L(s) = 1 | + (1.67 − 0.448i)3-s + (−1.23 + 1.86i)5-s + (−1.48 + 2.19i)7-s + (2.12 + 1.22i)11-s + (−2 + 2i)13-s + (−1.22 + 3.67i)15-s + (2.73 − 0.732i)17-s + (1.22 + 2.12i)19-s + (−1.50 + 4.33i)21-s + (−1.34 + 5.01i)23-s + (−1.96 − 4.59i)25-s + (−3.67 + 3.67i)27-s − i·29-s + (4.24 + 2.44i)31-s + (4.09 + 1.09i)33-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)3-s + (−0.550 + 0.834i)5-s + (−0.560 + 0.827i)7-s + (0.639 + 0.369i)11-s + (−0.554 + 0.554i)13-s + (−0.316 + 0.948i)15-s + (0.662 − 0.177i)17-s + (0.280 + 0.486i)19-s + (−0.327 + 0.944i)21-s + (−0.280 + 1.04i)23-s + (−0.392 − 0.919i)25-s + (−0.707 + 0.707i)27-s − 0.185i·29-s + (0.762 + 0.439i)31-s + (0.713 + 0.191i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.164 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.164 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.17339 + 0.994137i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17339 + 0.994137i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.23 - 1.86i)T \) |
| 7 | \( 1 + (1.48 - 2.19i)T \) |
good | 3 | \( 1 + (-1.67 + 0.448i)T + (2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (-2.12 - 1.22i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2 - 2i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.73 + 0.732i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.22 - 2.12i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.34 - 5.01i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + iT - 29T^{2} \) |
| 31 | \( 1 + (-4.24 - 2.44i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.92 + 10.9i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + T + 41T^{2} \) |
| 43 | \( 1 + (-6.12 - 6.12i)T + 43iT^{2} \) |
| 47 | \( 1 + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (0.366 + 1.36i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-6.12 + 10.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 2.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.448 + 1.67i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 12.2iT - 71T^{2} \) |
| 73 | \( 1 + (-0.732 - 2.73i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-8.57 - 14.8i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.67 + 3.67i)T + 83iT^{2} \) |
| 89 | \( 1 + (9.52 - 5.5i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-11 - 11i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06485796853677008685119110709, −9.730359265174143255088929296905, −9.337480713062868540832502314311, −8.187725753779859383674908214749, −7.50821272903748064026256680237, −6.62098410614595402617247483182, −5.53495101802791738568183865204, −3.94610996556922463831982860764, −3.05853000600049952973930822635, −2.11048668010361665783309347325,
0.800575135563416237115623434402, 2.84633774989759856270426917601, 3.76683698701370156428268347533, 4.61924539820769730787595521372, 5.98386668993535461735437603186, 7.19852173375136012067751979964, 8.096114746597406150375811265929, 8.731227927339443977020313520165, 9.620883261619730078951046765370, 10.29544708455652727911921764349