Properties

Label 560.2
Level 560
Weight 2
Dimension 4418
Nonzero newspaces 28
Newform subspaces 89
Sturm bound 36864
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 28 \)
Newform subspaces: \( 89 \)
Sturm bound: \(36864\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(560))\).

Total New Old
Modular forms 9888 4690 5198
Cusp forms 8545 4418 4127
Eisenstein series 1343 272 1071

Trace form

\( 4418 q - 16 q^{2} - 14 q^{3} - 8 q^{4} - 29 q^{5} - 24 q^{6} - 12 q^{7} - 16 q^{8} + 2 q^{9} - 20 q^{10} - 22 q^{11} - 24 q^{12} - 4 q^{13} - 24 q^{14} - 10 q^{15} - 72 q^{16} - 18 q^{17} + 50 q^{19} - 12 q^{20}+ \cdots - 408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(560))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
560.2.a \(\chi_{560}(1, \cdot)\) 560.2.a.a 1 1
560.2.a.b 1
560.2.a.c 1
560.2.a.d 1
560.2.a.e 1
560.2.a.f 1
560.2.a.g 2
560.2.a.h 2
560.2.a.i 2
560.2.b \(\chi_{560}(281, \cdot)\) None 0 1
560.2.e \(\chi_{560}(559, \cdot)\) 560.2.e.a 4 1
560.2.e.b 4
560.2.e.c 8
560.2.e.d 8
560.2.g \(\chi_{560}(449, \cdot)\) 560.2.g.a 2 1
560.2.g.b 2
560.2.g.c 2
560.2.g.d 2
560.2.g.e 4
560.2.g.f 6
560.2.h \(\chi_{560}(391, \cdot)\) None 0 1
560.2.k \(\chi_{560}(111, \cdot)\) 560.2.k.a 8 1
560.2.k.b 8
560.2.l \(\chi_{560}(169, \cdot)\) None 0 1
560.2.n \(\chi_{560}(279, \cdot)\) None 0 1
560.2.q \(\chi_{560}(81, \cdot)\) 560.2.q.a 2 2
560.2.q.b 2
560.2.q.c 2
560.2.q.d 2
560.2.q.e 2
560.2.q.f 2
560.2.q.g 2
560.2.q.h 2
560.2.q.i 2
560.2.q.j 4
560.2.q.k 4
560.2.q.l 6
560.2.r \(\chi_{560}(237, \cdot)\) 560.2.r.a 184 2
560.2.t \(\chi_{560}(43, \cdot)\) 560.2.t.a 144 2
560.2.w \(\chi_{560}(153, \cdot)\) None 0 2
560.2.x \(\chi_{560}(127, \cdot)\) 560.2.x.a 12 2
560.2.x.b 24
560.2.bb \(\chi_{560}(29, \cdot)\) 560.2.bb.a 2 2
560.2.bb.b 2
560.2.bb.c 70
560.2.bb.d 70
560.2.bc \(\chi_{560}(251, \cdot)\) 560.2.bc.a 128 2
560.2.bd \(\chi_{560}(141, \cdot)\) 560.2.bd.a 44 2
560.2.bd.b 52
560.2.be \(\chi_{560}(139, \cdot)\) 560.2.be.a 184 2
560.2.bi \(\chi_{560}(183, \cdot)\) None 0 2
560.2.bj \(\chi_{560}(97, \cdot)\) 560.2.bj.a 4 2
560.2.bj.b 8
560.2.bj.c 8
560.2.bj.d 24
560.2.bl \(\chi_{560}(267, \cdot)\) 560.2.bl.a 144 2
560.2.bn \(\chi_{560}(13, \cdot)\) 560.2.bn.a 184 2
560.2.bq \(\chi_{560}(199, \cdot)\) None 0 2
560.2.bs \(\chi_{560}(31, \cdot)\) 560.2.bs.a 8 2
560.2.bs.b 12
560.2.bs.c 12
560.2.bv \(\chi_{560}(9, \cdot)\) None 0 2
560.2.bw \(\chi_{560}(289, \cdot)\) 560.2.bw.a 4 2
560.2.bw.b 4
560.2.bw.c 4
560.2.bw.d 4
560.2.bw.e 4
560.2.bw.f 24
560.2.bz \(\chi_{560}(311, \cdot)\) None 0 2
560.2.cb \(\chi_{560}(121, \cdot)\) None 0 2
560.2.cc \(\chi_{560}(159, \cdot)\) 560.2.cc.a 4 2
560.2.cc.b 4
560.2.cc.c 4
560.2.cc.d 4
560.2.cc.e 8
560.2.cc.f 8
560.2.cc.g 8
560.2.cc.h 8
560.2.cf \(\chi_{560}(107, \cdot)\) 560.2.cf.a 368 4
560.2.ch \(\chi_{560}(117, \cdot)\) 560.2.ch.a 4 4
560.2.ch.b 4
560.2.ch.c 360
560.2.ci \(\chi_{560}(17, \cdot)\) 560.2.ci.a 4 4
560.2.ci.b 4
560.2.ci.c 16
560.2.ci.d 16
560.2.ci.e 48
560.2.cl \(\chi_{560}(23, \cdot)\) None 0 4
560.2.co \(\chi_{560}(19, \cdot)\) 560.2.co.a 368 4
560.2.cp \(\chi_{560}(221, \cdot)\) 560.2.cp.a 256 4
560.2.cq \(\chi_{560}(131, \cdot)\) 560.2.cq.a 256 4
560.2.cr \(\chi_{560}(109, \cdot)\) 560.2.cr.a 368 4
560.2.cu \(\chi_{560}(207, \cdot)\) 560.2.cu.a 8 4
560.2.cu.b 24
560.2.cu.c 32
560.2.cu.d 32
560.2.cx \(\chi_{560}(73, \cdot)\) None 0 4
560.2.cz \(\chi_{560}(157, \cdot)\) 560.2.cz.a 4 4
560.2.cz.b 4
560.2.cz.c 360
560.2.db \(\chi_{560}(67, \cdot)\) 560.2.db.a 368 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(560))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(560)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(140))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(280))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(560))\)\(^{\oplus 1}\)