L(s) = 1 | + (−1.67 + 0.448i)3-s + (−1.23 + 1.86i)5-s + (1.48 − 2.19i)7-s + (−2.12 − 1.22i)11-s + (−2 + 2i)13-s + (1.22 − 3.67i)15-s + (2.73 − 0.732i)17-s + (−1.22 − 2.12i)19-s + (−1.50 + 4.33i)21-s + (1.34 − 5.01i)23-s + (−1.96 − 4.59i)25-s + (3.67 − 3.67i)27-s − i·29-s + (−4.24 − 2.44i)31-s + (4.09 + 1.09i)33-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)3-s + (−0.550 + 0.834i)5-s + (0.560 − 0.827i)7-s + (−0.639 − 0.369i)11-s + (−0.554 + 0.554i)13-s + (0.316 − 0.948i)15-s + (0.662 − 0.177i)17-s + (−0.280 − 0.486i)19-s + (−0.327 + 0.944i)21-s + (0.280 − 1.04i)23-s + (−0.392 − 0.919i)25-s + (0.707 − 0.707i)27-s − 0.185i·29-s + (−0.762 − 0.439i)31-s + (0.713 + 0.191i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.164 + 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.164 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.284167 - 0.335406i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.284167 - 0.335406i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.23 - 1.86i)T \) |
| 7 | \( 1 + (-1.48 + 2.19i)T \) |
good | 3 | \( 1 + (1.67 - 0.448i)T + (2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (2.12 + 1.22i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2 - 2i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.73 + 0.732i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.22 + 2.12i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.34 + 5.01i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + iT - 29T^{2} \) |
| 31 | \( 1 + (4.24 + 2.44i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.92 + 10.9i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + T + 41T^{2} \) |
| 43 | \( 1 + (6.12 + 6.12i)T + 43iT^{2} \) |
| 47 | \( 1 + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (0.366 + 1.36i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (6.12 - 10.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 2.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.448 - 1.67i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 12.2iT - 71T^{2} \) |
| 73 | \( 1 + (-0.732 - 2.73i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (8.57 + 14.8i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.67 - 3.67i)T + 83iT^{2} \) |
| 89 | \( 1 + (9.52 - 5.5i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-11 - 11i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65865567210577013178926918945, −10.10166963919708747798597874431, −8.661636027934014846507007109380, −7.61350925262893894748438068810, −6.98551707154751367035378673870, −5.87668127658269609356526133354, −4.87679727874017594130544567587, −3.96622674092309414154491441673, −2.53965562347722063144209943465, −0.29107762368289968905549254727,
1.47406202658271164358034222021, 3.22619547803167121673982748360, 4.93314509385603071110532942910, 5.24045855770353699272921779856, 6.25778252653800107182209317899, 7.61834853870185504188004225923, 8.187316748045202053931810419173, 9.217160827424358861855678198765, 10.22570583458655467713893654389, 11.31538470565394298507553408687