L(s) = 1 | + (0.256 + 1.71i)3-s + (0.546 + 2.03i)5-s + (0.0638 + 0.110i)7-s + (−2.86 + 0.878i)9-s + (0.181 − 0.678i)11-s + (0.493 + 1.84i)13-s + (−3.35 + 1.45i)15-s + 4.32i·17-s + (3.97 + 3.97i)19-s + (−0.172 + 0.137i)21-s + (−6.81 − 3.93i)23-s + (0.475 − 0.274i)25-s + (−2.23 − 4.68i)27-s + (−0.248 + 0.926i)29-s + (−4.91 − 2.83i)31-s + ⋯ |
L(s) = 1 | + (0.148 + 0.988i)3-s + (0.244 + 0.911i)5-s + (0.0241 + 0.0417i)7-s + (−0.956 + 0.292i)9-s + (0.0548 − 0.204i)11-s + (0.136 + 0.511i)13-s + (−0.865 + 0.376i)15-s + 1.04i·17-s + (0.912 + 0.912i)19-s + (−0.0377 + 0.0300i)21-s + (−1.42 − 0.820i)23-s + (0.0951 − 0.0549i)25-s + (−0.431 − 0.902i)27-s + (−0.0461 + 0.172i)29-s + (−0.882 − 0.509i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.628 - 0.778i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.628 - 0.778i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.603362 + 1.26222i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.603362 + 1.26222i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.256 - 1.71i)T \) |
good | 5 | \( 1 + (-0.546 - 2.03i)T + (-4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-0.0638 - 0.110i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.181 + 0.678i)T + (-9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-0.493 - 1.84i)T + (-11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 - 4.32iT - 17T^{2} \) |
| 19 | \( 1 + (-3.97 - 3.97i)T + 19iT^{2} \) |
| 23 | \( 1 + (6.81 + 3.93i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.248 - 0.926i)T + (-25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (4.91 + 2.83i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (6.64 + 6.64i)T + 37iT^{2} \) |
| 41 | \( 1 + (4.61 - 7.99i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-10.8 - 2.91i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (-5.92 - 10.2i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.00259 - 0.00259i)T - 53iT^{2} \) |
| 59 | \( 1 + (-4.09 + 1.09i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-4.44 - 1.19i)T + (52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (2.01 - 0.538i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 3.80iT - 71T^{2} \) |
| 73 | \( 1 + 1.87iT - 73T^{2} \) |
| 79 | \( 1 + (-3.00 + 1.73i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.47 - 0.394i)T + (71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 - 10.5T + 89T^{2} \) |
| 97 | \( 1 + (-3.31 - 5.74i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76079760898239954879366296084, −10.28946250034314320573081669810, −9.435547492385783305190793882612, −8.513513243137379691218247514360, −7.57583301304150175840840778206, −6.28605745598711886652393439370, −5.64285425798134821859581581405, −4.22852283767677114377651734654, −3.45341887366654547177300865636, −2.18966266656661956781387098305,
0.78573467951869605145796759347, 2.12032854348750680467225306996, 3.48437542781548202440443261967, 5.07742674051647526618718681326, 5.69805145898364977652437036998, 7.02864599761469126595505202898, 7.61270388299771073795958959522, 8.737636734345034363899493590536, 9.238281238556484377525093218989, 10.37862500611624043034478716733