Properties

Label 560.2.cu.a.303.1
Level $560$
Weight $2$
Character 560.303
Analytic conductor $4.472$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,2,Mod(207,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 0, 3, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.207"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.cu (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 303.1
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 560.303
Dual form 560.2.cu.a.207.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.67303 - 0.448288i) q^{3} +(-1.23205 - 1.86603i) q^{5} +(1.48356 + 2.19067i) q^{7} +(-2.12132 + 1.22474i) q^{11} +(-2.00000 - 2.00000i) q^{13} +(1.22474 + 3.67423i) q^{15} +(2.73205 + 0.732051i) q^{17} +(-1.22474 + 2.12132i) q^{19} +(-1.50000 - 4.33013i) q^{21} +(1.34486 + 5.01910i) q^{23} +(-1.96410 + 4.59808i) q^{25} +(3.67423 + 3.67423i) q^{27} +1.00000i q^{29} +(-4.24264 + 2.44949i) q^{31} +(4.09808 - 1.09808i) q^{33} +(2.26002 - 5.46739i) q^{35} +(2.92820 + 10.9282i) q^{37} +(2.44949 + 4.24264i) q^{39} -1.00000 q^{41} +(-6.12372 + 6.12372i) q^{43} +(-2.59808 + 6.50000i) q^{49} +(-4.24264 - 2.44949i) q^{51} +(-0.366025 + 1.36603i) q^{53} +(4.89898 + 2.44949i) q^{55} +(3.00000 - 3.00000i) q^{57} +(-6.12372 - 10.6066i) q^{59} +(1.50000 - 2.59808i) q^{61} +(-1.26795 + 6.19615i) q^{65} +(0.448288 - 1.67303i) q^{67} -9.00000i q^{69} -12.2474i q^{71} +(0.732051 - 2.73205i) q^{73} +(5.34727 - 6.81225i) q^{75} +(-5.83013 - 2.83013i) q^{77} +(-8.57321 + 14.8492i) q^{79} +(-4.50000 - 7.79423i) q^{81} +(3.67423 - 3.67423i) q^{83} +(-2.00000 - 6.00000i) q^{85} +(0.448288 - 1.67303i) q^{87} +(-9.52628 - 5.50000i) q^{89} +(1.41421 - 7.34847i) q^{91} +(8.19615 - 2.19615i) q^{93} +(5.46739 - 0.328169i) q^{95} +(11.0000 - 11.0000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} - 16 q^{13} + 8 q^{17} - 12 q^{21} + 12 q^{25} + 12 q^{33} - 32 q^{37} - 8 q^{41} + 4 q^{53} + 24 q^{57} + 12 q^{61} - 24 q^{65} - 8 q^{73} - 12 q^{77} - 36 q^{81} - 16 q^{85} + 24 q^{93}+ \cdots + 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.67303 0.448288i −0.965926 0.258819i −0.258819 0.965926i \(-0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) 0 0
\(5\) −1.23205 1.86603i −0.550990 0.834512i
\(6\) 0 0
\(7\) 1.48356 + 2.19067i 0.560734 + 0.827996i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.12132 + 1.22474i −0.639602 + 0.369274i −0.784461 0.620178i \(-0.787060\pi\)
0.144859 + 0.989452i \(0.453727\pi\)
\(12\) 0 0
\(13\) −2.00000 2.00000i −0.554700 0.554700i 0.373094 0.927794i \(-0.378297\pi\)
−0.927794 + 0.373094i \(0.878297\pi\)
\(14\) 0 0
\(15\) 1.22474 + 3.67423i 0.316228 + 0.948683i
\(16\) 0 0
\(17\) 2.73205 + 0.732051i 0.662620 + 0.177548i 0.574428 0.818555i \(-0.305225\pi\)
0.0881917 + 0.996104i \(0.471891\pi\)
\(18\) 0 0
\(19\) −1.22474 + 2.12132i −0.280976 + 0.486664i −0.971625 0.236525i \(-0.923991\pi\)
0.690650 + 0.723190i \(0.257325\pi\)
\(20\) 0 0
\(21\) −1.50000 4.33013i −0.327327 0.944911i
\(22\) 0 0
\(23\) 1.34486 + 5.01910i 0.280423 + 1.04655i 0.952119 + 0.305727i \(0.0988995\pi\)
−0.671696 + 0.740827i \(0.734434\pi\)
\(24\) 0 0
\(25\) −1.96410 + 4.59808i −0.392820 + 0.919615i
\(26\) 0 0
\(27\) 3.67423 + 3.67423i 0.707107 + 0.707107i
\(28\) 0 0
\(29\) 1.00000i 0.185695i 0.995680 + 0.0928477i \(0.0295970\pi\)
−0.995680 + 0.0928477i \(0.970403\pi\)
\(30\) 0 0
\(31\) −4.24264 + 2.44949i −0.762001 + 0.439941i −0.830014 0.557743i \(-0.811667\pi\)
0.0680129 + 0.997684i \(0.478334\pi\)
\(32\) 0 0
\(33\) 4.09808 1.09808i 0.713384 0.191151i
\(34\) 0 0
\(35\) 2.26002 5.46739i 0.382013 0.924157i
\(36\) 0 0
\(37\) 2.92820 + 10.9282i 0.481394 + 1.79659i 0.595778 + 0.803149i \(0.296844\pi\)
−0.114385 + 0.993437i \(0.536490\pi\)
\(38\) 0 0
\(39\) 2.44949 + 4.24264i 0.392232 + 0.679366i
\(40\) 0 0
\(41\) −1.00000 −0.156174 −0.0780869 0.996947i \(-0.524881\pi\)
−0.0780869 + 0.996947i \(0.524881\pi\)
\(42\) 0 0
\(43\) −6.12372 + 6.12372i −0.933859 + 0.933859i −0.997944 0.0640852i \(-0.979587\pi\)
0.0640852 + 0.997944i \(0.479587\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(48\) 0 0
\(49\) −2.59808 + 6.50000i −0.371154 + 0.928571i
\(50\) 0 0
\(51\) −4.24264 2.44949i −0.594089 0.342997i
\(52\) 0 0
\(53\) −0.366025 + 1.36603i −0.0502775 + 0.187638i −0.986498 0.163776i \(-0.947632\pi\)
0.936220 + 0.351414i \(0.114299\pi\)
\(54\) 0 0
\(55\) 4.89898 + 2.44949i 0.660578 + 0.330289i
\(56\) 0 0
\(57\) 3.00000 3.00000i 0.397360 0.397360i
\(58\) 0 0
\(59\) −6.12372 10.6066i −0.797241 1.38086i −0.921406 0.388600i \(-0.872959\pi\)
0.124165 0.992262i \(-0.460375\pi\)
\(60\) 0 0
\(61\) 1.50000 2.59808i 0.192055 0.332650i −0.753876 0.657017i \(-0.771818\pi\)
0.945931 + 0.324367i \(0.105151\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.26795 + 6.19615i −0.157270 + 0.768538i
\(66\) 0 0
\(67\) 0.448288 1.67303i 0.0547671 0.204393i −0.933121 0.359563i \(-0.882926\pi\)
0.987888 + 0.155170i \(0.0495924\pi\)
\(68\) 0 0
\(69\) 9.00000i 1.08347i
\(70\) 0 0
\(71\) 12.2474i 1.45350i −0.686900 0.726752i \(-0.741029\pi\)
0.686900 0.726752i \(-0.258971\pi\)
\(72\) 0 0
\(73\) 0.732051 2.73205i 0.0856801 0.319762i −0.909762 0.415130i \(-0.863736\pi\)
0.995442 + 0.0953678i \(0.0304027\pi\)
\(74\) 0 0
\(75\) 5.34727 6.81225i 0.617449 0.786611i
\(76\) 0 0
\(77\) −5.83013 2.83013i −0.664405 0.322523i
\(78\) 0 0
\(79\) −8.57321 + 14.8492i −0.964562 + 1.67067i −0.253775 + 0.967263i \(0.581672\pi\)
−0.710787 + 0.703407i \(0.751661\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 3.67423 3.67423i 0.403300 0.403300i −0.476094 0.879394i \(-0.657948\pi\)
0.879394 + 0.476094i \(0.157948\pi\)
\(84\) 0 0
\(85\) −2.00000 6.00000i −0.216930 0.650791i
\(86\) 0 0
\(87\) 0.448288 1.67303i 0.0480615 0.179368i
\(88\) 0 0
\(89\) −9.52628 5.50000i −1.00978 0.582999i −0.0986553 0.995122i \(-0.531454\pi\)
−0.911128 + 0.412123i \(0.864787\pi\)
\(90\) 0 0
\(91\) 1.41421 7.34847i 0.148250 0.770329i
\(92\) 0 0
\(93\) 8.19615 2.19615i 0.849901 0.227730i
\(94\) 0 0
\(95\) 5.46739 0.328169i 0.560942 0.0336695i
\(96\) 0 0
\(97\) 11.0000 11.0000i 1.11688 1.11688i 0.124684 0.992196i \(-0.460208\pi\)
0.992196 0.124684i \(-0.0397918\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.50000 + 11.2583i 0.646774 + 1.12025i 0.983889 + 0.178782i \(0.0572157\pi\)
−0.337115 + 0.941464i \(0.609451\pi\)
\(102\) 0 0
\(103\) 4.03459 + 15.0573i 0.397540 + 1.48364i 0.817411 + 0.576055i \(0.195409\pi\)
−0.419871 + 0.907584i \(0.637925\pi\)
\(104\) 0 0
\(105\) −6.23205 + 8.13397i −0.608186 + 0.793795i
\(106\) 0 0
\(107\) 11.7112 3.13801i 1.13217 0.303363i 0.356370 0.934345i \(-0.384014\pi\)
0.775798 + 0.630982i \(0.217348\pi\)
\(108\) 0 0
\(109\) −7.79423 + 4.50000i −0.746552 + 0.431022i −0.824447 0.565940i \(-0.808513\pi\)
0.0778949 + 0.996962i \(0.475180\pi\)
\(110\) 0 0
\(111\) 19.5959i 1.85996i
\(112\) 0 0
\(113\) 3.00000 + 3.00000i 0.282216 + 0.282216i 0.833992 0.551776i \(-0.186050\pi\)
−0.551776 + 0.833992i \(0.686050\pi\)
\(114\) 0 0
\(115\) 7.70882 8.69333i 0.718852 0.810657i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.44949 + 7.07107i 0.224544 + 0.648204i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 0 0
\(123\) 1.67303 + 0.448288i 0.150852 + 0.0404207i
\(124\) 0 0
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) 0 0
\(127\) −9.79796 9.79796i −0.869428 0.869428i 0.122981 0.992409i \(-0.460755\pi\)
−0.992409 + 0.122981i \(0.960755\pi\)
\(128\) 0 0
\(129\) 12.9904 7.50000i 1.14374 0.660338i
\(130\) 0 0
\(131\) −16.9706 9.79796i −1.48272 0.856052i −0.482917 0.875666i \(-0.660423\pi\)
−0.999808 + 0.0196143i \(0.993756\pi\)
\(132\) 0 0
\(133\) −6.46410 + 0.464102i −0.560509 + 0.0402427i
\(134\) 0 0
\(135\) 2.32937 11.3831i 0.200480 0.979698i
\(136\) 0 0
\(137\) −16.3923 4.39230i −1.40049 0.375260i −0.521969 0.852965i \(-0.674802\pi\)
−0.878520 + 0.477705i \(0.841469\pi\)
\(138\) 0 0
\(139\) −17.1464 −1.45434 −0.727171 0.686457i \(-0.759165\pi\)
−0.727171 + 0.686457i \(0.759165\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.69213 + 1.79315i 0.559624 + 0.149951i
\(144\) 0 0
\(145\) 1.86603 1.23205i 0.154965 0.102316i
\(146\) 0 0
\(147\) 7.26054 9.71003i 0.598839 0.800869i
\(148\) 0 0
\(149\) 19.9186 + 11.5000i 1.63179 + 0.942117i 0.983540 + 0.180693i \(0.0578340\pi\)
0.648254 + 0.761424i \(0.275499\pi\)
\(150\) 0 0
\(151\) 4.24264 2.44949i 0.345261 0.199337i −0.317335 0.948314i \(-0.602788\pi\)
0.662596 + 0.748977i \(0.269455\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.79796 + 4.89898i 0.786991 + 0.393496i
\(156\) 0 0
\(157\) −9.56218 2.56218i −0.763145 0.204484i −0.143804 0.989606i \(-0.545933\pi\)
−0.619341 + 0.785122i \(0.712600\pi\)
\(158\) 0 0
\(159\) 1.22474 2.12132i 0.0971286 0.168232i
\(160\) 0 0
\(161\) −9.00000 + 10.3923i −0.709299 + 0.819028i
\(162\) 0 0
\(163\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(164\) 0 0
\(165\) −7.09808 6.29423i −0.552584 0.490005i
\(166\) 0 0
\(167\) 6.12372 + 6.12372i 0.473868 + 0.473868i 0.903164 0.429296i \(-0.141238\pi\)
−0.429296 + 0.903164i \(0.641238\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.3923 + 4.39230i −1.24628 + 0.333941i −0.820900 0.571072i \(-0.806528\pi\)
−0.425384 + 0.905013i \(0.639861\pi\)
\(174\) 0 0
\(175\) −12.9867 + 2.51884i −0.981705 + 0.190406i
\(176\) 0 0
\(177\) 5.49038 + 20.4904i 0.412682 + 1.54015i
\(178\) 0 0
\(179\) −7.34847 12.7279i −0.549250 0.951330i −0.998326 0.0578359i \(-0.981580\pi\)
0.449076 0.893494i \(-0.351753\pi\)
\(180\) 0 0
\(181\) 15.0000 1.11494 0.557471 0.830197i \(-0.311772\pi\)
0.557471 + 0.830197i \(0.311772\pi\)
\(182\) 0 0
\(183\) −3.67423 + 3.67423i −0.271607 + 0.271607i
\(184\) 0 0
\(185\) 16.7846 18.9282i 1.23403 1.39163i
\(186\) 0 0
\(187\) −6.69213 + 1.79315i −0.489377 + 0.131128i
\(188\) 0 0
\(189\) −2.59808 + 13.5000i −0.188982 + 0.981981i
\(190\) 0 0
\(191\) −6.36396 3.67423i −0.460480 0.265858i 0.251766 0.967788i \(-0.418989\pi\)
−0.712246 + 0.701930i \(0.752322\pi\)
\(192\) 0 0
\(193\) 0.366025 1.36603i 0.0263471 0.0983287i −0.951500 0.307648i \(-0.900458\pi\)
0.977847 + 0.209319i \(0.0671248\pi\)
\(194\) 0 0
\(195\) 4.89898 9.79796i 0.350823 0.701646i
\(196\) 0 0
\(197\) −9.00000 + 9.00000i −0.641223 + 0.641223i −0.950856 0.309633i \(-0.899794\pi\)
0.309633 + 0.950856i \(0.399794\pi\)
\(198\) 0 0
\(199\) 4.89898 + 8.48528i 0.347279 + 0.601506i 0.985765 0.168128i \(-0.0537722\pi\)
−0.638486 + 0.769634i \(0.720439\pi\)
\(200\) 0 0
\(201\) −1.50000 + 2.59808i −0.105802 + 0.183254i
\(202\) 0 0
\(203\) −2.19067 + 1.48356i −0.153755 + 0.104126i
\(204\) 0 0
\(205\) 1.23205 + 1.86603i 0.0860502 + 0.130329i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.00000i 0.415029i
\(210\) 0 0
\(211\) 7.34847i 0.505889i −0.967481 0.252945i \(-0.918601\pi\)
0.967481 0.252945i \(-0.0813991\pi\)
\(212\) 0 0
\(213\) −5.49038 + 20.4904i −0.376195 + 1.40398i
\(214\) 0 0
\(215\) 18.9718 + 3.88229i 1.29386 + 0.264770i
\(216\) 0 0
\(217\) −11.6603 5.66025i −0.791550 0.384243i
\(218\) 0 0
\(219\) −2.44949 + 4.24264i −0.165521 + 0.286691i
\(220\) 0 0
\(221\) −4.00000 6.92820i −0.269069 0.466041i
\(222\) 0 0
\(223\) −17.1464 + 17.1464i −1.14821 + 1.14821i −0.161305 + 0.986905i \(0.551570\pi\)
−0.986905 + 0.161305i \(0.948430\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.37945 + 20.0764i −0.357047 + 1.33252i 0.520842 + 0.853653i \(0.325618\pi\)
−0.877889 + 0.478864i \(0.841049\pi\)
\(228\) 0 0
\(229\) 6.92820 + 4.00000i 0.457829 + 0.264327i 0.711131 0.703060i \(-0.248183\pi\)
−0.253302 + 0.967387i \(0.581517\pi\)
\(230\) 0 0
\(231\) 8.48528 + 7.34847i 0.558291 + 0.483494i
\(232\) 0 0
\(233\) 2.73205 0.732051i 0.178983 0.0479582i −0.168215 0.985750i \(-0.553800\pi\)
0.347197 + 0.937792i \(0.387133\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 21.0000 21.0000i 1.36410 1.36410i
\(238\) 0 0
\(239\) 24.4949 1.58444 0.792222 0.610234i \(-0.208924\pi\)
0.792222 + 0.610234i \(0.208924\pi\)
\(240\) 0 0
\(241\) 2.00000 + 3.46410i 0.128831 + 0.223142i 0.923224 0.384262i \(-0.125544\pi\)
−0.794393 + 0.607404i \(0.792211\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.3301 3.16025i 0.979406 0.201901i
\(246\) 0 0
\(247\) 6.69213 1.79315i 0.425810 0.114095i
\(248\) 0 0
\(249\) −7.79423 + 4.50000i −0.493939 + 0.285176i
\(250\) 0 0
\(251\) 24.4949i 1.54610i 0.634343 + 0.773052i \(0.281271\pi\)
−0.634343 + 0.773052i \(0.718729\pi\)
\(252\) 0 0
\(253\) −9.00000 9.00000i −0.565825 0.565825i
\(254\) 0 0
\(255\) 0.656339 + 10.9348i 0.0411015 + 0.684762i
\(256\) 0 0
\(257\) −4.39230 16.3923i −0.273984 1.02252i −0.956519 0.291670i \(-0.905789\pi\)
0.682534 0.730853i \(-0.260878\pi\)
\(258\) 0 0
\(259\) −19.5959 + 22.6274i −1.21763 + 1.40600i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.67303 0.448288i −0.103164 0.0276426i 0.206868 0.978369i \(-0.433673\pi\)
−0.310032 + 0.950726i \(0.600340\pi\)
\(264\) 0 0
\(265\) 3.00000 1.00000i 0.184289 0.0614295i
\(266\) 0 0
\(267\) 13.4722 + 13.4722i 0.824485 + 0.824485i
\(268\) 0 0
\(269\) 4.33013 2.50000i 0.264013 0.152428i −0.362151 0.932119i \(-0.617958\pi\)
0.626164 + 0.779692i \(0.284624\pi\)
\(270\) 0 0
\(271\) −6.36396 3.67423i −0.386583 0.223194i 0.294095 0.955776i \(-0.404982\pi\)
−0.680679 + 0.732582i \(0.738315\pi\)
\(272\) 0 0
\(273\) −5.66025 + 11.6603i −0.342574 + 0.705711i
\(274\) 0 0
\(275\) −1.46498 12.1595i −0.0883417 0.733246i
\(276\) 0 0
\(277\) 2.73205 + 0.732051i 0.164153 + 0.0439847i 0.339959 0.940440i \(-0.389587\pi\)
−0.175806 + 0.984425i \(0.556253\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 28.0000 1.67034 0.835170 0.549992i \(-0.185369\pi\)
0.835170 + 0.549992i \(0.185369\pi\)
\(282\) 0 0
\(283\) 13.3843 + 3.58630i 0.795612 + 0.213184i 0.633656 0.773615i \(-0.281553\pi\)
0.161955 + 0.986798i \(0.448220\pi\)
\(284\) 0 0
\(285\) −9.29423 1.90192i −0.550543 0.112660i
\(286\) 0 0
\(287\) −1.48356 2.19067i −0.0875720 0.129311i
\(288\) 0 0
\(289\) −7.79423 4.50000i −0.458484 0.264706i
\(290\) 0 0
\(291\) −23.3345 + 13.4722i −1.36789 + 0.789754i
\(292\) 0 0
\(293\) −12.0000 12.0000i −0.701047 0.701047i 0.263588 0.964635i \(-0.415094\pi\)
−0.964635 + 0.263588i \(0.915094\pi\)
\(294\) 0 0
\(295\) −12.2474 + 24.4949i −0.713074 + 1.42615i
\(296\) 0 0
\(297\) −12.2942 3.29423i −0.713384 0.191151i
\(298\) 0 0
\(299\) 7.34847 12.7279i 0.424973 0.736075i
\(300\) 0 0
\(301\) −22.5000 4.33013i −1.29688 0.249584i
\(302\) 0 0
\(303\) −5.82774 21.7494i −0.334795 1.24947i
\(304\) 0 0
\(305\) −6.69615 + 0.401924i −0.383421 + 0.0230141i
\(306\) 0 0
\(307\) 1.22474 + 1.22474i 0.0698999 + 0.0698999i 0.741192 0.671293i \(-0.234261\pi\)
−0.671293 + 0.741192i \(0.734261\pi\)
\(308\) 0 0
\(309\) 27.0000i 1.53598i
\(310\) 0 0
\(311\) −14.8492 + 8.57321i −0.842023 + 0.486142i −0.857951 0.513731i \(-0.828263\pi\)
0.0159282 + 0.999873i \(0.494930\pi\)
\(312\) 0 0
\(313\) 21.8564 5.85641i 1.23540 0.331024i 0.418718 0.908116i \(-0.362479\pi\)
0.816679 + 0.577092i \(0.195813\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.12436 + 19.1244i 0.287812 + 1.07413i 0.946760 + 0.321942i \(0.104335\pi\)
−0.658947 + 0.752189i \(0.728998\pi\)
\(318\) 0 0
\(319\) −1.22474 2.12132i −0.0685725 0.118771i
\(320\) 0 0
\(321\) −21.0000 −1.17211
\(322\) 0 0
\(323\) −4.89898 + 4.89898i −0.272587 + 0.272587i
\(324\) 0 0
\(325\) 13.1244 5.26795i 0.728008 0.292213i
\(326\) 0 0
\(327\) 15.0573 4.03459i 0.832670 0.223113i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 21.2132 + 12.2474i 1.16598 + 0.673181i 0.952731 0.303816i \(-0.0982610\pi\)
0.213253 + 0.976997i \(0.431594\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.67423 + 1.22474i −0.200745 + 0.0669150i
\(336\) 0 0
\(337\) −5.00000 + 5.00000i −0.272367 + 0.272367i −0.830053 0.557685i \(-0.811690\pi\)
0.557685 + 0.830053i \(0.311690\pi\)
\(338\) 0 0
\(339\) −3.67423 6.36396i −0.199557 0.345643i
\(340\) 0 0
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) 0 0
\(343\) −18.0938 + 3.95164i −0.976972 + 0.213368i
\(344\) 0 0
\(345\) −16.7942 + 11.0885i −0.904171 + 0.596982i
\(346\) 0 0
\(347\) −4.93117 + 18.4034i −0.264719 + 0.987944i 0.697703 + 0.716387i \(0.254205\pi\)
−0.962422 + 0.271557i \(0.912461\pi\)
\(348\) 0 0
\(349\) 15.0000i 0.802932i 0.915874 + 0.401466i \(0.131499\pi\)
−0.915874 + 0.401466i \(0.868501\pi\)
\(350\) 0 0
\(351\) 14.6969i 0.784465i
\(352\) 0 0
\(353\) −1.83013 + 6.83013i −0.0974078 + 0.363531i −0.997374 0.0724298i \(-0.976925\pi\)
0.899966 + 0.435961i \(0.143591\pi\)
\(354\) 0 0
\(355\) −22.8541 + 15.0895i −1.21297 + 0.800866i
\(356\) 0 0
\(357\) −0.928203 12.9282i −0.0491257 0.684233i
\(358\) 0 0
\(359\) 7.34847 12.7279i 0.387837 0.671754i −0.604321 0.796741i \(-0.706556\pi\)
0.992158 + 0.124987i \(0.0398889\pi\)
\(360\) 0 0
\(361\) 6.50000 + 11.2583i 0.342105 + 0.592544i
\(362\) 0 0
\(363\) 6.12372 6.12372i 0.321412 0.321412i
\(364\) 0 0
\(365\) −6.00000 + 2.00000i −0.314054 + 0.104685i
\(366\) 0 0
\(367\) −2.24144 + 8.36516i −0.117002 + 0.436658i −0.999429 0.0337919i \(-0.989242\pi\)
0.882427 + 0.470450i \(0.155908\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.53553 + 1.22474i −0.183556 + 0.0635856i
\(372\) 0 0
\(373\) 27.3205 7.32051i 1.41460 0.379042i 0.531037 0.847349i \(-0.321803\pi\)
0.883566 + 0.468307i \(0.155136\pi\)
\(374\) 0 0
\(375\) −19.2999 1.58510i −0.996644 0.0818542i
\(376\) 0 0
\(377\) 2.00000 2.00000i 0.103005 0.103005i
\(378\) 0 0
\(379\) 7.34847 0.377466 0.188733 0.982028i \(-0.439562\pi\)
0.188733 + 0.982028i \(0.439562\pi\)
\(380\) 0 0
\(381\) 12.0000 + 20.7846i 0.614779 + 1.06483i
\(382\) 0 0
\(383\) −4.03459 15.0573i −0.206158 0.769392i −0.989094 0.147289i \(-0.952945\pi\)
0.782936 0.622103i \(-0.213721\pi\)
\(384\) 0 0
\(385\) 1.90192 + 14.3660i 0.0969310 + 0.732160i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.8564 + 8.00000i −0.702548 + 0.405616i −0.808296 0.588777i \(-0.799610\pi\)
0.105748 + 0.994393i \(0.466276\pi\)
\(390\) 0 0
\(391\) 14.6969i 0.743256i
\(392\) 0 0
\(393\) 24.0000 + 24.0000i 1.21064 + 1.21064i
\(394\) 0 0
\(395\) 38.2717 2.29719i 1.92566 0.115584i
\(396\) 0 0
\(397\) 2.56218 + 9.56218i 0.128592 + 0.479912i 0.999942 0.0107497i \(-0.00342179\pi\)
−0.871350 + 0.490662i \(0.836755\pi\)
\(398\) 0 0
\(399\) 11.0227 + 2.12132i 0.551825 + 0.106199i
\(400\) 0 0
\(401\) 3.50000 6.06218i 0.174782 0.302731i −0.765304 0.643669i \(-0.777411\pi\)
0.940086 + 0.340938i \(0.110745\pi\)
\(402\) 0 0
\(403\) 13.3843 + 3.58630i 0.666718 + 0.178646i
\(404\) 0 0
\(405\) −9.00000 + 18.0000i −0.447214 + 0.894427i
\(406\) 0 0
\(407\) −19.5959 19.5959i −0.971334 0.971334i
\(408\) 0 0
\(409\) 12.9904 7.50000i 0.642333 0.370851i −0.143180 0.989697i \(-0.545733\pi\)
0.785513 + 0.618846i \(0.212399\pi\)
\(410\) 0 0
\(411\) 25.4558 + 14.6969i 1.25564 + 0.724947i
\(412\) 0 0
\(413\) 14.1506 29.1506i 0.696307 1.43441i
\(414\) 0 0
\(415\) −11.3831 2.32937i −0.558772 0.114344i
\(416\) 0 0
\(417\) 28.6865 + 7.68653i 1.40479 + 0.376411i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −23.0000 −1.12095 −0.560476 0.828171i \(-0.689382\pi\)
−0.560476 + 0.828171i \(0.689382\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −8.73205 + 11.1244i −0.423567 + 0.539611i
\(426\) 0 0
\(427\) 7.91688 0.568406i 0.383124 0.0275071i
\(428\) 0 0
\(429\) −10.3923 6.00000i −0.501745 0.289683i
\(430\) 0 0
\(431\) 27.5772 15.9217i 1.32835 0.766921i 0.343302 0.939225i \(-0.388455\pi\)
0.985044 + 0.172305i \(0.0551214\pi\)
\(432\) 0 0
\(433\) −13.0000 13.0000i −0.624740 0.624740i 0.322000 0.946740i \(-0.395645\pi\)
−0.946740 + 0.322000i \(0.895645\pi\)
\(434\) 0 0
\(435\) −3.67423 + 1.22474i −0.176166 + 0.0587220i
\(436\) 0 0
\(437\) −12.2942 3.29423i −0.588113 0.157584i
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.34486 + 5.01910i 0.0638964 + 0.238465i 0.990487 0.137607i \(-0.0439412\pi\)
−0.926590 + 0.376072i \(0.877275\pi\)
\(444\) 0 0
\(445\) 1.47372 + 24.5526i 0.0698611 + 1.16390i
\(446\) 0 0
\(447\) −28.1691 28.1691i −1.33235 1.33235i
\(448\) 0 0
\(449\) 25.0000i 1.17982i 0.807468 + 0.589911i \(0.200837\pi\)
−0.807468 + 0.589911i \(0.799163\pi\)
\(450\) 0 0
\(451\) 2.12132 1.22474i 0.0998891 0.0576710i
\(452\) 0 0
\(453\) −8.19615 + 2.19615i −0.385089 + 0.103184i
\(454\) 0 0
\(455\) −15.4548 + 6.41473i −0.724533 + 0.300727i
\(456\) 0 0
\(457\) 7.32051 + 27.3205i 0.342439 + 1.27800i 0.895576 + 0.444909i \(0.146764\pi\)
−0.553137 + 0.833090i \(0.686569\pi\)
\(458\) 0 0
\(459\) 7.34847 + 12.7279i 0.342997 + 0.594089i
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) 13.4722 13.4722i 0.626106 0.626106i −0.320980 0.947086i \(-0.604012\pi\)
0.947086 + 0.320980i \(0.104012\pi\)
\(464\) 0 0
\(465\) −14.1962 12.5885i −0.658331 0.583776i
\(466\) 0 0
\(467\) −21.7494 + 5.82774i −1.00644 + 0.269676i −0.724143 0.689650i \(-0.757764\pi\)
−0.282301 + 0.959326i \(0.591098\pi\)
\(468\) 0 0
\(469\) 4.33013 1.50000i 0.199947 0.0692636i
\(470\) 0 0
\(471\) 14.8492 + 8.57321i 0.684217 + 0.395033i
\(472\) 0 0
\(473\) 5.49038 20.4904i 0.252448 0.942149i
\(474\) 0 0
\(475\) −7.34847 9.79796i −0.337171 0.449561i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17.1464 29.6985i −0.783440 1.35696i −0.929926 0.367746i \(-0.880130\pi\)
0.146486 0.989213i \(-0.453204\pi\)
\(480\) 0 0
\(481\) 16.0000 27.7128i 0.729537 1.26360i
\(482\) 0 0
\(483\) 19.7160 13.3521i 0.897111 0.607540i
\(484\) 0 0
\(485\) −34.0788 6.97372i −1.54744 0.316660i
\(486\) 0 0
\(487\) 5.37945 20.0764i 0.243766 0.909748i −0.730233 0.683198i \(-0.760589\pi\)
0.973999 0.226550i \(-0.0727447\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.89898i 0.221088i 0.993871 + 0.110544i \(0.0352593\pi\)
−0.993871 + 0.110544i \(0.964741\pi\)
\(492\) 0 0
\(493\) −0.732051 + 2.73205i −0.0329699 + 0.123045i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 26.8301 18.1699i 1.20350 0.815030i
\(498\) 0 0
\(499\) −3.67423 + 6.36396i −0.164481 + 0.284890i −0.936471 0.350745i \(-0.885928\pi\)
0.771990 + 0.635635i \(0.219262\pi\)
\(500\) 0 0
\(501\) −7.50000 12.9904i −0.335075 0.580367i
\(502\) 0 0
\(503\) 15.9217 15.9217i 0.709913 0.709913i −0.256604 0.966517i \(-0.582604\pi\)
0.966517 + 0.256604i \(0.0826036\pi\)
\(504\) 0 0
\(505\) 13.0000 26.0000i 0.578492 1.15698i
\(506\) 0 0
\(507\) −2.24144 + 8.36516i −0.0995458 + 0.371510i
\(508\) 0 0
\(509\) −19.9186 11.5000i −0.882876 0.509729i −0.0112702 0.999936i \(-0.503587\pi\)
−0.871606 + 0.490208i \(0.836921\pi\)
\(510\) 0 0
\(511\) 7.07107 2.44949i 0.312806 0.108359i
\(512\) 0 0
\(513\) −12.2942 + 3.29423i −0.542803 + 0.145444i
\(514\) 0 0
\(515\) 23.1265 26.0800i 1.01907 1.14922i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 29.3939 1.29025
\(520\) 0 0
\(521\) −2.00000 3.46410i −0.0876216 0.151765i 0.818884 0.573959i \(-0.194593\pi\)
−0.906505 + 0.422194i \(0.861260\pi\)
\(522\) 0 0
\(523\) −5.37945 20.0764i −0.235227 0.877879i −0.978046 0.208387i \(-0.933179\pi\)
0.742819 0.669492i \(-0.233488\pi\)
\(524\) 0 0
\(525\) 22.8564 + 1.60770i 0.997535 + 0.0701656i
\(526\) 0 0
\(527\) −13.3843 + 3.58630i −0.583028 + 0.156222i
\(528\) 0 0
\(529\) −3.46410 + 2.00000i −0.150613 + 0.0869565i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.00000 + 2.00000i 0.0866296 + 0.0866296i
\(534\) 0 0
\(535\) −20.2844 17.9873i −0.876973 0.777657i
\(536\) 0 0
\(537\) 6.58846 + 24.5885i 0.284313 + 1.06107i
\(538\) 0 0
\(539\) −2.44949 16.9706i −0.105507 0.730974i
\(540\) 0 0
\(541\) 22.5000 38.9711i 0.967351 1.67550i 0.264188 0.964471i \(-0.414896\pi\)
0.703163 0.711029i \(-0.251771\pi\)
\(542\) 0 0
\(543\) −25.0955 6.72432i −1.07695 0.288568i
\(544\) 0 0
\(545\) 18.0000 + 9.00000i 0.771035 + 0.385518i
\(546\) 0 0
\(547\) −18.3712 18.3712i −0.785495 0.785495i 0.195257 0.980752i \(-0.437446\pi\)
−0.980752 + 0.195257i \(0.937446\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.12132 1.22474i −0.0903713 0.0521759i
\(552\) 0 0
\(553\) −45.2487 + 3.24871i −1.92417 + 0.138149i
\(554\) 0 0
\(555\) −36.5665 + 24.1432i −1.55216 + 1.02482i
\(556\) 0 0
\(557\) 34.1506 + 9.15064i 1.44701 + 0.387725i 0.894982 0.446102i \(-0.147188\pi\)
0.552027 + 0.833827i \(0.313855\pi\)
\(558\) 0 0
\(559\) 24.4949 1.03602
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 0 0
\(563\) 8.36516 + 2.24144i 0.352550 + 0.0944654i 0.430748 0.902472i \(-0.358250\pi\)
−0.0781979 + 0.996938i \(0.524917\pi\)
\(564\) 0 0
\(565\) 1.90192 9.29423i 0.0800145 0.391011i
\(566\) 0 0
\(567\) 10.3986 21.4213i 0.436698 0.899608i
\(568\) 0 0
\(569\) −17.3205 10.0000i −0.726113 0.419222i 0.0908852 0.995861i \(-0.471030\pi\)
−0.816999 + 0.576640i \(0.804364\pi\)
\(570\) 0 0
\(571\) 10.6066 6.12372i 0.443872 0.256270i −0.261366 0.965240i \(-0.584173\pi\)
0.705239 + 0.708970i \(0.250840\pi\)
\(572\) 0 0
\(573\) 9.00000 + 9.00000i 0.375980 + 0.375980i
\(574\) 0 0
\(575\) −25.7196 3.67423i −1.07258 0.153226i
\(576\) 0 0
\(577\) −39.6147 10.6147i −1.64918 0.441897i −0.689799 0.724001i \(-0.742301\pi\)
−0.959384 + 0.282104i \(0.908968\pi\)
\(578\) 0 0
\(579\) −1.22474 + 2.12132i −0.0508987 + 0.0881591i
\(580\) 0 0
\(581\) 13.5000 + 2.59808i 0.560074 + 0.107786i
\(582\) 0 0
\(583\) −0.896575 3.34607i −0.0371324 0.138580i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.89898 + 4.89898i 0.202203 + 0.202203i 0.800943 0.598741i \(-0.204332\pi\)
−0.598741 + 0.800943i \(0.704332\pi\)
\(588\) 0 0
\(589\) 12.0000i 0.494451i
\(590\) 0 0
\(591\) 19.0919 11.0227i 0.785335 0.453413i
\(592\) 0 0
\(593\) 12.2942 3.29423i 0.504863 0.135278i 0.00260723 0.999997i \(-0.499170\pi\)
0.502256 + 0.864719i \(0.332503\pi\)
\(594\) 0 0
\(595\) 10.1769 13.2827i 0.417212 0.544539i
\(596\) 0 0
\(597\) −4.39230 16.3923i −0.179765 0.670892i
\(598\) 0 0
\(599\) −9.79796 16.9706i −0.400334 0.693398i 0.593432 0.804884i \(-0.297772\pi\)
−0.993766 + 0.111486i \(0.964439\pi\)
\(600\) 0 0
\(601\) −12.0000 −0.489490 −0.244745 0.969587i \(-0.578704\pi\)
−0.244745 + 0.969587i \(0.578704\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.1603 0.669873i 0.453729 0.0272342i
\(606\) 0 0
\(607\) −5.01910 + 1.34486i −0.203719 + 0.0545863i −0.359235 0.933247i \(-0.616962\pi\)
0.155517 + 0.987833i \(0.450296\pi\)
\(608\) 0 0
\(609\) 4.33013 1.50000i 0.175466 0.0607831i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −3.66025 + 13.6603i −0.147836 + 0.551732i 0.851776 + 0.523905i \(0.175525\pi\)
−0.999613 + 0.0278271i \(0.991141\pi\)
\(614\) 0 0
\(615\) −1.22474 3.67423i −0.0493865 0.148159i
\(616\) 0 0
\(617\) −16.0000 + 16.0000i −0.644136 + 0.644136i −0.951569 0.307434i \(-0.900530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(618\) 0 0
\(619\) −6.12372 10.6066i −0.246133 0.426315i 0.716316 0.697776i \(-0.245827\pi\)
−0.962450 + 0.271460i \(0.912493\pi\)
\(620\) 0 0
\(621\) −13.5000 + 23.3827i −0.541736 + 0.938315i
\(622\) 0 0
\(623\) −2.08416 29.0285i −0.0834999 1.16300i
\(624\) 0 0
\(625\) −17.2846 18.0622i −0.691384 0.722487i
\(626\) 0 0
\(627\) −2.68973 + 10.0382i −0.107417 + 0.400887i
\(628\) 0 0
\(629\) 32.0000i 1.27592i
\(630\) 0 0
\(631\) 26.9444i 1.07264i 0.844015 + 0.536320i \(0.180186\pi\)
−0.844015 + 0.536320i \(0.819814\pi\)
\(632\) 0 0
\(633\) −3.29423 + 12.2942i −0.130934 + 0.488652i
\(634\) 0 0
\(635\) −6.21166 + 30.3548i −0.246502 + 1.20459i
\(636\) 0 0
\(637\) 18.1962 7.80385i 0.720958 0.309200i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −11.5000 19.9186i −0.454223 0.786737i 0.544420 0.838812i \(-0.316750\pi\)
−0.998643 + 0.0520757i \(0.983416\pi\)
\(642\) 0 0
\(643\) 24.4949 24.4949i 0.965984 0.965984i −0.0334557 0.999440i \(-0.510651\pi\)
0.999440 + 0.0334557i \(0.0106513\pi\)
\(644\) 0 0
\(645\) −30.0000 15.0000i −1.18125 0.590624i
\(646\) 0 0
\(647\) 6.72432 25.0955i 0.264360 0.986605i −0.698281 0.715824i \(-0.746051\pi\)
0.962641 0.270781i \(-0.0872821\pi\)
\(648\) 0 0
\(649\) 25.9808 + 15.0000i 1.01983 + 0.588802i
\(650\) 0 0
\(651\) 16.9706 + 14.6969i 0.665129 + 0.576018i
\(652\) 0 0
\(653\) 19.1244 5.12436i 0.748394 0.200532i 0.135588 0.990765i \(-0.456708\pi\)
0.612806 + 0.790234i \(0.290041\pi\)
\(654\) 0 0
\(655\) 2.62536 + 43.7391i 0.102581 + 1.70903i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −17.1464 −0.667930 −0.333965 0.942585i \(-0.608387\pi\)
−0.333965 + 0.942585i \(0.608387\pi\)
\(660\) 0 0
\(661\) 19.5000 + 33.7750i 0.758462 + 1.31369i 0.943635 + 0.330989i \(0.107382\pi\)
−0.185173 + 0.982706i \(0.559284\pi\)
\(662\) 0 0
\(663\) 3.58630 + 13.3843i 0.139280 + 0.519802i
\(664\) 0 0
\(665\) 8.83013 + 11.4904i 0.342418 + 0.445578i
\(666\) 0 0
\(667\) −5.01910 + 1.34486i −0.194340 + 0.0520733i
\(668\) 0 0
\(669\) 36.3731 21.0000i 1.40626 0.811907i
\(670\) 0 0
\(671\) 7.34847i 0.283685i
\(672\) 0 0
\(673\) −8.00000 8.00000i −0.308377 0.308377i 0.535903 0.844280i \(-0.319971\pi\)
−0.844280 + 0.535903i \(0.819971\pi\)
\(674\) 0 0
\(675\) −24.1110 + 9.67784i −0.928032 + 0.372500i
\(676\) 0 0
\(677\) 8.05256 + 30.0526i 0.309485 + 1.15501i 0.929015 + 0.370041i \(0.120656\pi\)
−0.619530 + 0.784973i \(0.712677\pi\)
\(678\) 0 0
\(679\) 40.4166 + 7.77817i 1.55105 + 0.298499i
\(680\) 0 0
\(681\) 18.0000 31.1769i 0.689761 1.19470i
\(682\) 0 0
\(683\) 35.1337 + 9.41404i 1.34435 + 0.360218i 0.858047 0.513570i \(-0.171677\pi\)
0.486306 + 0.873789i \(0.338344\pi\)
\(684\) 0 0
\(685\) 12.0000 + 36.0000i 0.458496 + 1.37549i
\(686\) 0 0
\(687\) −9.79796 9.79796i −0.373815 0.373815i
\(688\) 0 0
\(689\) 3.46410 2.00000i 0.131972 0.0761939i
\(690\) 0 0
\(691\) 19.0919 + 11.0227i 0.726289 + 0.419323i 0.817063 0.576548i \(-0.195601\pi\)
−0.0907737 + 0.995872i \(0.528934\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.1253 + 31.9957i 0.801327 + 1.21366i
\(696\) 0 0
\(697\) −2.73205 0.732051i −0.103484 0.0277284i
\(698\) 0 0
\(699\) −4.89898 −0.185296
\(700\) 0 0
\(701\) −1.00000 −0.0377695 −0.0188847 0.999822i \(-0.506012\pi\)
−0.0188847 + 0.999822i \(0.506012\pi\)
\(702\) 0 0
\(703\) −26.7685 7.17260i −1.00959 0.270520i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.0201 + 30.9418i −0.564890 + 1.16369i
\(708\) 0 0
\(709\) −40.7032 23.5000i −1.52864 0.882561i −0.999419 0.0340772i \(-0.989151\pi\)
−0.529221 0.848484i \(-0.677516\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −18.0000 18.0000i −0.674105 0.674105i
\(714\) 0 0
\(715\) −4.89898 14.6969i −0.183211 0.549634i
\(716\) 0 0
\(717\) −40.9808 10.9808i −1.53045 0.410084i
\(718\) 0 0
\(719\) 11.0227 19.0919i 0.411077 0.712007i −0.583930 0.811804i \(-0.698486\pi\)
0.995008 + 0.0997967i \(0.0318192\pi\)
\(720\) 0 0
\(721\) −27.0000 + 31.1769i −1.00553 + 1.16109i
\(722\) 0 0
\(723\) −1.79315 6.69213i −0.0666880 0.248883i
\(724\) 0 0
\(725\) −4.59808 1.96410i −0.170768 0.0729449i
\(726\) 0 0
\(727\) 23.2702 + 23.2702i 0.863042 + 0.863042i 0.991690 0.128648i \(-0.0410638\pi\)
−0.128648 + 0.991690i \(0.541064\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) −21.2132 + 12.2474i −0.784599 + 0.452988i
\(732\) 0 0
\(733\) 6.83013 1.83013i 0.252276 0.0675973i −0.130464 0.991453i \(-0.541647\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(734\) 0 0
\(735\) −27.0645 1.58510i −0.998289 0.0584673i
\(736\) 0 0
\(737\) 1.09808 + 4.09808i 0.0404482 + 0.150955i
\(738\) 0 0
\(739\) 1.22474 + 2.12132i 0.0450530 + 0.0780340i 0.887673 0.460475i \(-0.152321\pi\)
−0.842620 + 0.538509i \(0.818988\pi\)
\(740\) 0 0
\(741\) −12.0000 −0.440831
\(742\) 0 0
\(743\) −8.57321 + 8.57321i −0.314521 + 0.314521i −0.846658 0.532137i \(-0.821389\pi\)
0.532137 + 0.846658i \(0.321389\pi\)
\(744\) 0 0
\(745\) −3.08142 51.3372i −0.112894 1.88085i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 24.2487 + 21.0000i 0.886029 + 0.767323i
\(750\) 0 0
\(751\) 16.9706 + 9.79796i 0.619265 + 0.357533i 0.776583 0.630015i \(-0.216951\pi\)
−0.157318 + 0.987548i \(0.550285\pi\)
\(752\) 0 0
\(753\) 10.9808 40.9808i 0.400161 1.49342i
\(754\) 0 0
\(755\) −9.79796 4.89898i −0.356584 0.178292i
\(756\) 0 0
\(757\) −10.0000 + 10.0000i −0.363456 + 0.363456i −0.865084 0.501628i \(-0.832735\pi\)
0.501628 + 0.865084i \(0.332735\pi\)
\(758\) 0 0
\(759\) 11.0227 + 19.0919i 0.400099 + 0.692991i
\(760\) 0 0
\(761\) −23.0000 + 39.8372i −0.833749 + 1.44410i 0.0612953 + 0.998120i \(0.480477\pi\)
−0.895045 + 0.445977i \(0.852856\pi\)
\(762\) 0 0
\(763\) −21.4213 10.3986i −0.775501 0.376453i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.96575 + 33.4607i −0.323735 + 1.20819i
\(768\) 0 0
\(769\) 24.0000i 0.865462i 0.901523 + 0.432731i \(0.142450\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) 29.3939i 1.05859i
\(772\) 0 0
\(773\) −9.51666 + 35.5167i −0.342290 + 1.27745i 0.553455 + 0.832879i \(0.313309\pi\)
−0.895746 + 0.444567i \(0.853358\pi\)
\(774\) 0 0
\(775\) −2.92996 24.3190i −0.105247 0.873565i
\(776\) 0 0
\(777\) 42.9282 29.0718i 1.54004 1.04294i
\(778\) 0 0
\(779\) 1.22474 2.12132i 0.0438810 0.0760042i
\(780\) 0 0
\(781\) 15.0000 + 25.9808i 0.536742 + 0.929665i
\(782\) 0 0
\(783\) −3.67423 + 3.67423i −0.131306 + 0.131306i
\(784\) 0 0
\(785\) 7.00000 + 21.0000i 0.249841 + 0.749522i
\(786\) 0 0
\(787\) 4.93117 18.4034i 0.175777 0.656009i −0.820641 0.571444i \(-0.806383\pi\)
0.996418 0.0845647i \(-0.0269500\pi\)
\(788\) 0 0
\(789\) 2.59808 + 1.50000i 0.0924940 + 0.0534014i
\(790\) 0 0
\(791\) −2.12132 + 11.0227i −0.0754255 + 0.391922i
\(792\) 0 0
\(793\) −8.19615 + 2.19615i −0.291054 + 0.0779877i
\(794\) 0 0
\(795\) −5.46739 + 0.328169i −0.193908 + 0.0116390i
\(796\) 0 0
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.79315 + 6.69213i 0.0632789 + 0.236160i
\(804\) 0 0
\(805\) 30.4808 + 3.99038i 1.07431 + 0.140642i
\(806\) 0 0
\(807\) −8.36516 + 2.24144i −0.294468 + 0.0789024i
\(808\) 0 0
\(809\) 26.8468 15.5000i 0.943883 0.544951i 0.0527074 0.998610i \(-0.483215\pi\)
0.891175 + 0.453659i \(0.149882\pi\)
\(810\) 0 0
\(811\) 24.4949i 0.860132i 0.902797 + 0.430066i \(0.141510\pi\)
−0.902797 + 0.430066i \(0.858490\pi\)
\(812\) 0 0
\(813\) 9.00000 + 9.00000i 0.315644 + 0.315644i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −5.49038 20.4904i −0.192084 0.716868i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0000 17.3205i 0.349002 0.604490i −0.637070 0.770806i \(-0.719854\pi\)
0.986073 + 0.166316i \(0.0531872\pi\)
\(822\) 0 0
\(823\) −31.7876 8.51747i −1.10805 0.296900i −0.342010 0.939696i \(-0.611108\pi\)
−0.766037 + 0.642796i \(0.777774\pi\)
\(824\) 0 0
\(825\) −3.00000 + 21.0000i −0.104447 + 0.731126i
\(826\) 0 0
\(827\) 25.7196 + 25.7196i 0.894360 + 0.894360i 0.994930 0.100570i \(-0.0320668\pi\)
−0.100570 + 0.994930i \(0.532067\pi\)
\(828\) 0 0
\(829\) −10.3923 + 6.00000i −0.360940 + 0.208389i −0.669493 0.742818i \(-0.733489\pi\)
0.308553 + 0.951207i \(0.400155\pi\)
\(830\) 0 0
\(831\) −4.24264 2.44949i −0.147176 0.0849719i
\(832\) 0 0
\(833\) −11.8564 + 15.8564i −0.410800 + 0.549392i
\(834\) 0 0
\(835\) 3.88229 18.9718i 0.134352 0.656545i
\(836\) 0 0
\(837\) −24.5885 6.58846i −0.849901 0.227730i
\(838\) 0 0
\(839\) 17.1464 0.591960 0.295980 0.955194i \(-0.404354\pi\)
0.295980 + 0.955194i \(0.404354\pi\)
\(840\) 0 0
\(841\) 28.0000 0.965517
\(842\) 0 0
\(843\) −46.8449 12.5521i −1.61342 0.432316i
\(844\) 0 0
\(845\) −9.33013 + 6.16025i −0.320966 + 0.211919i
\(846\) 0 0
\(847\) −13.1948 + 0.947343i −0.453378 + 0.0325511i
\(848\) 0 0
\(849\) −20.7846 12.0000i −0.713326 0.411839i
\(850\) 0 0
\(851\) −50.9117 + 29.3939i −1.74523 + 1.00761i
\(852\) 0 0
\(853\) 37.0000 + 37.0000i 1.26686 + 1.26686i 0.947703 + 0.319152i \(0.103398\pi\)
0.319152 + 0.947703i \(0.396602\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −42.3468 11.3468i −1.44654 0.387599i −0.551720 0.834029i \(-0.686028\pi\)
−0.894818 + 0.446430i \(0.852695\pi\)
\(858\) 0 0
\(859\) 14.6969 25.4558i 0.501453 0.868542i −0.498546 0.866864i \(-0.666132\pi\)
0.999999 0.00167867i \(-0.000534338\pi\)
\(860\) 0 0
\(861\) 1.50000 + 4.33013i 0.0511199 + 0.147570i
\(862\) 0 0
\(863\) 5.82774 + 21.7494i 0.198379 + 0.740359i 0.991366 + 0.131121i \(0.0418578\pi\)
−0.792988 + 0.609238i \(0.791476\pi\)
\(864\) 0 0
\(865\) 28.3923 + 25.1769i 0.965367 + 0.856041i
\(866\) 0 0
\(867\) 11.0227 + 11.0227i 0.374351 + 0.374351i
\(868\) 0 0
\(869\) 42.0000i 1.42475i
\(870\) 0 0
\(871\) −4.24264 + 2.44949i −0.143756 + 0.0829978i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 20.7005 + 21.1302i 0.699806 + 0.714333i
\(876\) 0 0
\(877\) −9.15064 34.1506i −0.308995 1.15319i −0.929452 0.368944i \(-0.879719\pi\)
0.620457 0.784241i \(-0.286947\pi\)
\(878\) 0 0
\(879\) 14.6969 + 25.4558i 0.495715 + 0.858604i
\(880\) 0 0
\(881\) −11.0000 −0.370599 −0.185300 0.982682i \(-0.559326\pi\)
−0.185300 + 0.982682i \(0.559326\pi\)
\(882\) 0 0
\(883\) 24.4949 24.4949i 0.824319 0.824319i −0.162405 0.986724i \(-0.551925\pi\)
0.986724 + 0.162405i \(0.0519252\pi\)
\(884\) 0 0
\(885\) 31.4711 35.4904i 1.05789 1.19300i
\(886\) 0 0
\(887\) −41.8258 + 11.2072i −1.40437 + 0.376301i −0.879913 0.475134i \(-0.842399\pi\)
−0.524460 + 0.851435i \(0.675733\pi\)
\(888\) 0 0
\(889\) 6.92820 36.0000i 0.232364 1.20740i
\(890\) 0 0
\(891\) 19.0919 + 11.0227i 0.639602 + 0.369274i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −14.6969 + 29.3939i −0.491264 + 0.982529i
\(896\) 0 0
\(897\) −18.0000 + 18.0000i −0.601003 + 0.601003i
\(898\) 0 0
\(899\) −2.44949 4.24264i −0.0816951 0.141500i
\(900\) 0 0
\(901\) −2.00000 + 3.46410i −0.0666297 + 0.115406i
\(902\) 0 0
\(903\) 35.7021 + 17.3309i 1.18809 + 0.576737i
\(904\) 0 0
\(905\) −18.4808 27.9904i −0.614321 0.930432i
\(906\) 0 0
\(907\) 8.51747 31.7876i 0.282818 1.05549i −0.667601 0.744519i \(-0.732679\pi\)
0.950419 0.310972i \(-0.100654\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36.7423i 1.21733i 0.793428 + 0.608664i \(0.208294\pi\)
−0.793428 + 0.608664i \(0.791706\pi\)
\(912\) 0 0
\(913\) −3.29423 + 12.2942i −0.109023 + 0.406880i
\(914\) 0 0
\(915\) 11.3831 + 2.32937i 0.376312 + 0.0770066i
\(916\) 0 0
\(917\) −3.71281 51.7128i −0.122608 1.70771i
\(918\) 0 0
\(919\) −1.22474 + 2.12132i −0.0404006 + 0.0699759i −0.885519 0.464604i \(-0.846197\pi\)
0.845118 + 0.534580i \(0.179530\pi\)
\(920\) 0 0
\(921\) −1.50000 2.59808i −0.0494267 0.0856095i
\(922\) 0 0
\(923\) −24.4949 + 24.4949i −0.806259 + 0.806259i
\(924\) 0 0
\(925\) −56.0000 8.00000i −1.84127 0.263038i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16.4545 9.50000i −0.539854 0.311685i 0.205166 0.978727i \(-0.434227\pi\)
−0.745020 + 0.667042i \(0.767560\pi\)
\(930\) 0 0
\(931\) −10.6066 13.4722i −0.347617 0.441533i
\(932\) 0 0
\(933\) 28.6865 7.68653i 0.939155 0.251646i
\(934\) 0 0
\(935\) 11.5911 + 10.2784i 0.379070 + 0.336141i
\(936\) 0 0
\(937\) 4.00000 4.00000i 0.130674 0.130674i −0.638745 0.769419i \(-0.720546\pi\)
0.769419 + 0.638745i \(0.220546\pi\)
\(938\) 0 0
\(939\) −39.1918 −1.27898
\(940\) 0 0
\(941\) 8.00000 + 13.8564i 0.260793 + 0.451706i 0.966453 0.256844i \(-0.0826828\pi\)
−0.705660 + 0.708550i \(0.749349\pi\)
\(942\) 0 0
\(943\) −1.34486 5.01910i −0.0437948 0.163444i
\(944\) 0 0
\(945\) 28.3923 11.7846i 0.923602 0.383353i
\(946\) 0 0
\(947\) −8.36516 + 2.24144i −0.271831 + 0.0728370i −0.392160 0.919897i \(-0.628272\pi\)
0.120328 + 0.992734i \(0.461605\pi\)
\(948\) 0 0
\(949\) −6.92820 + 4.00000i −0.224899 + 0.129845i
\(950\) 0 0
\(951\) 34.2929i 1.11202i
\(952\) 0 0
\(953\) 12.0000 + 12.0000i 0.388718 + 0.388718i 0.874230 0.485512i \(-0.161367\pi\)
−0.485512 + 0.874230i \(0.661367\pi\)
\(954\) 0 0
\(955\) 0.984508 + 16.4022i 0.0318579 + 0.530761i
\(956\) 0 0
\(957\) 1.09808 + 4.09808i 0.0354958 + 0.132472i
\(958\) 0 0
\(959\) −14.6969 42.4264i −0.474589 1.37002i
\(960\) 0 0
\(961\) −3.50000 + 6.06218i −0.112903 + 0.195554i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.00000 + 1.00000i −0.0965734 + 0.0321911i
\(966\) 0 0
\(967\) 30.6186 + 30.6186i 0.984628 + 0.984628i 0.999884 0.0152551i \(-0.00485605\pi\)
−0.0152551 + 0.999884i \(0.504856\pi\)
\(968\) 0 0
\(969\) 10.3923 6.00000i 0.333849 0.192748i
\(970\) 0 0
\(971\) 25.4558 + 14.6969i 0.816917 + 0.471647i 0.849352 0.527827i \(-0.176993\pi\)
−0.0324352 + 0.999474i \(0.510326\pi\)
\(972\) 0 0
\(973\) −25.4378 37.5622i −0.815499 1.20419i
\(974\) 0 0
\(975\) −24.3190 + 2.92996i −0.778832 + 0.0938339i
\(976\) 0 0
\(977\) 39.6147 + 10.6147i 1.26739 + 0.339596i 0.829030 0.559205i \(-0.188893\pi\)
0.438358 + 0.898800i \(0.355560\pi\)
\(978\) 0 0
\(979\) 26.9444 0.861146
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 35.1337 + 9.41404i 1.12059 + 0.300261i 0.771122 0.636687i \(-0.219696\pi\)
0.349468 + 0.936948i \(0.386362\pi\)
\(984\) 0 0
\(985\) 27.8827 + 5.70577i 0.888416 + 0.181801i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −38.9711 22.5000i −1.23921 0.715458i
\(990\) 0 0
\(991\) 29.6985 17.1464i 0.943403 0.544674i 0.0523779 0.998627i \(-0.483320\pi\)
0.891026 + 0.453953i \(0.149987\pi\)
\(992\) 0 0
\(993\) −30.0000 30.0000i −0.952021 0.952021i
\(994\) 0 0
\(995\) 9.79796 19.5959i 0.310616 0.621232i
\(996\) 0 0
\(997\) −31.4186 8.41858i −0.995037 0.266619i −0.275672 0.961252i \(-0.588900\pi\)
−0.719365 + 0.694633i \(0.755567\pi\)
\(998\) 0 0
\(999\) −29.3939 + 50.9117i −0.929981 + 1.61077i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.cu.a.303.1 yes 8
4.3 odd 2 inner 560.2.cu.a.303.2 yes 8
5.2 odd 4 inner 560.2.cu.a.527.1 yes 8
7.4 even 3 inner 560.2.cu.a.543.2 yes 8
20.7 even 4 inner 560.2.cu.a.527.2 yes 8
28.11 odd 6 inner 560.2.cu.a.543.1 yes 8
35.32 odd 12 inner 560.2.cu.a.207.2 yes 8
140.67 even 12 inner 560.2.cu.a.207.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.2.cu.a.207.1 8 140.67 even 12 inner
560.2.cu.a.207.2 yes 8 35.32 odd 12 inner
560.2.cu.a.303.1 yes 8 1.1 even 1 trivial
560.2.cu.a.303.2 yes 8 4.3 odd 2 inner
560.2.cu.a.527.1 yes 8 5.2 odd 4 inner
560.2.cu.a.527.2 yes 8 20.7 even 4 inner
560.2.cu.a.543.1 yes 8 28.11 odd 6 inner
560.2.cu.a.543.2 yes 8 7.4 even 3 inner