Properties

Label 16-560e8-1.1-c1e8-0-6
Degree $16$
Conductor $9.672\times 10^{21}$
Sign $1$
Analytic cond. $159853.$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 16·13-s + 8·17-s + 14·25-s − 32·37-s − 8·41-s + 4·53-s + 12·61-s − 64·65-s − 8·73-s − 9·81-s + 32·85-s + 88·97-s + 52·101-s + 24·113-s − 32·121-s + 64·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 128·169-s + ⋯
L(s)  = 1  + 1.78·5-s − 4.43·13-s + 1.94·17-s + 14/5·25-s − 5.26·37-s − 1.24·41-s + 0.549·53-s + 1.53·61-s − 7.93·65-s − 0.936·73-s − 81-s + 3.47·85-s + 8.93·97-s + 5.17·101-s + 2.25·113-s − 2.90·121-s + 5.72·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 9.84·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 5^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{32} \cdot 5^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(159853.\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{32} \cdot 5^{8} \cdot 7^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.909717208\)
\(L(\frac12)\) \(\approx\) \(2.909717208\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( ( 1 - 2 T - T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
7 \( 1 + 71 T^{4} + p^{4} T^{8} \)
good3 \( ( 1 + p^{2} T^{4} )^{2}( 1 - p^{2} T^{4} + p^{4} T^{8} ) \)
11 \( ( 1 + 16 T^{2} + 135 T^{4} + 16 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
13 \( ( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{4} \)
17 \( ( 1 - 4 T + 8 T^{2} + 104 T^{3} - 497 T^{4} + 104 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
19 \( ( 1 - 32 T^{2} + 663 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
23 \( 1 + 697 T^{4} + 205968 T^{8} + 697 p^{4} T^{12} + p^{8} T^{16} \)
29 \( ( 1 - 57 T^{2} + p^{2} T^{4} )^{4} \)
31 \( ( 1 - 10 T + 69 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2}( 1 + 10 T + 69 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
37 \( ( 1 + 16 T + 128 T^{2} + 864 T^{3} + 5543 T^{4} + 864 p T^{5} + 128 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
41 \( ( 1 + T + p T^{2} )^{8} \)
43 \( ( 1 - 3577 T^{4} + p^{4} T^{8} )^{2} \)
47 \( ( 1 - p^{2} T^{4} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 2 T + 2 T^{2} + 208 T^{3} - 3017 T^{4} + 208 p T^{5} + 2 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
59 \( ( 1 + 32 T^{2} - 2457 T^{4} + 32 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 - 3 T - 52 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{4} \)
67 \( 1 - 8183 T^{4} + 46810368 T^{8} - 8183 p^{4} T^{12} + p^{8} T^{16} \)
71 \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{4} \)
73 \( ( 1 + 4 T + 8 T^{2} - 552 T^{3} - 6433 T^{4} - 552 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + 136 T^{2} + 12255 T^{4} + 136 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
83 \( ( 1 + 5543 T^{4} + p^{4} T^{8} )^{2} \)
89 \( ( 1 + 57 T^{2} - 4672 T^{4} + 57 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
97 \( ( 1 - 22 T + 242 T^{2} - 22 p T^{3} + p^{2} T^{4} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.87679727874017594130544567587, −4.72719741409895641870823050254, −4.61924539820769730787595521372, −4.51809075445508485699900255313, −3.96622674092309414154491441673, −3.94610996556922463831982860764, −3.90796955221812741119775232733, −3.76683698701370156428268347533, −3.43992685033603823902395658026, −3.28894059314305982375683549610, −3.22619547803167121673982748360, −3.05853000600049952973930822635, −3.01818238877325800940641768432, −2.84633774989759856270426917601, −2.53965562347722063144209943465, −2.21168146771897819336358809320, −2.14645897320885281058267528040, −2.11048668010361665783309347325, −2.09563622051096581504565418875, −1.77770178715128149176192498549, −1.47406202658271164358034222021, −1.46418875939908086889817860394, −0.800575135563416237115623434402, −0.71117556529027003996042627333, −0.29107762368289968905549254727, 0.29107762368289968905549254727, 0.71117556529027003996042627333, 0.800575135563416237115623434402, 1.46418875939908086889817860394, 1.47406202658271164358034222021, 1.77770178715128149176192498549, 2.09563622051096581504565418875, 2.11048668010361665783309347325, 2.14645897320885281058267528040, 2.21168146771897819336358809320, 2.53965562347722063144209943465, 2.84633774989759856270426917601, 3.01818238877325800940641768432, 3.05853000600049952973930822635, 3.22619547803167121673982748360, 3.28894059314305982375683549610, 3.43992685033603823902395658026, 3.76683698701370156428268347533, 3.90796955221812741119775232733, 3.94610996556922463831982860764, 3.96622674092309414154491441673, 4.51809075445508485699900255313, 4.61924539820769730787595521372, 4.72719741409895641870823050254, 4.87679727874017594130544567587

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.