0.204036i −0.00447885 0.0167153i 0.963650 0.267167i \(-0.0860875\pi\)
−0.968129 + 0.250452i \(0.919421\pi\)
\(150\) 0 0
\(151\) −1.14798 1.98835i −0.0934210 0.161810i 0.815528 0.578718i \(-0.196447\pi\)
−0.908949 + 0.416908i \(0.863114\pi\)
\(152\) 0 0
\(153\) −3.79649 12.3991i −0.306928 1.00241i
\(154\) 0 0
\(155\) 3.09795 11.5617i 0.248833 0.928658i
\(156\) 0 0
\(157\) 4.34480 + 16.2150i 0.346753 + 1.29410i 0.890551 + 0.454883i \(0.150319\pi\)
−0.543799 + 0.839216i \(0.683015\pi\)
\(158\) 0 0
\(159\) −0.00510103 0.00377291i −0.000404538 0.000299211i
\(160\) 0 0
\(161\) 1.00437i 0.0791556i
\(162\) 0 0
\(163\) −0.490399 0.490399i −0.0384110 0.0384110i 0.687640 0.726051i \(-0.258647\pi\)
−0.726051 + 0.687640i \(0.758647\pi\)
\(164\) 0 0
\(165\) 0.380031 + 2.53920i 0.0295854 + 0.197676i
\(166\) 0 0
\(167\) −9.34175 5.39346i −0.722887 0.417359i 0.0929276 0.995673i \(-0.470378\pi\)
−0.815814 + 0.578314i \(0.803711\pi\)
\(168\) 0 0
\(169\) 8.10518 4.67953i 0.623475 0.359963i
\(170\) 0 0
\(171\) −14.9015 7.91525i −1.13955 0.605294i
\(172\) 0 0
\(173\) 1.23685 4.61598i 0.0940358 0.350946i −0.902836 0.429986i \(-0.858519\pi\)
0.996871 + 0.0790394i \(0.0251853\pi\)
\(174\) 0 0
\(175\) 0.0607051 + 0.0350481i 0.00458888 + 0.00264939i
\(176\) 0 0
\(177\) 2.93003 + 6.73474i 0.220235 + 0.506214i
\(178\) 0 0
\(179\) 3.52882 3.52882i 0.263756 0.263756i −0.562822 0.826578i \(-0.690284\pi\)
0.826578 + 0.562822i \(0.190284\pi\)
\(180\) 0 0
\(181\) 7.34860 + 7.34860i 0.546217 + 0.546217i 0.925344 0.379127i \(-0.123776\pi\)
−0.379127 + 0.925344i \(0.623776\pi\)
\(182\) 0 0
\(183\) −0.901454 + 7.92677i −0.0666374 + 0.585964i
\(184\) 0 0
\(185\) 9.91065 17.1658i 0.728646 1.26205i
\(186\) 0 0
\(187\) 2.93361 + 0.786059i 0.214527 + 0.0574824i
\(188\) 0 0
\(189\) 0.375244 0.546722i 0.0272950 0.0397681i
\(190\) 0 0
\(191\) −2.58888 4.48407i −0.187325 0.324456i 0.757033 0.653377i \(-0.226648\pi\)
−0.944357 + 0.328921i \(0.893315\pi\)
\(192\) 0 0
\(193\) 13.2173 22.8930i 0.951401 1.64787i 0.209003 0.977915i \(-0.432978\pi\)
0.742398 0.669960i \(-0.233689\pi\)
\(194\) 0 0
\(195\) −4.34158 5.45576i −0.310907 0.390695i
\(196\) 0 0
\(197\) −5.14652 + 5.14652i −0.366674 + 0.366674i −0.866263 0.499588i \(-0.833485\pi\)
0.499588 + 0.866263i \(0.333485\pi\)
\(198\) 0 0
\(199\) 1.37436 0.0974261 0.0487130 0.998813i \(-0.484488\pi\)
0.0487130 + 0.998813i \(0.484488\pi\)
\(200\) 0 0
\(201\) −1.43864 3.30674i −0.101474 0.233240i
\(202\) 0 0
\(203\) −0.118294 + 0.0316967i −0.00830260 + 0.00222468i
\(204\) 0 0
\(205\) −18.8017 5.03789i −1.31316 0.351861i
\(206\) 0 0
\(207\) 23.0080 + 5.30163i 1.59917 + 0.368489i
\(208\) 0 0
\(209\) 3.42246 1.97596i 0.236737 0.136680i
\(210\) 0 0
\(211\) −11.1381 + 2.98444i −0.766776 + 0.205457i −0.620947 0.783853i \(-0.713252\pi\)
−0.145829 + 0.989310i \(0.546585\pi\)
\(212\) 0 0
\(213\) −6.52100 + 0.975971i −0.446811 + 0.0668724i
\(214\) 0 0
\(215\) 23.7438i 1.61931i
\(216\) 0 0
\(217\) 0.724045i 0.0491514i
\(218\) 0 0
\(219\) 3.21481 0.481147i 0.217237 0.0325129i
\(220\) 0 0
\(221\) −7.96672 + 2.13468i −0.535900 + 0.143594i
\(222\) 0 0
\(223\) −17.9819 + 10.3819i −1.20416 + 0.695220i −0.961477 0.274886i \(-0.911360\pi\)
−0.242680 + 0.970106i \(0.578026\pi\)
\(224\) 0 0
\(225\) −1.12331 + 1.20562i −0.0748876 + 0.0803748i
\(226\) 0 0
\(227\) −7.65406 2.05090i −0.508018 0.136123i −0.00429906 0.999991i \(-0.501368\pi\)
−0.503718 + 0.863868i \(0.668035\pi\)
\(228\) 0 0
\(229\) 0.448692 0.120227i 0.0296504 0.00794481i −0.243963 0.969784i \(-0.578448\pi\)
0.273614 + 0.961840i \(0.411781\pi\)
\(230\) 0 0
\(231\) 0.0619589 + 0.142414i 0.00407659 + 0.00937014i
\(232\) 0 0
\(233\) −9.13737 −0.598609 −0.299305 0.954158i \(-0.596755\pi\)
−0.299305 + 0.954158i \(0.596755\pi\)
\(234\) 0 0
\(235\) −17.6705 + 17.6705i −1.15269 + 1.15269i
\(236\) 0 0
\(237\) 3.74752 + 4.70925i 0.243428 + 0.305898i
\(238\) 0 0
\(239\) −3.65824 + 6.33626i −0.236632 + 0.409859i −0.959746 0.280870i \(-0.909377\pi\)
0.723114 + 0.690729i \(0.242710\pi\)
\(240\) 0 0
\(241\) −1.24858 2.16261i −0.0804282 0.139306i 0.823006 0.568033i \(-0.192295\pi\)
−0.903434 + 0.428727i \(0.858962\pi\)
\(242\) 0 0
\(243\) 10.5435 + 11.4819i 0.676365 + 0.736567i
\(244\) 0 0
\(245\) 14.2313 + 3.81327i 0.909206 + 0.243621i
\(246\) 0 0
\(247\) −5.36605 + 9.29428i −0.341434 + 0.591381i
\(248\) 0 0
\(249\) −0.298147 + 2.62170i −0.0188943 + 0.166144i
\(250\) 0 0
\(251\) −2.77626 2.77626i −0.175236 0.175236i 0.614039 0.789275i \(-0.289544\pi\)
−0.789275 + 0.614039i \(0.789544\pi\)
\(252\) 0 0
\(253\) −3.91028 + 3.91028i −0.245837 + 0.245837i
\(254\) 0 0
\(255\) −6.30106 14.4831i −0.394588 0.906969i
\(256\) 0 0
\(257\) −9.61957 5.55386i −0.600052 0.346440i 0.169010 0.985614i \(-0.445943\pi\)
−0.769062 + 0.639174i \(0.779276\pi\)
\(258\) 0 0
\(259\) 0.310324 1.15815i 0.0192826 0.0719637i
\(260\) 0 0
\(261\) −0.101684 2.87717i −0.00629409 0.178093i
\(262\) 0 0
\(263\) 16.6320 9.60247i 1.02557 0.592114i 0.109858 0.993947i \(-0.464960\pi\)
0.915713 + 0.401834i \(0.131627\pi\)
\(264\) 0 0
\(265\) −0.00669264 0.00386400i −0.000411125 0.000237363i
\(266\) 0 0
\(267\) 2.71671 + 18.1519i 0.166260 + 1.11088i
\(268\) 0 0
\(269\) −7.66476 7.66476i −0.467329 0.467329i 0.433719 0.901048i \(-0.357201\pi\)
−0.901048 + 0.433719i \(0.857201\pi\)
\(270\) 0 0
\(271\) 12.9801i 0.788486i −0.919006 0.394243i \(-0.871007\pi\)
0.919006 0.394243i \(-0.128993\pi\)
\(272\) 0 0
\(273\) −0.339091 0.250804i −0.0205227 0.0151794i
\(274\) 0 0
\(275\) −0.0998893 0.372792i −0.00602355 0.0224802i
\(276\) 0 0
\(277\) −6.42631 + 23.9833i −0.386119 + 1.44102i 0.450276 + 0.892890i \(0.351326\pi\)
−0.836395 + 0.548127i \(0.815341\pi\)
\(278\) 0 0
\(279\) 16.5863 + 3.82191i 0.992997 + 0.228812i
\(280\) 0 0
\(281\) −3.69120 6.39334i −0.220198 0.381395i 0.734670 0.678425i \(-0.237337\pi\)
−0.954868 + 0.297030i \(0.904004\pi\)
\(282\) 0 0
\(283\) −1.60691 5.99708i −0.0955211 0.356490i 0.901577 0.432619i \(-0.142410\pi\)
−0.997098 + 0.0761294i \(0.975744\pi\)
\(284\) 0 0
\(285\) −19.1235 7.52830i −1.13278 0.445938i
\(286\) 0 0
\(287\) −1.17744 −0.0695022
\(288\) 0 0
\(289\) −1.68344 −0.0990261
\(290\) 0 0
\(291\) −8.99356 + 7.15689i −0.527212 + 0.419544i
\(292\) 0 0
\(293\) 6.43453 + 24.0140i 0.375909 + 1.40291i 0.852012 + 0.523522i \(0.175382\pi\)
−0.476103 + 0.879390i \(0.657951\pi\)
\(294\) 0 0
\(295\) 4.47288 + 7.74726i 0.260421 + 0.451063i
\(296\) 0 0
\(297\) −3.58945 + 0.667607i −0.208281 + 0.0387385i
\(298\) 0 0
\(299\) 3.88683 14.5058i 0.224781 0.838895i
\(300\) 0 0
\(301\) 0.371735 + 1.38734i 0.0214265 + 0.0799647i
\(302\) 0 0
\(303\) −2.45006 + 21.5442i −0.140753 + 1.23768i
\(304\) 0 0
\(305\) 9.71720i 0.556406i
\(306\) 0 0
\(307\) 17.3773 + 17.3773i 0.991773 + 0.991773i 0.999966 0.00819381i \(-0.00260820\pi\)
−0.00819381 + 0.999966i \(0.502608\pi\)
\(308\) 0 0
\(309\) 13.5976 + 5.35294i 0.773541 + 0.304518i
\(310\) 0 0
\(311\) 11.9437 + 6.89568i 0.677264 + 0.391018i 0.798823 0.601566i \(-0.205456\pi\)
−0.121560 + 0.992584i \(0.538790\pi\)
\(312\) 0 0
\(313\) −17.6368 + 10.1826i −0.996890 + 0.575555i −0.907327 0.420426i \(-0.861881\pi\)
−0.0895635 + 0.995981i \(0.528547\pi\)
\(314\) 0 0
\(315\) 0.378883 0.713298i 0.0213476 0.0401898i
\(316\) 0 0
\(317\) 5.44301 20.3136i 0.305710 1.14092i −0.626623 0.779322i \(-0.715563\pi\)
0.932333 0.361601i \(-0.117770\pi\)
\(318\) 0 0
\(319\) 0.583952 + 0.337145i 0.0326950 + 0.0188765i
\(320\) 0 0
\(321\) −10.5614 + 14.2792i −0.589479 + 0.796985i
\(322\) 0 0
\(323\) −17.1906 + 17.1906i −0.956511 + 0.956511i
\(324\) 0 0
\(325\) 0.741113 + 0.741113i 0.0411096 + 0.0411096i
\(326\) 0 0
\(327\) 20.2548 + 14.9812i 1.12009 + 0.828461i
\(328\) 0 0
\(329\) −0.755823 + 1.30912i −0.0416699 + 0.0721743i
\(330\) 0 0
\(331\) −17.0629 4.57199i −0.937862 0.251299i −0.242658 0.970112i \(-0.578019\pi\)
−0.695204 + 0.718813i \(0.744686\pi\)
\(332\) 0 0
\(333\) 24.8926 + 13.2222i 1.36411 + 0.724573i
\(334\) 0 0
\(335\) −2.19618 3.80389i −0.119990 0.207829i
\(336\) 0 0
\(337\) −4.82538 + 8.35780i −0.262855 + 0.455279i −0.966999 0.254778i \(-0.917997\pi\)
0.704144 + 0.710057i \(0.251331\pi\)
\(338\) 0 0
\(339\) 13.4041 34.0493i 0.728012 1.84931i
\(340\) 0 0
\(341\) −2.81889 + 2.81889i −0.152652 + 0.152652i
\(342\) 0 0
\(343\) 1.78454 0.0963558
\(344\) 0 0
\(345\) 28.5744 + 3.24956i 1.53840 + 0.174950i
\(346\) 0 0
\(347\) −18.4037 + 4.93125i −0.987960 + 0.264723i −0.716393 0.697696i \(-0.754208\pi\)
−0.271567 + 0.962420i \(0.587542\pi\)
\(348\) 0 0
\(349\) −17.4744 4.68226i −0.935385 0.250636i −0.241236 0.970467i \(-0.577553\pi\)
−0.694150 + 0.719831i \(0.744219\pi\)
\(350\) 0 0
\(351\) 7.53530 6.44398i 0.402205 0.343954i
\(352\) 0 0
\(353\) 5.65589 3.26543i 0.301033 0.173801i −0.341874 0.939746i \(-0.611062\pi\)
0.642907 + 0.765944i \(0.277728\pi\)
\(354\) 0 0
\(355\) −7.75752 + 2.07862i −0.411726 + 0.110322i
\(356\) 0 0
\(357\) −0.594916 0.747590i −0.0314863 0.0395667i
\(358\) 0 0
\(359\) 22.8075i 1.20373i −0.798597 0.601866i \(-0.794424\pi\)
0.798597 0.601866i \(-0.205576\pi\)
\(360\) 0 0
\(361\) 12.6341i 0.664952i
\(362\) 0 0
\(363\) −6.66583 + 16.9326i −0.349865 + 0.888732i
\(364\) 0 0
\(365\) 3.82440 1.02475i 0.200178 0.0536377i
\(366\) 0 0
\(367\) −20.7702 + 11.9917i −1.08419 + 0.625959i −0.932025 0.362395i \(-0.881959\pi\)
−0.152169 + 0.988355i \(0.548626\pi\)
\(368\) 0 0
\(369\) 6.21519 26.9727i 0.323550 1.40414i
\(370\) 0 0
\(371\) −0.000451542 0 0.000120990i −2.34429e−5 0 6.28150e-6i
\(372\) 0 0
\(373\) −23.1710 + 6.20866i −1.19975 + 0.321472i −0.802733 0.596338i \(-0.796622\pi\)
−0.397018 + 0.917811i \(0.629955\pi\)
\(374\) 0 0
\(375\) −12.0580 + 16.3027i −0.622674 + 0.841866i
\(376\) 0 0
\(377\) −1.83115 −0.0943089
\(378\) 0 0
\(379\) −9.96634 + 9.96634i −0.511936 + 0.511936i −0.915119 0.403183i \(-0.867904\pi\)
0.403183 + 0.915119i \(0.367904\pi\)
\(380\) 0 0
\(381\) 22.4585 3.36128i 1.15059 0.172203i
\(382\) 0 0
\(383\) 2.30770 3.99705i 0.117918 0.204240i −0.801024 0.598632i \(-0.795711\pi\)
0.918942 + 0.394392i \(0.129045\pi\)
\(384\) 0 0
\(385\) 0.0945842 + 0.163825i 0.00482046 + 0.00834927i
\(386\) 0 0
\(387\) −33.7431 + 1.19254i −1.71526 + 0.0606202i
\(388\) 0 0
\(389\) −12.3565 3.31091i −0.626498 0.167870i −0.0684178 0.997657i \(-0.521795\pi\)
−0.558080 + 0.829787i \(0.688462\pi\)
\(390\) 0 0
\(391\) 17.0095 29.4612i 0.860205 1.48992i
\(392\) 0 0
\(393\) 7.80852 3.39719i 0.393887 0.171366i
\(394\) 0 0
\(395\) 5.18345 + 5.18345i 0.260808 + 0.260808i
\(396\) 0 0
\(397\) −3.70313 + 3.70313i −0.185855 + 0.185855i −0.793901 0.608047i \(-0.791953\pi\)
0.608047 + 0.793901i \(0.291953\pi\)
\(398\) 0 0
\(399\) −1.23524 0.140475i −0.0618392 0.00703252i
\(400\) 0 0
\(401\) 11.5871 + 6.68983i 0.578633 + 0.334074i 0.760590 0.649232i \(-0.224910\pi\)
−0.181957 + 0.983307i \(0.558243\pi\)
\(402\) 0 0
\(403\) 2.80199 10.4572i 0.139577 0.520908i
\(404\) 0 0
\(405\) 14.3402 + 12.4446i 0.712570 + 0.618376i
\(406\) 0 0
\(407\) −5.71713 + 3.30079i −0.283388 + 0.163614i
\(408\) 0 0
\(409\) −24.1053 13.9172i −1.19193 0.688161i −0.233185 0.972432i \(-0.574915\pi\)
−0.958744 + 0.284272i \(0.908248\pi\)
\(410\) 0 0
\(411\) 9.24896 7.36013i 0.456217 0.363048i
\(412\) 0 0
\(413\) 0.382639 + 0.382639i 0.0188285 + 0.0188285i
\(414\) 0 0
\(415\) 3.21387i 0.157763i
\(416\) 0 0
\(417\) −17.0063 + 7.39880i −0.832802 + 0.362321i
\(418\) 0 0
\(419\) −2.67387 9.97902i −0.130627 0.487507i 0.869350 0.494196i \(-0.164538\pi\)
−0.999978 + 0.00668892i \(0.997871\pi\)
\(420\) 0 0
\(421\) 7.99904 29.8528i 0.389849 1.45494i −0.440529 0.897738i \(-0.645209\pi\)
0.830379 0.557199i \(-0.188124\pi\)
\(422\) 0 0
\(423\) −25.9996 24.2246i −1.26414 1.17784i
\(424\) 0 0
\(425\) 1.18711 + 2.05613i 0.0575833 + 0.0997371i
\(426\) 0 0
\(427\) 0.152134 + 0.567770i 0.00736226 + 0.0274763i
\(428\) 0 0
\(429\) 0.343725 + 2.29662i 0.0165952 + 0.110882i
\(430\) 0 0
\(431\) 14.8449 0.715053 0.357526 0.933903i \(-0.383620\pi\)
0.357526 + 0.933903i \(0.383620\pi\)
\(432\) 0 0
\(433\) −32.1617 −1.54559 −0.772796 0.634654i \(-0.781143\pi\)
−0.772796 + 0.634654i \(0.781143\pi\)
\(434\) 0 0
\(435\) −0.519044 3.46802i −0.0248863 0.166279i
\(436\) 0 0
\(437\) −11.4569 42.7576i −0.548056 2.04537i
\(438\) 0 0
\(439\) 0.140035 + 0.242548i 0.00668352 + 0.0115762i 0.869348 0.494201i \(-0.164539\pi\)
−0.862664 + 0.505777i \(0.831206\pi\)
\(440\) 0 0
\(441\) −4.70440 + 20.4161i −0.224019 + 0.972197i
\(442\) 0 0
\(443\) 6.50011 24.2588i 0.308830 1.15257i −0.620768 0.783994i \(-0.713179\pi\)
0.929598 0.368574i \(-0.120154\pi\)
\(444\) 0 0
\(445\) 5.78605 + 21.5938i 0.274285 + 1.02365i
\(446\) 0 0
\(447\) 0.335492 0.145960i 0.0158682 0.00690367i
\(448\) 0 0
\(449\) 14.2885i 0.674318i 0.941448 + 0.337159i \(0.109466\pi\)
−0.941448 + 0.337159i \(0.890534\pi\)
\(450\) 0 0
\(451\) 4.58408 + 4.58408i 0.215856 + 0.215856i
\(452\) 0 0
\(453\) 3.11168 2.47621i 0.146200 0.116343i
\(454\) 0 0
\(455\) −0.444893 0.256859i −0.0208569 0.0120417i
\(456\) 0 0
\(457\) 24.1097 13.9198i 1.12781 0.651139i 0.184424 0.982847i \(-0.440958\pi\)
0.943382 + 0.331708i \(0.107625\pi\)
\(458\) 0 0
\(459\) 20.2660 9.68207i 0.945935 0.451921i
\(460\) 0 0
\(461\) 4.33776 16.1887i 0.202030 0.753985i −0.788305 0.615285i \(-0.789041\pi\)
0.990334 0.138700i \(-0.0442923\pi\)
\(462\) 0 0
\(463\) 26.1951 + 15.1238i 1.21739 + 0.702861i 0.964359 0.264597i \(-0.0852389\pi\)
0.253032 + 0.967458i \(0.418572\pi\)
\(464\) 0 0
\(465\) 20.5991 + 2.34259i 0.955261 + 0.108635i
\(466\) 0 0
\(467\) 15.9369 15.9369i 0.737469 0.737469i −0.234618 0.972088i \(-0.575384\pi\)
0.972088 + 0.234618i \(0.0753840\pi\)
\(468\) 0 0
\(469\) −0.187875 0.187875i −0.00867527 0.00867527i
\(470\) 0 0
\(471\) −26.6620 + 11.5996i −1.22852 + 0.534482i
\(472\) 0 0
\(473\) 3.95399 6.84851i 0.181805 0.314895i
\(474\) 0 0
\(475\) 2.98410 + 0.799588i 0.136920 + 0.0366876i
\(476\) 0 0
\(477\) 0.00515511 0.00970520i 0.000236036 0.000444371i
\(478\) 0 0
\(479\) −14.8100 25.6516i −0.676684 1.17205i −0.975973 0.217889i \(-0.930083\pi\)
0.299289 0.954163i \(-0.403251\pi\)
\(480\) 0 0
\(481\) 8.96385 15.5258i 0.408716 0.707917i
\(482\) 0 0
\(483\) 1.72046 0.257494i 0.0782837 0.0117164i
\(484\) 0 0
\(485\) −9.89919 + 9.89919i −0.449499 + 0.449499i
\(486\) 0 0
\(487\) −25.6320 −1.16150 −0.580749 0.814083i \(-0.697240\pi\)
−0.580749 + 0.814083i \(0.697240\pi\)
\(488\) 0 0
\(489\) 0.714315 0.965765i 0.0323024 0.0436734i
\(490\) 0 0
\(491\) 5.25069 1.40692i 0.236960 0.0634933i −0.138385 0.990379i \(-0.544191\pi\)
0.375345 + 0.926885i \(0.377524\pi\)
\(492\) 0 0
\(493\) −4.00671 1.07360i −0.180453 0.0483523i
\(494\) 0 0
\(495\) −4.25214 + 1.30196i −0.191119 + 0.0585190i
\(496\) 0 0
\(497\) −0.420724 + 0.242905i −0.0188720 + 0.0108958i
\(498\) 0 0
\(499\) 21.5779 5.78179i 0.965961 0.258829i 0.258840 0.965920i \(-0.416660\pi\)
0.707122 + 0.707092i \(0.249993\pi\)
\(500\) 0 0
\(501\) 6.84387 17.3849i 0.305762 0.776700i
\(502\) 0 0
\(503\) 24.7337i 1.10282i −0.834235 0.551410i \(-0.814090\pi\)
0.834235 0.551410i \(-0.185910\pi\)
\(504\) 0 0
\(505\) 26.4104i 1.17525i
\(506\) 0 0
\(507\) 10.0938 + 12.6842i 0.448284 + 0.563327i
\(508\) 0 0
\(509\) −8.62284 + 2.31048i −0.382201 + 0.102410i −0.444804 0.895628i \(-0.646726\pi\)
0.0626029 + 0.998039i \(0.480060\pi\)
\(510\) 0 0
\(511\) 0.207414 0.119751i 0.00917545 0.00529745i
\(512\) 0 0
\(513\) 9.73824 27.5552i 0.429954 1.21659i
\(514\) 0 0
\(515\) 17.1928 + 4.60680i 0.757606 + 0.203000i
\(516\) 0 0
\(517\) 8.03937 2.15414i 0.353571 0.0947391i
\(518\) 0 0
\(519\) 8.22413 + 0.935271i 0.360999 + 0.0410538i
\(520\) 0 0
\(521\) −14.1129 −0.618299 −0.309149 0.951013i \(-0.600044\pi\)
−0.309149 + 0.951013i \(0.600044\pi\)
\(522\) 0 0
\(523\) 27.5776 27.5776i 1.20588 1.20588i 0.233534 0.972349i \(-0.424971\pi\)
0.972349 0.233534i \(-0.0750289\pi\)
\(524\) 0 0
\(525\) −0.0444733 + 0.112972i −0.00194097 + 0.00493048i
\(526\) 0 0
\(527\) 12.2620 21.2384i 0.534141 0.925159i
\(528\) 0 0
\(529\) 19.4709 + 33.7246i 0.846561 + 1.46629i
\(530\) 0 0
\(531\) −10.7852 + 6.74567i −0.468039 + 0.292737i
\(532\) 0 0
\(533\) −17.0054 4.55660i −0.736588 0.197368i
\(534\) 0 0
\(535\) −10.8164 + 18.7345i −0.467632 + 0.809962i
\(536\) 0 0
\(537\) 6.94946 + 5.14007i 0.299891 + 0.221810i
\(538\) 0 0
\(539\) −3.46978 3.46978i −0.149454 0.149454i
\(540\) 0 0
\(541\) 7.82995 7.82995i 0.336636 0.336636i −0.518464 0.855100i \(-0.673496\pi\)
0.855100 + 0.518464i \(0.173496\pi\)
\(542\) 0 0
\(543\) −10.7040 + 14.4719i −0.459351 + 0.621050i
\(544\) 0 0
\(545\) 26.5746 + 15.3429i 1.13833 + 0.657216i
\(546\) 0 0
\(547\) −5.82566 + 21.7416i −0.249087 + 0.929606i 0.722198 + 0.691686i \(0.243132\pi\)
−0.971285 + 0.237919i \(0.923535\pi\)
\(548\) 0 0
\(549\) −13.8094 + 0.488049i −0.589373 + 0.0208294i
\(550\) 0 0
\(551\) −4.67438 + 2.69876i −0.199135 + 0.114971i
\(552\) 0 0
\(553\) 0.384019 + 0.221713i 0.0163301 + 0.00942821i
\(554\) 0 0
\(555\) 31.9453 + 12.5758i 1.35600 + 0.533814i
\(556\) 0 0
\(557\) 25.5918 + 25.5918i 1.08436 + 1.08436i 0.996097 + 0.0882628i \(0.0281315\pi\)
0.0882628 + 0.996097i \(0.471868\pi\)
\(558\) 0 0
\(559\) 21.4755i 0.908315i
\(560\) 0 0
\(561\) −0.594397 + 5.22672i −0.0250955 + 0.220672i
\(562\) 0 0
\(563\) −3.04735 11.3728i −0.128430 0.479308i 0.871508 0.490381i \(-0.163142\pi\)
−0.999939 + 0.0110721i \(0.996476\pi\)
\(564\) 0 0
\(565\) 11.5357 43.0520i 0.485313 1.81121i
\(566\) 0 0
\(567\) 1.03272 + 0.502617i 0.0433702 + 0.0211079i
\(568\) 0 0
\(569\) −0.819418 1.41927i −0.0343518 0.0594990i 0.848338 0.529454i \(-0.177603\pi\)
−0.882690 + 0.469955i \(0.844270\pi\)
\(570\) 0 0
\(571\) −8.76233 32.7015i −0.366692 1.36851i −0.865112 0.501578i \(-0.832753\pi\)
0.498420 0.866936i \(-0.333914\pi\)
\(572\) 0 0
\(573\) 7.01737 5.58427i 0.293155 0.233286i
\(574\) 0 0
\(575\) −4.32299 −0.180281
\(576\) 0 0
\(577\) −16.0429 −0.667873 −0.333936 0.942596i \(-0.608377\pi\)
−0.333936 + 0.942596i \(0.608377\pi\)
\(578\) 0 0
\(579\) 42.6036 + 16.7717i 1.77055 + 0.697007i
\(580\) 0 0
\(581\) 0.0503166 + 0.187784i 0.00208749 + 0.00779060i
\(582\) 0 0
\(583\) 0.00128692 + 0.00222901i 5.32988e−5 + 9.23163e-5i
\(584\) 0 0
\(585\) 8.23249 8.83571i 0.340372 0.365312i
\(586\) 0 0
\(587\) −9.90974 + 36.9837i −0.409019 + 1.52648i 0.387502 + 0.921869i \(0.373338\pi\)
−0.796521 + 0.604611i \(0.793329\pi\)
\(588\) 0 0
\(589\) −8.25918 30.8237i −0.340313 1.27007i
\(590\) 0 0
\(591\) −10.1353 7.49641i −0.416910 0.308361i
\(592\) 0 0
\(593\) 32.2597i 1.32475i −0.749173 0.662374i \(-0.769549\pi\)
0.749173 0.662374i \(-0.230451\pi\)
\(594\) 0 0
\(595\) −0.822870 0.822870i −0.0337344 0.0337344i
\(596\) 0 0
\(597\) 0.352351 + 2.35425i 0.0144207 + 0.0963529i
\(598\) 0 0
\(599\) −11.7417 6.77905i −0.479751 0.276984i 0.240562 0.970634i \(-0.422668\pi\)
−0.720313 + 0.693649i \(0.756002\pi\)
\(600\) 0 0
\(601\) 0.496416 0.286606i 0.0202492 0.0116909i −0.489841 0.871812i \(-0.662945\pi\)
0.510090 + 0.860121i \(0.329612\pi\)
\(602\) 0 0
\(603\) 5.29553 3.31211i 0.215651 0.134880i
\(604\) 0 0
\(605\) −5.73669 + 21.4096i −0.233230 + 0.870425i
\(606\) 0 0
\(607\) 29.1103 + 16.8068i 1.18155 + 0.682168i 0.956373 0.292149i \(-0.0943705\pi\)
0.225178 + 0.974318i \(0.427704\pi\)
\(608\) 0 0
\(609\) −0.0846230 0.194508i −0.00342910 0.00788185i
\(610\) 0 0
\(611\) −15.9823 + 15.9823i −0.646576 + 0.646576i
\(612\) 0 0
\(613\) 26.5621 + 26.5621i 1.07283 + 1.07283i 0.997130 + 0.0757042i \(0.0241205\pi\)
0.0757042 + 0.997130i \(0.475880\pi\)
\(614\) 0 0
\(615\) 3.80951 33.4983i 0.153614 1.35078i
\(616\) 0 0
\(617\) −11.8730 + 20.5647i −0.477991 + 0.827904i −0.999682 0.0252305i \(-0.991968\pi\)
0.521691 + 0.853134i \(0.325301\pi\)
\(618\) 0 0
\(619\) 17.1798 + 4.60330i 0.690513 + 0.185022i 0.586977 0.809603i \(-0.300318\pi\)
0.103535 + 0.994626i \(0.466984\pi\)
\(620\) 0 0
\(621\) −3.18290 + 40.7713i −0.127725 + 1.63610i
\(622\) 0 0
\(623\) 0.676151 + 1.17113i 0.0270894 + 0.0469202i
\(624\) 0 0
\(625\) −10.9760 + 19.0109i −0.439038 + 0.760436i
\(626\) 0 0
\(627\) 4.26219 + 5.35600i 0.170216 + 0.213898i
\(628\) 0 0
\(629\) 28.7164 28.7164i 1.14500 1.14500i
\(630\) 0 0
\(631\) −16.0572 −0.639228 −0.319614 0.947548i \(-0.603553\pi\)
−0.319614 + 0.947548i \(0.603553\pi\)
\(632\) 0 0
\(633\) −7.96776 18.3141i −0.316690 0.727919i
\(634\) 0 0
\(635\) 26.7172 7.15884i 1.06024 0.284090i
\(636\) 0 0
\(637\) 12.8717 + 3.44897i 0.509997 + 0.136653i
\(638\) 0 0
\(639\) −3.34362 10.9201i −0.132272 0.431991i
\(640\) 0 0
\(641\) 35.3930 20.4342i 1.39794 0.807102i 0.403764 0.914863i \(-0.367702\pi\)
0.994177 + 0.107761i \(0.0343683\pi\)
\(642\) 0 0
\(643\) −33.2700 + 8.91467i −1.31204 + 0.351560i −0.845991 0.533198i \(-0.820990\pi\)
−0.466050 + 0.884758i \(0.654323\pi\)
\(644\) 0 0
\(645\) −40.6725 + 6.08728i −1.60148 + 0.239686i
\(646\) 0 0
\(647\) 28.1696i 1.10746i 0.832696 + 0.553730i \(0.186796\pi\)
−0.832696 + 0.553730i \(0.813204\pi\)
\(648\) 0 0
\(649\) 2.97943i 0.116953i
\(650\) 0 0
\(651\) 1.24027 0.185626i 0.0486099 0.00727525i
\(652\) 0 0
\(653\) 8.11558 2.17456i 0.317587 0.0850972i −0.0965042 0.995333i \(-0.530766\pi\)
0.414091 + 0.910235i \(0.364099\pi\)
\(654\) 0 0
\(655\) 8.98247 5.18603i 0.350974 0.202635i
\(656\) 0 0
\(657\) 1.64838 + 5.38352i 0.0643096 + 0.210031i
\(658\) 0 0
\(659\) 24.7356 + 6.62788i 0.963562 + 0.258186i 0.706107 0.708105i \(-0.250450\pi\)
0.257455 + 0.966290i \(0.417116\pi\)
\(660\) 0 0
\(661\) 20.3200 5.44473i 0.790357 0.211775i 0.159011 0.987277i \(-0.449170\pi\)
0.631346 + 0.775501i \(0.282503\pi\)
\(662\) 0 0
\(663\) −5.69910 13.0995i −0.221335 0.508742i
\(664\) 0 0
\(665\) −1.51424 −0.0587198
\(666\) 0 0
\(667\) 5.34063 5.34063i 0.206790 0.206790i
\(668\) 0 0
\(669\) −22.3939 28.1408i −0.865798 1.08799i
\(670\) 0 0
\(671\) 1.61818 2.80277i 0.0624691 0.108200i
\(672\) 0 0
\(673\) −12.5221 21.6890i −0.482693 0.836048i 0.517110 0.855919i \(-0.327008\pi\)
−0.999803 + 0.0198709i \(0.993674\pi\)
\(674\) 0 0
\(675\) −2.35318 1.61511i −0.0905741 0.0621658i
\(676\) 0 0
\(677\) −18.3334 4.91241i −0.704608 0.188799i −0.111314 0.993785i \(-0.535506\pi\)
−0.593294 + 0.804986i \(0.702173\pi\)
\(678\) 0 0
\(679\) −0.423420 + 0.733386i −0.0162494 + 0.0281448i
\(680\) 0 0
\(681\) 1.55083 13.6370i 0.0594281 0.522570i
\(682\) 0 0
\(683\) 3.70253 + 3.70253i 0.141673 + 0.141673i 0.774386 0.632713i \(-0.218059\pi\)
−0.632713 + 0.774386i \(0.718059\pi\)
\(684\) 0 0
\(685\) 10.1803 10.1803i 0.388969 0.388969i
\(686\) 0 0
\(687\) 0.320978 + 0.737774i 0.0122461 + 0.0281478i
\(688\) 0 0
\(689\) −0.00605326 0.00349485i −0.000230611 0.000133143i
\(690\) 0 0
\(691\) 2.19392 8.18783i 0.0834607 0.311480i −0.911558 0.411173i \(-0.865119\pi\)
0.995018 + 0.0996929i \(0.0317860\pi\)
\(692\) 0 0
\(693\) −0.228066 + 0.142645i −0.00866352 + 0.00541863i
\(694\) 0 0
\(695\) −19.5631 + 11.2947i −0.742070 + 0.428434i
\(696\) 0 0
\(697\) −34.5379 19.9405i −1.30822 0.755299i
\(698\) 0 0
\(699\) −2.34258 15.6521i −0.0886045 0.592015i
\(700\) 0 0
\(701\) −16.2977 16.2977i −0.615557 0.615557i 0.328831 0.944389i \(-0.393345\pi\)
−0.944389 + 0.328831i \(0.893345\pi\)
\(702\) 0 0
\(703\) 52.8439i 1.99304i
\(704\) 0 0
\(705\) −34.7992 25.7388i −1.31062 0.969378i
\(706\) 0 0
\(707\) 0.413484 + 1.54314i 0.0155507 + 0.0580359i
\(708\) 0 0
\(709\) 4.99557 18.6437i 0.187613 0.700180i −0.806443 0.591311i \(-0.798610\pi\)
0.994056 0.108869i \(-0.0347229\pi\)
\(710\) 0 0
\(711\) −7.10604 + 7.62672i −0.266497 + 0.286024i
\(712\) 0 0
\(713\) 22.3267 + 38.6710i 0.836142 + 1.44824i
\(714\) 0 0
\(715\) 0.732065 + 2.73210i 0.0273777 + 0.102175i
\(716\) 0 0
\(717\) −11.7917 4.64202i −0.440370 0.173359i
\(718\) 0 0
\(719\) −24.2401 −0.904003 −0.452002 0.892017i \(-0.649290\pi\)
−0.452002 + 0.892017i \(0.649290\pi\)
\(720\) 0 0
\(721\) 1.07669 0.0400980
\(722\) 0 0
\(723\) 3.38438 2.69322i 0.125866 0.100162i
\(724\) 0 0
\(725\) 0.136428 + 0.509157i 0.00506682 + 0.0189096i
\(726\) 0 0
\(727\) 8.10074 + 14.0309i 0.300440 + 0.520377i 0.976236 0.216712i \(-0.0695332\pi\)
−0.675796 + 0.737089i \(0.736200\pi\)
\(728\) 0 0
\(729\) −16.9652 + 21.0044i −0.628340 + 0.777939i
\(730\) 0 0
\(731\) −12.5910 + 46.9902i −0.465694 + 1.73800i
\(732\) 0 0
\(733\) −2.15479 8.04180i −0.0795891 0.297031i 0.914646 0.404257i \(-0.132470\pi\)
−0.994235 + 0.107226i \(0.965803\pi\)
\(734\) 0 0
\(735\) −2.88349 + 25.3555i −0.106359 + 0.935251i
\(736\) 0 0
\(737\) 1.46289i 0.0538863i
\(738\) 0 0
\(739\) −22.8405 22.8405i −0.840203 0.840203i 0.148682 0.988885i \(-0.452497\pi\)
−0.988885 + 0.148682i \(0.952497\pi\)
\(740\) 0 0
\(741\) −17.2966 6.80909i −0.635405 0.250138i
\(742\) 0 0
\(743\) 7.19608 + 4.15466i 0.263999 + 0.152420i 0.626157 0.779697i \(-0.284627\pi\)
−0.362159 + 0.932116i \(0.617960\pi\)
\(744\) 0 0
\(745\) 0.385931 0.222817i 0.0141394 0.00816339i
\(746\) 0 0
\(747\) −4.56734 + 0.161417i −0.167110 + 0.00590595i
\(748\) 0 0
\(749\) −0.338684 + 1.26399i −0.0123752 + 0.0461850i
\(750\) 0 0
\(751\) 28.0215 + 16.1782i 1.02252 + 0.590352i 0.914833 0.403833i \(-0.132322\pi\)
0.107687 + 0.994185i \(0.465656\pi\)
\(752\) 0 0
\(753\) 4.04390 5.46742i 0.147368 0.199244i
\(754\) 0 0
\(755\) 3.42502 3.42502i 0.124649 0.124649i
\(756\) 0 0
\(757\) 3.76265 + 3.76265i 0.136756 + 0.136756i 0.772171 0.635415i \(-0.219171\pi\)
−0.635415 + 0.772171i \(0.719171\pi\)
\(758\) 0 0
\(759\) −7.70069 5.69570i −0.279517 0.206741i
\(760\) 0 0
\(761\) −13.1168 + 22.7190i −0.475485 + 0.823564i −0.999606 0.0280801i \(-0.991061\pi\)
0.524121 + 0.851644i \(0.324394\pi\)
\(762\) 0 0
\(763\) 1.79295 + 0.480419i 0.0649090 + 0.0173923i
\(764\) 0 0
\(765\) 23.1938 14.5066i 0.838572 0.524489i
\(766\) 0 0
\(767\) 4.04557 + 7.00713i 0.146077 + 0.253013i
\(768\) 0 0
\(769\) −9.31591 + 16.1356i −0.335940 + 0.581865i −0.983665 0.180009i \(-0.942387\pi\)
0.647725 + 0.761874i \(0.275721\pi\)
\(770\) 0 0
\(771\) 7.04741 17.9019i 0.253806 0.644722i
\(772\) 0 0
\(773\) 4.69430 4.69430i 0.168842 0.168842i −0.617628 0.786470i \(-0.711906\pi\)
0.786470 + 0.617628i \(0.211906\pi\)
\(774\) 0 0
\(775\) −3.11641 −0.111945
\(776\) 0 0
\(777\) 2.06343 + 0.234659i 0.0740252 + 0.00841834i
\(778\) 0 0
\(779\) −50.1255 + 13.4311i −1.79593 + 0.481218i
\(780\) 0 0
\(781\) 2.58368 + 0.692294i 0.0924512 + 0.0247722i
\(782\) 0 0
\(783\) 4.90245 0.911813i 0.175199 0.0325855i
\(784\) 0 0
\(785\) −30.6704 + 17.7076i −1.09467 + 0.632010i
\(786\) 0 0
\(787\) −43.7964 + 11.7352i −1.56117 + 0.418315i −0.933035 0.359786i \(-0.882850\pi\)
−0.628139 + 0.778101i \(0.716183\pi\)
\(788\) 0 0
\(789\) 20.7128 + 26.0283i 0.737394 + 0.926631i
\(790\) 0 0
\(791\) 2.69611i 0.0958625i
\(792\) 0 0
\(793\) 8.78888i 0.312102i
\(794\) 0 0
\(795\) 0.00490310 0.0124549i 0.000173895 0.000441731i
\(796\) 0 0
\(797\) −36.4751 + 9.77347i −1.29201 + 0.346194i −0.838425 0.545017i \(-0.816523\pi\)
−0.453589 + 0.891211i \(0.649857\pi\)
\(798\) 0 0
\(799\) −44.3411 + 25.6004i −1.56868 + 0.905676i
\(800\) 0 0
\(801\) −30.3971 + 9.30731i −1.07403 + 0.328858i
\(802\) 0 0
\(803\) −1.27374 0.341296i −0.0449492 0.0120441i
\(804\) 0 0
\(805\) 2.04670 0.548411i 0.0721366 0.0193289i
\(806\) 0 0
\(807\) 11.1645 15.0946i 0.393008 0.531353i
\(808\) 0 0
\(809\) 24.0071 0.844045 0.422023 0.906585i \(-0.361320\pi\)
0.422023 + 0.906585i \(0.361320\pi\)
\(810\) 0 0
\(811\) 0.243845 0.243845i 0.00856256 0.00856256i −0.702813 0.711375i \(-0.748073\pi\)
0.711375 + 0.702813i \(0.248073\pi\)
\(812\) 0 0
\(813\) 22.2346 3.32776i 0.779800 0.116710i
\(814\) 0 0
\(815\) 0.731560 1.26710i 0.0256254 0.0443846i
\(816\) 0 0
\(817\) 31.6507 + 54.8205i 1.10732 + 1.91793i
\(818\) 0 0
\(819\) 0.342686 0.645154i 0.0119744 0.0225435i
\(820\) 0 0
\(821\) −46.3025 12.4067i −1.61597 0.432998i −0.666156 0.745813i \(-0.732061\pi\)
−0.949814 + 0.312815i \(0.898728\pi\)
\(822\) 0 0
\(823\) 0.737958 1.27818i 0.0257236 0.0445546i −0.852877 0.522112i \(-0.825144\pi\)
0.878601 + 0.477557i \(0.158478\pi\)
\(824\) 0 0
\(825\) 0.612973 0.266682i 0.0213410 0.00928466i
\(826\) 0 0
\(827\) −11.5464 11.5464i −0.401509 0.401509i 0.477256 0.878764i \(-0.341632\pi\)
−0.878764 + 0.477256i \(0.841632\pi\)
\(828\) 0 0
\(829\) 34.7961 34.7961i 1.20852 1.20852i 0.237010 0.971507i \(-0.423833\pi\)
0.971507 0.237010i \(-0.0761675\pi\)
\(830\) 0 0
\(831\) −42.7303 4.85940i −1.48230 0.168571i
\(832\) 0 0
\(833\) 26.1424 + 15.0933i 0.905781 + 0.522953i
\(834\) 0 0
\(835\) 5.88992 21.9815i 0.203829 0.760700i
\(836\) 0 0
\(837\) −2.29453 + 29.3917i −0.0793106 + 1.01593i
\(838\) 0 0
\(839\) 41.3065 23.8483i 1.42606 0.823335i 0.429252 0.903185i \(-0.358777\pi\)
0.996807 + 0.0798497i \(0.0254440\pi\)
\(840\) 0 0
\(841\) 24.3172 + 14.0395i 0.838523 + 0.484122i
\(842\) 0 0
\(843\) 10.0053 7.96200i 0.344601 0.274226i
\(844\) 0 0
\(845\) 13.9615 + 13.9615i 0.480290 + 0.480290i
\(846\) 0 0
\(847\) 1.34076i 0.0460692i
\(848\) 0 0
\(849\) 9.86087 4.29009i 0.338424 0.147236i
\(850\) 0 0
\(851\) 19.1384 + 71.4254i 0.656055 + 2.44843i
\(852\) 0 0
\(853\) −11.3911 + 42.5120i −0.390023 + 1.45558i 0.440072 + 0.897962i \(0.354953\pi\)
−0.830095 + 0.557622i \(0.811714\pi\)
\(854\) 0 0
\(855\) 7.99302 34.6881i 0.273355 1.18631i
\(856\) 0 0
\(857\) −4.36756 7.56483i −0.149193 0.258410i 0.781736 0.623609i \(-0.214334\pi\)
−0.930929 + 0.365199i \(0.881001\pi\)
\(858\) 0 0
\(859\) −12.9902 48.4800i −0.443219 1.65411i −0.720597 0.693354i \(-0.756132\pi\)
0.277378 0.960761i \(-0.410534\pi\)
\(860\) 0 0
\(861\) −0.301865 2.01693i −0.0102875 0.0687366i
\(862\) 0 0
\(863\) −3.87853 −0.132027 −0.0660134 0.997819i \(-0.521028\pi\)
−0.0660134 + 0.997819i \(0.521028\pi\)
\(864\) 0 0
\(865\) 10.0817 0.342789
\(866\) 0 0
\(867\) −0.431590 2.88369i −0.0146576 0.0979353i
\(868\) 0 0
\(869\) −0.631896 2.35827i −0.0214356 0.0799988i
\(870\) 0 0
\(871\) −1.98636 3.44049i −0.0673054 0.116576i
\(872\) 0 0
\(873\) −14.5653 13.5709i −0.492959 0.459305i
\(874\) 0 0
\(875\) −0.386679 + 1.44311i −0.0130721 + 0.0487859i
\(876\) 0 0
\(877\) 5.43592 + 20.2871i 0.183558 + 0.685047i 0.994935 + 0.100524i \(0.0320519\pi\)
−0.811377 + 0.584524i \(0.801281\pi\)
\(878\) 0 0
\(879\) −39.4856 + 17.1787i −1.33182 + 0.579424i
\(880\) 0 0
\(881\) 7.45496i 0.251164i −0.992083 0.125582i \(-0.959920\pi\)
0.992083 0.125582i \(-0.0400798\pi\)
\(882\) 0 0
\(883\) 9.55597 + 9.55597i 0.321584 + 0.321584i 0.849375 0.527791i \(-0.176979\pi\)
−0.527791 + 0.849375i \(0.676979\pi\)
\(884\) 0 0
\(885\) −12.1241 + 9.64811i −0.407547 + 0.324318i
\(886\) 0 0
\(887\) 41.0581 + 23.7049i 1.37860 + 0.795934i 0.991991 0.126311i \(-0.0403138\pi\)
0.386607 + 0.922245i \(0.373647\pi\)
\(888\) 0 0
\(889\) 1.44899 0.836573i 0.0485975 0.0280578i
\(890\) 0 0
\(891\) −2.06383 5.97747i −0.0691409 0.200253i
\(892\) 0 0
\(893\) −17.2433 + 64.3530i −0.577027 + 2.15349i
\(894\) 0 0
\(895\) 9.11780 + 5.26416i 0.304774 + 0.175962i
\(896\) 0 0
\(897\) 25.8446 + 2.93912i 0.862926 + 0.0981342i
\(898\) 0 0
\(899\) 3.85003 3.85003i 0.128406 0.128406i
\(900\) 0 0
\(901\) −0.0111960 0.0111960i −0.000372994 0.000372994i
\(902\) 0 0
\(903\) −2.28116 + 0.992448i −0.0759124 + 0.0330266i
\(904\) 0 0
\(905\) −10.9624 + 18.9874i −0.364402 + 0.631162i
\(906\) 0 0
\(907\) −13.6705 3.66301i −0.453923 0.121628i 0.0246114 0.999697i \(-0.492165\pi\)
−0.478534 + 0.878069i \(0.658832\pi\)
\(908\) 0 0
\(909\) −37.5327 + 1.32647i −1.24488 + 0.0439963i
\(910\) 0 0
\(911\) 20.0062 + 34.6517i 0.662834 + 1.14806i 0.979868 + 0.199648i \(0.0639799\pi\)
−0.317034 + 0.948414i \(0.602687\pi\)
\(912\) 0 0
\(913\) 0.535197 0.926988i 0.0177124 0.0306788i
\(914\) 0 0
\(915\) −16.6453 + 2.49123i −0.550277 + 0.0823576i
\(916\) 0 0
\(917\) 0.443647 0.443647i 0.0146505 0.0146505i
\(918\) 0 0
\(919\) 18.6876 0.616446 0.308223 0.951314i \(-0.400266\pi\)
0.308223 + 0.951314i \(0.400266\pi\)
\(920\) 0 0
\(921\) −25.3117 + 34.2218i −0.834049 + 1.12765i
\(922\) 0 0
\(923\) −7.01641 + 1.88004i −0.230948 + 0.0618823i
\(924\) 0 0
\(925\) −4.98486 1.33569i −0.163901 0.0439172i
\(926\) 0 0
\(927\) −5.68337 + 24.6647i −0.186666 + 0.810094i
\(928\) 0 0
\(929\) −8.76538 + 5.06070i −0.287583 + 0.166036i −0.636851 0.770987i \(-0.719763\pi\)
0.349268 + 0.937023i \(0.386430\pi\)
\(930\) 0 0
\(931\) 37.9409 10.1662i 1.24346 0.333185i
\(932\) 0 0
\(933\) −8.75007 + 22.2270i −0.286464 + 0.727681i
\(934\) 0 0
\(935\) 6.40729i 0.209541i
\(936\) 0 0
\(937\) 19.1375i 0.625194i −0.949886 0.312597i \(-0.898801\pi\)
0.949886 0.312597i \(-0.101199\pi\)
\(938\) 0 0
\(939\) −21.9641 27.6008i −0.716772 0.900717i
\(940\) 0 0
\(941\) 41.4559 11.1081i 1.35142 0.362113i 0.490764 0.871292i \(-0.336718\pi\)
0.860660 + 0.509179i \(0.170051\pi\)
\(942\) 0 0
\(943\) 62.8868 36.3077i 2.04788 1.18234i
\(944\) 0 0
\(945\) 1.31899 + 0.466145i 0.0429069 + 0.0151637i
\(946\) 0 0
\(947\) −45.0535 12.0721i −1.46404 0.392289i −0.563159 0.826349i \(-0.690414\pi\)
−0.900884 + 0.434060i \(0.857081\pi\)
\(948\) 0 0
\(949\) 3.45904 0.926848i 0.112285 0.0300867i
\(950\) 0 0
\(951\) 36.1920 + 4.11585i 1.17361 + 0.133466i
\(952\) 0 0
\(953\) 20.2249 0.655149 0.327575 0.944825i \(-0.393769\pi\)
0.327575 + 0.944825i \(0.393769\pi\)
\(954\) 0 0
\(955\) 7.72399 7.72399i 0.249943 0.249943i
\(956\) 0 0
\(957\) −0.427810 + 1.08673i −0.0138291 + 0.0351289i
\(958\) 0 0
\(959\) 0.435445 0.754212i 0.0140612 0.0243548i
\(960\) 0 0
\(961\) 0.595170 + 1.03087i 0.0191990 + 0.0332537i
\(962\) 0 0
\(963\) −27.1675 14.4305i −0.875459 0.465018i
\(964\) 0 0
\(965\) 53.8680 + 14.4339i 1.73407 + 0.464644i
\(966\) 0 0
\(967\) −15.9815 + 27.6807i −0.513930 + 0.890152i 0.485940 + 0.873992i \(0.338477\pi\)
−0.999869 + 0.0161601i \(0.994856\pi\)
\(968\) 0 0
\(969\) −33.8542 25.0398i −1.08755 0.804395i
\(970\) 0 0
\(971\) 4.69660 + 4.69660i 0.150721 + 0.150721i 0.778440 0.627719i \(-0.216011\pi\)
−0.627719 + 0.778440i \(0.716011\pi\)
\(972\) 0 0
\(973\) −0.966226 + 0.966226i −0.0309758 + 0.0309758i
\(974\) 0 0
\(975\) −1.07950 + 1.45951i −0.0345718 + 0.0467417i
\(976\) 0 0
\(977\) −22.7888 13.1571i −0.729079 0.420934i 0.0890064 0.996031i \(-0.471631\pi\)
−0.818085 + 0.575097i \(0.804964\pi\)
\(978\) 0 0
\(979\) 1.92707 7.19193i 0.0615895 0.229855i
\(980\) 0 0
\(981\) −20.4695 + 38.5367i −0.653542 + 1.23038i
\(982\) 0 0
\(983\) −19.6448 + 11.3420i −0.626573 + 0.361752i −0.779424 0.626497i \(-0.784488\pi\)
0.152851 + 0.988249i \(0.451155\pi\)
\(984\) 0 0
\(985\) −13.2976 7.67740i −0.423698 0.244622i
\(986\) 0 0
\(987\) −2.43627 0.959079i −0.0775472 0.0305278i
\(988\) 0 0
\(989\) −62.6343 62.6343i −1.99165 1.99165i
\(990\) 0 0
\(991\) 13.0577i 0.414793i 0.978257 + 0.207396i \(0.0664990\pi\)
−0.978257 + 0.207396i \(0.933501\pi\)
\(992\) 0 0
\(993\) 3.45722 30.4004i 0.109711 0.964728i
\(994\) 0 0
\(995\) 0.750435 + 2.80066i 0.0237904 + 0.0887870i
\(996\) 0 0
\(997\) −2.05844 + 7.68222i −0.0651916 + 0.243298i −0.990831 0.135109i \(-0.956861\pi\)
0.925639 + 0.378407i \(0.123528\pi\)
\(998\) 0 0
\(999\) −16.2675 + 46.0301i −0.514680 + 1.45633i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.y.a.527.11 88
3.2 odd 2 1728.2.z.a.719.5 88
4.3 odd 2 144.2.u.a.59.19 yes 88
9.2 odd 6 inner 576.2.y.a.335.22 88
9.7 even 3 1728.2.z.a.143.5 88
12.11 even 2 432.2.v.a.395.4 88
16.3 odd 4 inner 576.2.y.a.239.22 88
16.13 even 4 144.2.u.a.131.19 yes 88
36.7 odd 6 432.2.v.a.251.4 88
36.11 even 6 144.2.u.a.11.19 88
48.29 odd 4 432.2.v.a.179.4 88
48.35 even 4 1728.2.z.a.1583.5 88
144.29 odd 12 144.2.u.a.83.19 yes 88
144.61 even 12 432.2.v.a.35.4 88
144.83 even 12 inner 576.2.y.a.47.11 88
144.115 odd 12 1728.2.z.a.1007.5 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.19 88 36.11 even 6
144.2.u.a.59.19 yes 88 4.3 odd 2
144.2.u.a.83.19 yes 88 144.29 odd 12
144.2.u.a.131.19 yes 88 16.13 even 4
432.2.v.a.35.4 88 144.61 even 12
432.2.v.a.179.4 88 48.29 odd 4
432.2.v.a.251.4 88 36.7 odd 6
432.2.v.a.395.4 88 12.11 even 2
576.2.y.a.47.11 88 144.83 even 12 inner
576.2.y.a.239.22 88 16.3 odd 4 inner
576.2.y.a.335.22 88 9.2 odd 6 inner
576.2.y.a.527.11 88 1.1 even 1 trivial
1728.2.z.a.143.5 88 9.7 even 3
1728.2.z.a.719.5 88 3.2 odd 2
1728.2.z.a.1007.5 88 144.115 odd 12
1728.2.z.a.1583.5 88 48.35 even 4