Properties

Label 560.2.cu.a
Level $560$
Weight $2$
Character orbit 560.cu
Analytic conductor $4.472$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,2,Mod(207,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 0, 3, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.207"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.cu (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{24}^{5} + 2 \zeta_{24}) q^{3} + (2 \zeta_{24}^{6} + \cdots - 2 \zeta_{24}^{2}) q^{5} + (3 \zeta_{24}^{7} - \zeta_{24}^{3}) q^{7} + (\zeta_{24}^{7} - \zeta_{24}^{5} + \cdots + 2 \zeta_{24}) q^{11}+ \cdots + (11 \zeta_{24}^{6} + 11) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} - 16 q^{13} + 8 q^{17} - 12 q^{21} + 12 q^{25} + 12 q^{33} - 32 q^{37} - 8 q^{41} + 4 q^{53} + 24 q^{57} + 12 q^{61} - 24 q^{65} - 8 q^{73} - 12 q^{77} - 36 q^{81} - 16 q^{85} + 24 q^{93}+ \cdots + 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-\zeta_{24}^{4}\) \(\zeta_{24}^{6}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
207.1
−0.965926 0.258819i
0.965926 + 0.258819i
−0.965926 + 0.258819i
0.965926 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
0.258819 0.965926i
−0.258819 + 0.965926i
0 −1.67303 + 0.448288i 0 −1.23205 + 1.86603i 0 1.48356 2.19067i 0 0 0
207.2 0 1.67303 0.448288i 0 −1.23205 + 1.86603i 0 −1.48356 + 2.19067i 0 0 0
303.1 0 −1.67303 0.448288i 0 −1.23205 1.86603i 0 1.48356 + 2.19067i 0 0 0
303.2 0 1.67303 + 0.448288i 0 −1.23205 1.86603i 0 −1.48356 2.19067i 0 0 0
527.1 0 −0.448288 + 1.67303i 0 2.23205 + 0.133975i 0 −2.19067 + 1.48356i 0 0 0
527.2 0 0.448288 1.67303i 0 2.23205 + 0.133975i 0 2.19067 1.48356i 0 0 0
543.1 0 −0.448288 1.67303i 0 2.23205 0.133975i 0 −2.19067 1.48356i 0 0 0
543.2 0 0.448288 + 1.67303i 0 2.23205 0.133975i 0 2.19067 + 1.48356i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 207.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.c odd 4 1 inner
7.c even 3 1 inner
20.e even 4 1 inner
28.g odd 6 1 inner
35.l odd 12 1 inner
140.w even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.cu.a 8
4.b odd 2 1 inner 560.2.cu.a 8
5.c odd 4 1 inner 560.2.cu.a 8
7.c even 3 1 inner 560.2.cu.a 8
20.e even 4 1 inner 560.2.cu.a 8
28.g odd 6 1 inner 560.2.cu.a 8
35.l odd 12 1 inner 560.2.cu.a 8
140.w even 12 1 inner 560.2.cu.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
560.2.cu.a 8 1.a even 1 1 trivial
560.2.cu.a 8 4.b odd 2 1 inner
560.2.cu.a 8 5.c odd 4 1 inner
560.2.cu.a 8 7.c even 3 1 inner
560.2.cu.a 8 20.e even 4 1 inner
560.2.cu.a 8 28.g odd 6 1 inner
560.2.cu.a 8 35.l odd 12 1 inner
560.2.cu.a 8 140.w even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 9T_{3}^{4} + 81 \) acting on \(S_{2}^{\mathrm{new}}(560, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 9T^{4} + 81 \) Copy content Toggle raw display
$5$ \( (T^{4} - 2 T^{3} - T^{2} + \cdots + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} + 71T^{4} + 2401 \) Copy content Toggle raw display
$11$ \( (T^{4} - 6 T^{2} + 36)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T + 8)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 4 T^{3} + 8 T^{2} + \cdots + 64)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 6 T^{2} + 36)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} - 729 T^{4} + 531441 \) Copy content Toggle raw display
$29$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} - 24 T^{2} + 576)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 16 T^{3} + \cdots + 16384)^{2} \) Copy content Toggle raw display
$41$ \( (T + 1)^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 5625)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 150 T^{2} + 22500)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 3 T + 9)^{4} \) Copy content Toggle raw display
$67$ \( T^{8} - 9T^{4} + 81 \) Copy content Toggle raw display
$71$ \( (T^{2} + 150)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 4 T^{3} + 8 T^{2} + \cdots + 64)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 294 T^{2} + 86436)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 729)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 121 T^{2} + 14641)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 22 T + 242)^{4} \) Copy content Toggle raw display
show more
show less