Properties

Label 528.3.bf.c.145.1
Level $528$
Weight $3$
Character 528.145
Analytic conductor $14.387$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [528,3,Mod(145,528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(528, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("528.145"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 528.bf (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,8,0,-60,0,-12,0,4,0,-60,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3869579582\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.6879707136000000000000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 145.1
Root \(0.304260 - 0.418778i\) of defining polynomial
Character \(\chi\) \(=\) 528.145
Dual form 528.3.bf.c.193.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40126 + 1.01807i) q^{3} +(0.109202 + 0.336090i) q^{5} +(-0.464787 + 0.639725i) q^{7} +(0.927051 - 2.85317i) q^{9} +(10.9281 - 1.25540i) q^{11} +(0.198988 + 0.0646551i) q^{13} +(-0.495185 - 0.359773i) q^{15} +(-14.2369 + 4.62586i) q^{17} +(1.27522 + 1.75519i) q^{19} -1.36961i q^{21} +24.1342 q^{23} +(20.1244 - 14.6212i) q^{25} +(1.60570 + 4.94183i) q^{27} +(-10.4767 + 14.4199i) q^{29} +(-10.4564 + 32.1814i) q^{31} +(-14.0350 + 12.8848i) q^{33} +(-0.265761 - 0.0863510i) q^{35} +(48.6102 + 35.3174i) q^{37} +(-0.344657 + 0.111986i) q^{39} +(31.4796 + 43.3280i) q^{41} +15.5727i q^{43} +1.06016 q^{45} +(-49.4759 + 35.9463i) q^{47} +(14.9486 + 46.0071i) q^{49} +(15.2402 - 20.9763i) q^{51} +(18.2219 - 56.0812i) q^{53} +(1.61531 + 3.53574i) q^{55} +(-3.57382 - 1.16121i) q^{57} +(-41.6528 - 30.2625i) q^{59} +(38.7576 - 12.5931i) q^{61} +(1.39436 + 1.91917i) q^{63} +0.0739383i q^{65} +72.9302 q^{67} +(-33.8182 + 24.5704i) q^{69} +(29.3727 + 90.3998i) q^{71} +(-66.7272 + 91.8421i) q^{73} +(-13.3140 + 40.9762i) q^{75} +(-4.27614 + 7.57449i) q^{77} +(139.926 + 45.4646i) q^{79} +(-7.28115 - 5.29007i) q^{81} +(18.9025 - 6.14179i) q^{83} +(-3.10941 - 4.27974i) q^{85} -30.8721i q^{87} -74.9710 q^{89} +(-0.133848 + 0.0972466i) q^{91} +(-18.1110 - 55.7399i) q^{93} +(-0.450645 + 0.620259i) q^{95} +(31.3671 - 96.5379i) q^{97} +(6.54905 - 32.3436i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 60 q^{7} - 12 q^{9} + 4 q^{11} - 60 q^{13} - 12 q^{15} - 60 q^{17} + 8 q^{23} - 48 q^{25} - 160 q^{29} - 32 q^{31} + 36 q^{33} - 160 q^{35} - 84 q^{37} + 40 q^{41} + 24 q^{45} - 372 q^{47}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/528\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(145\) \(353\) \(463\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.40126 + 1.01807i −0.467086 + 0.339358i
\(4\) 0 0
\(5\) 0.109202 + 0.336090i 0.0218405 + 0.0672180i 0.961383 0.275215i \(-0.0887490\pi\)
−0.939542 + 0.342433i \(0.888749\pi\)
\(6\) 0 0
\(7\) −0.464787 + 0.639725i −0.0663982 + 0.0913893i −0.840925 0.541152i \(-0.817988\pi\)
0.774526 + 0.632542i \(0.217988\pi\)
\(8\) 0 0
\(9\) 0.927051 2.85317i 0.103006 0.317019i
\(10\) 0 0
\(11\) 10.9281 1.25540i 0.993466 0.114128i
\(12\) 0 0
\(13\) 0.198988 + 0.0646551i 0.0153068 + 0.00497347i 0.316660 0.948539i \(-0.397438\pi\)
−0.301354 + 0.953512i \(0.597438\pi\)
\(14\) 0 0
\(15\) −0.495185 0.359773i −0.0330124 0.0239849i
\(16\) 0 0
\(17\) −14.2369 + 4.62586i −0.837467 + 0.272109i −0.696187 0.717860i \(-0.745122\pi\)
−0.141280 + 0.989970i \(0.545122\pi\)
\(18\) 0 0
\(19\) 1.27522 + 1.75519i 0.0671168 + 0.0923783i 0.841256 0.540637i \(-0.181817\pi\)
−0.774139 + 0.633016i \(0.781817\pi\)
\(20\) 0 0
\(21\) 1.36961i 0.0652194i
\(22\) 0 0
\(23\) 24.1342 1.04931 0.524656 0.851314i \(-0.324194\pi\)
0.524656 + 0.851314i \(0.324194\pi\)
\(24\) 0 0
\(25\) 20.1244 14.6212i 0.804976 0.584849i
\(26\) 0 0
\(27\) 1.60570 + 4.94183i 0.0594703 + 0.183031i
\(28\) 0 0
\(29\) −10.4767 + 14.4199i −0.361265 + 0.497239i −0.950501 0.310723i \(-0.899429\pi\)
0.589236 + 0.807961i \(0.299429\pi\)
\(30\) 0 0
\(31\) −10.4564 + 32.1814i −0.337303 + 1.03811i 0.628274 + 0.777992i \(0.283762\pi\)
−0.965577 + 0.260119i \(0.916238\pi\)
\(32\) 0 0
\(33\) −14.0350 + 12.8848i −0.425304 + 0.390448i
\(34\) 0 0
\(35\) −0.265761 0.0863510i −0.00759318 0.00246717i
\(36\) 0 0
\(37\) 48.6102 + 35.3174i 1.31379 + 0.954524i 0.999987 + 0.00503636i \(0.00160313\pi\)
0.313803 + 0.949488i \(0.398397\pi\)
\(38\) 0 0
\(39\) −0.344657 + 0.111986i −0.00883736 + 0.00287143i
\(40\) 0 0
\(41\) 31.4796 + 43.3280i 0.767796 + 1.05678i 0.996525 + 0.0832904i \(0.0265429\pi\)
−0.228729 + 0.973490i \(0.573457\pi\)
\(42\) 0 0
\(43\) 15.5727i 0.362157i 0.983469 + 0.181078i \(0.0579588\pi\)
−0.983469 + 0.181078i \(0.942041\pi\)
\(44\) 0 0
\(45\) 1.06016 0.0235591
\(46\) 0 0
\(47\) −49.4759 + 35.9463i −1.05268 + 0.764816i −0.972720 0.231983i \(-0.925479\pi\)
−0.0799585 + 0.996798i \(0.525479\pi\)
\(48\) 0 0
\(49\) 14.9486 + 46.0071i 0.305074 + 0.938920i
\(50\) 0 0
\(51\) 15.2402 20.9763i 0.298827 0.411300i
\(52\) 0 0
\(53\) 18.2219 56.0812i 0.343809 1.05814i −0.618409 0.785857i \(-0.712222\pi\)
0.962218 0.272280i \(-0.0877776\pi\)
\(54\) 0 0
\(55\) 1.61531 + 3.53574i 0.0293692 + 0.0642863i
\(56\) 0 0
\(57\) −3.57382 1.16121i −0.0626987 0.0203720i
\(58\) 0 0
\(59\) −41.6528 30.2625i −0.705980 0.512924i 0.175894 0.984409i \(-0.443718\pi\)
−0.881874 + 0.471485i \(0.843718\pi\)
\(60\) 0 0
\(61\) 38.7576 12.5931i 0.635371 0.206445i 0.0264182 0.999651i \(-0.491590\pi\)
0.608953 + 0.793206i \(0.291590\pi\)
\(62\) 0 0
\(63\) 1.39436 + 1.91917i 0.0221327 + 0.0304631i
\(64\) 0 0
\(65\) 0.0739383i 0.00113751i
\(66\) 0 0
\(67\) 72.9302 1.08851 0.544255 0.838920i \(-0.316812\pi\)
0.544255 + 0.838920i \(0.316812\pi\)
\(68\) 0 0
\(69\) −33.8182 + 24.5704i −0.490119 + 0.356092i
\(70\) 0 0
\(71\) 29.3727 + 90.3998i 0.413700 + 1.27324i 0.913409 + 0.407043i \(0.133440\pi\)
−0.499709 + 0.866193i \(0.666560\pi\)
\(72\) 0 0
\(73\) −66.7272 + 91.8421i −0.914071 + 1.25811i 0.0516858 + 0.998663i \(0.483541\pi\)
−0.965757 + 0.259448i \(0.916459\pi\)
\(74\) 0 0
\(75\) −13.3140 + 40.9762i −0.177520 + 0.546350i
\(76\) 0 0
\(77\) −4.27614 + 7.57449i −0.0555343 + 0.0983700i
\(78\) 0 0
\(79\) 139.926 + 45.4646i 1.77121 + 0.575502i 0.998260 0.0589621i \(-0.0187791\pi\)
0.772952 + 0.634464i \(0.218779\pi\)
\(80\) 0 0
\(81\) −7.28115 5.29007i −0.0898908 0.0653095i
\(82\) 0 0
\(83\) 18.9025 6.14179i 0.227741 0.0739974i −0.192924 0.981214i \(-0.561797\pi\)
0.420664 + 0.907216i \(0.361797\pi\)
\(84\) 0 0
\(85\) −3.10941 4.27974i −0.0365813 0.0503499i
\(86\) 0 0
\(87\) 30.8721i 0.354851i
\(88\) 0 0
\(89\) −74.9710 −0.842371 −0.421185 0.906975i \(-0.638386\pi\)
−0.421185 + 0.906975i \(0.638386\pi\)
\(90\) 0 0
\(91\) −0.133848 + 0.0972466i −0.00147086 + 0.00106864i
\(92\) 0 0
\(93\) −18.1110 55.7399i −0.194742 0.599353i
\(94\) 0 0
\(95\) −0.450645 + 0.620259i −0.00474363 + 0.00652905i
\(96\) 0 0
\(97\) 31.3671 96.5379i 0.323372 0.995236i −0.648798 0.760960i \(-0.724728\pi\)
0.972170 0.234276i \(-0.0752719\pi\)
\(98\) 0 0
\(99\) 6.54905 32.3436i 0.0661521 0.326703i
\(100\) 0 0
\(101\) 24.8088 + 8.06086i 0.245631 + 0.0798105i 0.429245 0.903188i \(-0.358780\pi\)
−0.183614 + 0.982998i \(0.558780\pi\)
\(102\) 0 0
\(103\) −25.5133 18.5365i −0.247702 0.179966i 0.457006 0.889464i \(-0.348922\pi\)
−0.704708 + 0.709498i \(0.748922\pi\)
\(104\) 0 0
\(105\) 0.460312 0.149564i 0.00438392 0.00142442i
\(106\) 0 0
\(107\) −47.3389 65.1565i −0.442420 0.608939i 0.528328 0.849040i \(-0.322819\pi\)
−0.970748 + 0.240102i \(0.922819\pi\)
\(108\) 0 0
\(109\) 32.1811i 0.295239i 0.989044 + 0.147620i \(0.0471612\pi\)
−0.989044 + 0.147620i \(0.952839\pi\)
\(110\) 0 0
\(111\) −104.071 −0.937579
\(112\) 0 0
\(113\) 23.6264 17.1656i 0.209083 0.151908i −0.478315 0.878188i \(-0.658752\pi\)
0.687399 + 0.726280i \(0.258752\pi\)
\(114\) 0 0
\(115\) 2.63551 + 8.11126i 0.0229175 + 0.0705327i
\(116\) 0 0
\(117\) 0.368944 0.507807i 0.00315336 0.00434023i
\(118\) 0 0
\(119\) 3.65787 11.2578i 0.0307384 0.0946031i
\(120\) 0 0
\(121\) 117.848 27.4384i 0.973950 0.226764i
\(122\) 0 0
\(123\) −88.2222 28.6651i −0.717254 0.233050i
\(124\) 0 0
\(125\) 14.2591 + 10.3598i 0.114073 + 0.0828786i
\(126\) 0 0
\(127\) −141.757 + 46.0595i −1.11619 + 0.362673i −0.808314 0.588752i \(-0.799620\pi\)
−0.307880 + 0.951425i \(0.599620\pi\)
\(128\) 0 0
\(129\) −15.8542 21.8214i −0.122901 0.169159i
\(130\) 0 0
\(131\) 165.965i 1.26691i −0.773780 0.633454i \(-0.781636\pi\)
0.773780 0.633454i \(-0.218364\pi\)
\(132\) 0 0
\(133\) −1.71554 −0.0128988
\(134\) 0 0
\(135\) −1.48556 + 1.07932i −0.0110041 + 0.00799496i
\(136\) 0 0
\(137\) −45.3846 139.680i −0.331275 1.01956i −0.968528 0.248904i \(-0.919930\pi\)
0.637253 0.770654i \(-0.280070\pi\)
\(138\) 0 0
\(139\) 125.653 172.947i 0.903982 1.24422i −0.0651984 0.997872i \(-0.520768\pi\)
0.969180 0.246352i \(-0.0792320\pi\)
\(140\) 0 0
\(141\) 32.7325 100.740i 0.232145 0.714470i
\(142\) 0 0
\(143\) 2.25573 + 0.456749i 0.0157744 + 0.00319405i
\(144\) 0 0
\(145\) −5.99047 1.94642i −0.0413136 0.0134236i
\(146\) 0 0
\(147\) −67.7855 49.2490i −0.461126 0.335028i
\(148\) 0 0
\(149\) −219.924 + 71.4578i −1.47600 + 0.479582i −0.932916 0.360094i \(-0.882745\pi\)
−0.543087 + 0.839677i \(0.682745\pi\)
\(150\) 0 0
\(151\) 156.589 + 215.527i 1.03701 + 1.42733i 0.899548 + 0.436822i \(0.143896\pi\)
0.137467 + 0.990506i \(0.456104\pi\)
\(152\) 0 0
\(153\) 44.9088i 0.293522i
\(154\) 0 0
\(155\) −11.9577 −0.0771466
\(156\) 0 0
\(157\) 84.3629 61.2933i 0.537344 0.390403i −0.285754 0.958303i \(-0.592244\pi\)
0.823098 + 0.567900i \(0.192244\pi\)
\(158\) 0 0
\(159\) 31.5612 + 97.1355i 0.198498 + 0.610915i
\(160\) 0 0
\(161\) −11.2173 + 15.4392i −0.0696724 + 0.0958959i
\(162\) 0 0
\(163\) 86.4221 265.980i 0.530197 1.63178i −0.223607 0.974679i \(-0.571783\pi\)
0.753804 0.657099i \(-0.228217\pi\)
\(164\) 0 0
\(165\) −5.86311 3.30999i −0.0355340 0.0200605i
\(166\) 0 0
\(167\) −244.370 79.4006i −1.46329 0.475453i −0.534219 0.845346i \(-0.679394\pi\)
−0.929074 + 0.369893i \(0.879394\pi\)
\(168\) 0 0
\(169\) −136.688 99.3100i −0.808807 0.587633i
\(170\) 0 0
\(171\) 6.19004 2.01127i 0.0361991 0.0117618i
\(172\) 0 0
\(173\) −64.7673 89.1445i −0.374377 0.515286i 0.579707 0.814825i \(-0.303167\pi\)
−0.954084 + 0.299539i \(0.903167\pi\)
\(174\) 0 0
\(175\) 19.6698i 0.112399i
\(176\) 0 0
\(177\) 89.1759 0.503819
\(178\) 0 0
\(179\) 21.9460 15.9447i 0.122603 0.0890764i −0.524794 0.851229i \(-0.675858\pi\)
0.647397 + 0.762153i \(0.275858\pi\)
\(180\) 0 0
\(181\) 80.2120 + 246.867i 0.443160 + 1.36391i 0.884489 + 0.466561i \(0.154507\pi\)
−0.441329 + 0.897345i \(0.645493\pi\)
\(182\) 0 0
\(183\) −41.4887 + 57.1044i −0.226714 + 0.312046i
\(184\) 0 0
\(185\) −6.56148 + 20.1942i −0.0354675 + 0.109158i
\(186\) 0 0
\(187\) −149.776 + 68.4251i −0.800940 + 0.365910i
\(188\) 0 0
\(189\) −3.90772 1.26970i −0.0206758 0.00671797i
\(190\) 0 0
\(191\) −100.951 73.3452i −0.528539 0.384006i 0.291272 0.956640i \(-0.405922\pi\)
−0.819811 + 0.572634i \(0.805922\pi\)
\(192\) 0 0
\(193\) 39.9341 12.9754i 0.206912 0.0672299i −0.203727 0.979028i \(-0.565306\pi\)
0.410639 + 0.911798i \(0.365306\pi\)
\(194\) 0 0
\(195\) −0.0752747 0.103607i −0.000386024 0.000531317i
\(196\) 0 0
\(197\) 274.338i 1.39258i −0.717760 0.696290i \(-0.754833\pi\)
0.717760 0.696290i \(-0.245167\pi\)
\(198\) 0 0
\(199\) 150.979 0.758690 0.379345 0.925255i \(-0.376149\pi\)
0.379345 + 0.925255i \(0.376149\pi\)
\(200\) 0 0
\(201\) −102.194 + 74.2483i −0.508428 + 0.369395i
\(202\) 0 0
\(203\) −4.35535 13.4044i −0.0214549 0.0660315i
\(204\) 0 0
\(205\) −11.1245 + 15.3115i −0.0542657 + 0.0746903i
\(206\) 0 0
\(207\) 22.3736 68.8589i 0.108085 0.332652i
\(208\) 0 0
\(209\) 16.1392 + 17.5800i 0.0772212 + 0.0841149i
\(210\) 0 0
\(211\) 17.7693 + 5.77360i 0.0842147 + 0.0273630i 0.350821 0.936442i \(-0.385902\pi\)
−0.266607 + 0.963805i \(0.585902\pi\)
\(212\) 0 0
\(213\) −133.192 96.7699i −0.625316 0.454319i
\(214\) 0 0
\(215\) −5.23385 + 1.70058i −0.0243435 + 0.00790968i
\(216\) 0 0
\(217\) −15.7273 21.6467i −0.0724759 0.0997545i
\(218\) 0 0
\(219\) 196.628i 0.897844i
\(220\) 0 0
\(221\) −3.13206 −0.0141722
\(222\) 0 0
\(223\) −76.2747 + 55.4168i −0.342039 + 0.248506i −0.745522 0.666481i \(-0.767800\pi\)
0.403483 + 0.914987i \(0.367800\pi\)
\(224\) 0 0
\(225\) −23.0605 70.9729i −0.102491 0.315435i
\(226\) 0 0
\(227\) −170.335 + 234.446i −0.750374 + 1.03280i 0.247580 + 0.968867i \(0.420365\pi\)
−0.997954 + 0.0639340i \(0.979635\pi\)
\(228\) 0 0
\(229\) −70.5265 + 217.058i −0.307976 + 0.947852i 0.670574 + 0.741843i \(0.266048\pi\)
−0.978550 + 0.206010i \(0.933952\pi\)
\(230\) 0 0
\(231\) −1.71941 14.9673i −0.00744333 0.0647933i
\(232\) 0 0
\(233\) 284.201 + 92.3427i 1.21975 + 0.396320i 0.846990 0.531608i \(-0.178412\pi\)
0.372758 + 0.927928i \(0.378412\pi\)
\(234\) 0 0
\(235\) −17.4841 12.7029i −0.0744004 0.0540551i
\(236\) 0 0
\(237\) −242.359 + 78.7471i −1.02261 + 0.332266i
\(238\) 0 0
\(239\) 144.554 + 198.961i 0.604827 + 0.832473i 0.996139 0.0877850i \(-0.0279789\pi\)
−0.391313 + 0.920258i \(0.627979\pi\)
\(240\) 0 0
\(241\) 373.418i 1.54945i −0.632297 0.774726i \(-0.717888\pi\)
0.632297 0.774726i \(-0.282112\pi\)
\(242\) 0 0
\(243\) 15.5885 0.0641500
\(244\) 0 0
\(245\) −13.8301 + 10.0482i −0.0564494 + 0.0410129i
\(246\) 0 0
\(247\) 0.140271 + 0.431710i 0.000567900 + 0.00174782i
\(248\) 0 0
\(249\) −20.2345 + 27.8504i −0.0812629 + 0.111849i
\(250\) 0 0
\(251\) 111.067 341.831i 0.442500 1.36187i −0.442702 0.896669i \(-0.645980\pi\)
0.885202 0.465206i \(-0.154020\pi\)
\(252\) 0 0
\(253\) 263.741 30.2981i 1.04246 0.119755i
\(254\) 0 0
\(255\) 8.71418 + 2.83141i 0.0341733 + 0.0111036i
\(256\) 0 0
\(257\) 28.9501 + 21.0334i 0.112646 + 0.0818422i 0.642682 0.766133i \(-0.277822\pi\)
−0.530036 + 0.847975i \(0.677822\pi\)
\(258\) 0 0
\(259\) −45.1869 + 14.6821i −0.174467 + 0.0566876i
\(260\) 0 0
\(261\) 31.4301 + 43.2598i 0.120422 + 0.165746i
\(262\) 0 0
\(263\) 364.668i 1.38657i 0.720663 + 0.693286i \(0.243838\pi\)
−0.720663 + 0.693286i \(0.756162\pi\)
\(264\) 0 0
\(265\) 20.8382 0.0786348
\(266\) 0 0
\(267\) 105.054 76.3260i 0.393460 0.285865i
\(268\) 0 0
\(269\) −4.13369 12.7222i −0.0153669 0.0472944i 0.943079 0.332569i \(-0.107915\pi\)
−0.958446 + 0.285274i \(0.907915\pi\)
\(270\) 0 0
\(271\) −41.6402 + 57.3128i −0.153654 + 0.211486i −0.878904 0.477000i \(-0.841724\pi\)
0.725250 + 0.688486i \(0.241724\pi\)
\(272\) 0 0
\(273\) 0.0885521 0.272535i 0.000324367 0.000998298i
\(274\) 0 0
\(275\) 201.566 185.047i 0.732969 0.672898i
\(276\) 0 0
\(277\) −75.4632 24.5195i −0.272430 0.0885179i 0.169616 0.985510i \(-0.445747\pi\)
−0.442046 + 0.896992i \(0.645747\pi\)
\(278\) 0 0
\(279\) 82.1255 + 59.6677i 0.294357 + 0.213863i
\(280\) 0 0
\(281\) −326.300 + 106.021i −1.16121 + 0.377300i −0.825355 0.564614i \(-0.809025\pi\)
−0.335854 + 0.941914i \(0.609025\pi\)
\(282\) 0 0
\(283\) 70.3457 + 96.8225i 0.248571 + 0.342129i 0.915010 0.403430i \(-0.132182\pi\)
−0.666439 + 0.745560i \(0.732182\pi\)
\(284\) 0 0
\(285\) 1.32793i 0.00465942i
\(286\) 0 0
\(287\) −42.3493 −0.147559
\(288\) 0 0
\(289\) −52.5141 + 38.1538i −0.181710 + 0.132020i
\(290\) 0 0
\(291\) 54.3294 + 167.209i 0.186699 + 0.574600i
\(292\) 0 0
\(293\) 6.76900 9.31673i 0.0231024 0.0317977i −0.797310 0.603571i \(-0.793744\pi\)
0.820412 + 0.571773i \(0.193744\pi\)
\(294\) 0 0
\(295\) 5.62236 17.3038i 0.0190588 0.0586571i
\(296\) 0 0
\(297\) 23.7513 + 51.9892i 0.0799706 + 0.175048i
\(298\) 0 0
\(299\) 4.80241 + 1.56040i 0.0160616 + 0.00521872i
\(300\) 0 0
\(301\) −9.96228 7.23802i −0.0330973 0.0240466i
\(302\) 0 0
\(303\) −42.9701 + 13.9618i −0.141815 + 0.0460786i
\(304\) 0 0
\(305\) 8.46485 + 11.6509i 0.0277536 + 0.0381996i
\(306\) 0 0
\(307\) 196.858i 0.641231i −0.947210 0.320615i \(-0.896110\pi\)
0.947210 0.320615i \(-0.103890\pi\)
\(308\) 0 0
\(309\) 54.6223 0.176771
\(310\) 0 0
\(311\) 218.771 158.946i 0.703443 0.511082i −0.177608 0.984101i \(-0.556836\pi\)
0.881052 + 0.473020i \(0.156836\pi\)
\(312\) 0 0
\(313\) 106.490 + 327.743i 0.340224 + 1.04710i 0.964091 + 0.265572i \(0.0855608\pi\)
−0.623867 + 0.781531i \(0.714439\pi\)
\(314\) 0 0
\(315\) −0.492748 + 0.678210i −0.00156428 + 0.00215305i
\(316\) 0 0
\(317\) 20.2627 62.3621i 0.0639201 0.196726i −0.913996 0.405723i \(-0.867020\pi\)
0.977916 + 0.208997i \(0.0670198\pi\)
\(318\) 0 0
\(319\) −96.3877 + 170.735i −0.302156 + 0.535220i
\(320\) 0 0
\(321\) 132.668 + 43.1065i 0.413297 + 0.134288i
\(322\) 0 0
\(323\) −26.2745 19.0895i −0.0813451 0.0591007i
\(324\) 0 0
\(325\) 4.94985 1.60830i 0.0152303 0.00494862i
\(326\) 0 0
\(327\) −32.7627 45.0940i −0.100192 0.137902i
\(328\) 0 0
\(329\) 48.3584i 0.146986i
\(330\) 0 0
\(331\) −105.818 −0.319693 −0.159847 0.987142i \(-0.551100\pi\)
−0.159847 + 0.987142i \(0.551100\pi\)
\(332\) 0 0
\(333\) 145.831 105.952i 0.437930 0.318175i
\(334\) 0 0
\(335\) 7.96415 + 24.5111i 0.0237736 + 0.0731675i
\(336\) 0 0
\(337\) 132.617 182.531i 0.393521 0.541635i −0.565582 0.824692i \(-0.691348\pi\)
0.959103 + 0.283057i \(0.0913485\pi\)
\(338\) 0 0
\(339\) −15.6309 + 48.1069i −0.0461088 + 0.141908i
\(340\) 0 0
\(341\) −73.8680 + 364.810i −0.216622 + 1.06982i
\(342\) 0 0
\(343\) −73.2299 23.7938i −0.213498 0.0693698i
\(344\) 0 0
\(345\) −11.9509 8.68283i −0.0346403 0.0251676i
\(346\) 0 0
\(347\) −128.933 + 41.8930i −0.371566 + 0.120729i −0.488847 0.872370i \(-0.662582\pi\)
0.117281 + 0.993099i \(0.462582\pi\)
\(348\) 0 0
\(349\) 293.983 + 404.633i 0.842358 + 1.15941i 0.985495 + 0.169704i \(0.0542811\pi\)
−0.143137 + 0.989703i \(0.545719\pi\)
\(350\) 0 0
\(351\) 1.08718i 0.00309738i
\(352\) 0 0
\(353\) 320.592 0.908192 0.454096 0.890953i \(-0.349962\pi\)
0.454096 + 0.890953i \(0.349962\pi\)
\(354\) 0 0
\(355\) −27.1749 + 19.7437i −0.0765491 + 0.0556162i
\(356\) 0 0
\(357\) 6.33562 + 19.4990i 0.0177468 + 0.0546191i
\(358\) 0 0
\(359\) −66.6745 + 91.7696i −0.185723 + 0.255626i −0.891718 0.452591i \(-0.850500\pi\)
0.705996 + 0.708216i \(0.250500\pi\)
\(360\) 0 0
\(361\) 110.101 338.855i 0.304988 0.938656i
\(362\) 0 0
\(363\) −137.201 + 158.426i −0.377964 + 0.436436i
\(364\) 0 0
\(365\) −38.1540 12.3970i −0.104532 0.0339644i
\(366\) 0 0
\(367\) 72.4621 + 52.6468i 0.197444 + 0.143452i 0.682115 0.731245i \(-0.261060\pi\)
−0.484670 + 0.874697i \(0.661060\pi\)
\(368\) 0 0
\(369\) 152.805 49.6495i 0.414107 0.134551i
\(370\) 0 0
\(371\) 27.4073 + 37.7228i 0.0738740 + 0.101679i
\(372\) 0 0
\(373\) 275.552i 0.738744i 0.929282 + 0.369372i \(0.120427\pi\)
−0.929282 + 0.369372i \(0.879573\pi\)
\(374\) 0 0
\(375\) −30.5277 −0.0814072
\(376\) 0 0
\(377\) −3.01705 + 2.19202i −0.00800279 + 0.00581437i
\(378\) 0 0
\(379\) 54.2463 + 166.953i 0.143130 + 0.440509i 0.996766 0.0803612i \(-0.0256074\pi\)
−0.853636 + 0.520871i \(0.825607\pi\)
\(380\) 0 0
\(381\) 151.746 208.860i 0.398283 0.548189i
\(382\) 0 0
\(383\) 15.8151 48.6740i 0.0412928 0.127086i −0.928285 0.371870i \(-0.878717\pi\)
0.969578 + 0.244783i \(0.0787169\pi\)
\(384\) 0 0
\(385\) −3.01268 0.610018i −0.00782514 0.00158446i
\(386\) 0 0
\(387\) 44.4317 + 14.4367i 0.114811 + 0.0373042i
\(388\) 0 0
\(389\) 18.5317 + 13.4641i 0.0476393 + 0.0346120i 0.611350 0.791360i \(-0.290627\pi\)
−0.563711 + 0.825972i \(0.690627\pi\)
\(390\) 0 0
\(391\) −343.597 + 111.641i −0.878764 + 0.285528i
\(392\) 0 0
\(393\) 168.965 + 232.560i 0.429936 + 0.591755i
\(394\) 0 0
\(395\) 51.9925i 0.131627i
\(396\) 0 0
\(397\) 131.054 0.330112 0.165056 0.986284i \(-0.447220\pi\)
0.165056 + 0.986284i \(0.447220\pi\)
\(398\) 0 0
\(399\) 2.40392 1.74655i 0.00602486 0.00437732i
\(400\) 0 0
\(401\) 239.751 + 737.877i 0.597882 + 1.84009i 0.539823 + 0.841778i \(0.318491\pi\)
0.0580587 + 0.998313i \(0.481509\pi\)
\(402\) 0 0
\(403\) −4.16138 + 5.72765i −0.0103260 + 0.0142125i
\(404\) 0 0
\(405\) 0.982821 3.02481i 0.00242672 0.00746867i
\(406\) 0 0
\(407\) 575.556 + 324.928i 1.41414 + 0.798348i
\(408\) 0 0
\(409\) −710.800 230.953i −1.73790 0.564677i −0.743345 0.668909i \(-0.766762\pi\)
−0.994553 + 0.104232i \(0.966762\pi\)
\(410\) 0 0
\(411\) 205.800 + 149.522i 0.500729 + 0.363801i
\(412\) 0 0
\(413\) 38.7194 12.5807i 0.0937516 0.0304617i
\(414\) 0 0
\(415\) 4.12839 + 5.68224i 0.00994793 + 0.0136921i
\(416\) 0 0
\(417\) 370.268i 0.887934i
\(418\) 0 0
\(419\) 408.427 0.974765 0.487383 0.873189i \(-0.337952\pi\)
0.487383 + 0.873189i \(0.337952\pi\)
\(420\) 0 0
\(421\) −84.5514 + 61.4302i −0.200835 + 0.145915i −0.683657 0.729803i \(-0.739612\pi\)
0.482823 + 0.875718i \(0.339612\pi\)
\(422\) 0 0
\(423\) 56.6943 + 174.487i 0.134029 + 0.412499i
\(424\) 0 0
\(425\) −218.874 + 301.254i −0.514998 + 0.708833i
\(426\) 0 0
\(427\) −9.95793 + 30.6473i −0.0233207 + 0.0717737i
\(428\) 0 0
\(429\) −3.62587 + 1.65648i −0.00845191 + 0.00386126i
\(430\) 0 0
\(431\) 274.915 + 89.3253i 0.637854 + 0.207251i 0.610051 0.792362i \(-0.291149\pi\)
0.0278030 + 0.999613i \(0.491149\pi\)
\(432\) 0 0
\(433\) −445.768 323.869i −1.02949 0.747966i −0.0612810 0.998121i \(-0.519519\pi\)
−0.968206 + 0.250154i \(0.919519\pi\)
\(434\) 0 0
\(435\) 10.3758 3.37130i 0.0238524 0.00775012i
\(436\) 0 0
\(437\) 30.7764 + 42.3600i 0.0704265 + 0.0969337i
\(438\) 0 0
\(439\) 576.891i 1.31410i −0.753846 0.657051i \(-0.771804\pi\)
0.753846 0.657051i \(-0.228196\pi\)
\(440\) 0 0
\(441\) 145.124 0.329080
\(442\) 0 0
\(443\) −144.200 + 104.767i −0.325508 + 0.236495i −0.738522 0.674229i \(-0.764476\pi\)
0.413014 + 0.910724i \(0.364476\pi\)
\(444\) 0 0
\(445\) −8.18701 25.1970i −0.0183978 0.0566225i
\(446\) 0 0
\(447\) 235.422 324.030i 0.526670 0.724900i
\(448\) 0 0
\(449\) 192.428 592.233i 0.428570 1.31900i −0.470963 0.882153i \(-0.656094\pi\)
0.899534 0.436851i \(-0.143906\pi\)
\(450\) 0 0
\(451\) 398.408 + 433.974i 0.883387 + 0.962249i
\(452\) 0 0
\(453\) −438.844 142.589i −0.968750 0.314766i
\(454\) 0 0
\(455\) −0.0473002 0.0343656i −0.000103956 7.55288e-5i
\(456\) 0 0
\(457\) −749.250 + 243.446i −1.63950 + 0.532704i −0.976426 0.215853i \(-0.930747\pi\)
−0.663070 + 0.748557i \(0.730747\pi\)
\(458\) 0 0
\(459\) −45.7205 62.9288i −0.0996089 0.137100i
\(460\) 0 0
\(461\) 377.985i 0.819924i −0.912103 0.409962i \(-0.865542\pi\)
0.912103 0.409962i \(-0.134458\pi\)
\(462\) 0 0
\(463\) 49.3159 0.106514 0.0532569 0.998581i \(-0.483040\pi\)
0.0532569 + 0.998581i \(0.483040\pi\)
\(464\) 0 0
\(465\) 16.7559 12.1738i 0.0360341 0.0261803i
\(466\) 0 0
\(467\) 36.2129 + 111.452i 0.0775436 + 0.238655i 0.982313 0.187248i \(-0.0599567\pi\)
−0.904769 + 0.425902i \(0.859957\pi\)
\(468\) 0 0
\(469\) −33.8970 + 46.6553i −0.0722751 + 0.0994782i
\(470\) 0 0
\(471\) −55.8132 + 171.775i −0.118499 + 0.364704i
\(472\) 0 0
\(473\) 19.5501 + 170.181i 0.0413321 + 0.359791i
\(474\) 0 0
\(475\) 51.3260 + 16.6768i 0.108055 + 0.0351091i
\(476\) 0 0
\(477\) −143.117 103.980i −0.300035 0.217988i
\(478\) 0 0
\(479\) −875.668 + 284.522i −1.82812 + 0.593991i −0.828705 + 0.559686i \(0.810922\pi\)
−0.999411 + 0.0343053i \(0.989078\pi\)
\(480\) 0 0
\(481\) 7.38940 + 10.1706i 0.0153626 + 0.0211448i
\(482\) 0 0
\(483\) 33.0544i 0.0684355i
\(484\) 0 0
\(485\) 35.8708 0.0739604
\(486\) 0 0
\(487\) 313.986 228.124i 0.644735 0.468427i −0.216739 0.976230i \(-0.569542\pi\)
0.861474 + 0.507802i \(0.169542\pi\)
\(488\) 0 0
\(489\) 149.688 + 460.691i 0.306109 + 0.942108i
\(490\) 0 0
\(491\) −214.526 + 295.270i −0.436917 + 0.601365i −0.969523 0.244998i \(-0.921213\pi\)
0.532607 + 0.846363i \(0.321213\pi\)
\(492\) 0 0
\(493\) 82.4513 253.759i 0.167244 0.514724i
\(494\) 0 0
\(495\) 11.5855 1.33093i 0.0234051 0.00268874i
\(496\) 0 0
\(497\) −71.4830 23.2262i −0.143829 0.0467329i
\(498\) 0 0
\(499\) −198.310 144.081i −0.397415 0.288739i 0.371072 0.928604i \(-0.378990\pi\)
−0.768487 + 0.639865i \(0.778990\pi\)
\(500\) 0 0
\(501\) 423.261 137.526i 0.844833 0.274503i
\(502\) 0 0
\(503\) −172.959 238.058i −0.343855 0.473276i 0.601707 0.798717i \(-0.294487\pi\)
−0.945563 + 0.325440i \(0.894487\pi\)
\(504\) 0 0
\(505\) 9.21825i 0.0182540i
\(506\) 0 0
\(507\) 292.641 0.577201
\(508\) 0 0
\(509\) 691.862 502.667i 1.35926 0.987558i 0.360766 0.932656i \(-0.382515\pi\)
0.998492 0.0549019i \(-0.0174846\pi\)
\(510\) 0 0
\(511\) −27.7397 85.3741i −0.0542852 0.167073i
\(512\) 0 0
\(513\) −6.62623 + 9.12023i −0.0129166 + 0.0177782i
\(514\) 0 0
\(515\) 3.44383 10.5990i 0.00668704 0.0205806i
\(516\) 0 0
\(517\) −495.552 + 454.938i −0.958514 + 0.879958i
\(518\) 0 0
\(519\) 181.511 + 58.9766i 0.349733 + 0.113635i
\(520\) 0 0
\(521\) 491.143 + 356.836i 0.942693 + 0.684907i 0.949068 0.315073i \(-0.102029\pi\)
−0.00637404 + 0.999980i \(0.502029\pi\)
\(522\) 0 0
\(523\) −641.901 + 208.566i −1.22734 + 0.398788i −0.849752 0.527183i \(-0.823248\pi\)
−0.377593 + 0.925972i \(0.623248\pi\)
\(524\) 0 0
\(525\) −20.0254 27.5625i −0.0381435 0.0525001i
\(526\) 0 0
\(527\) 506.535i 0.961166i
\(528\) 0 0
\(529\) 53.4586 0.101056
\(530\) 0 0
\(531\) −124.958 + 90.7876i −0.235327 + 0.170975i
\(532\) 0 0
\(533\) 3.46269 + 10.6571i 0.00649660 + 0.0199945i
\(534\) 0 0
\(535\) 16.7289 23.0254i 0.0312690 0.0430381i
\(536\) 0 0
\(537\) −14.5191 + 44.6852i −0.0270375 + 0.0832127i
\(538\) 0 0
\(539\) 221.118 + 484.005i 0.410237 + 0.897968i
\(540\) 0 0
\(541\) −222.251 72.2137i −0.410815 0.133482i 0.0963161 0.995351i \(-0.469294\pi\)
−0.507131 + 0.861869i \(0.669294\pi\)
\(542\) 0 0
\(543\) −363.727 264.263i −0.669846 0.486672i
\(544\) 0 0
\(545\) −10.8157 + 3.51425i −0.0198454 + 0.00644816i
\(546\) 0 0
\(547\) −560.308 771.198i −1.02433 1.40987i −0.909123 0.416527i \(-0.863247\pi\)
−0.115207 0.993342i \(-0.536753\pi\)
\(548\) 0 0
\(549\) 122.257i 0.222690i
\(550\) 0 0
\(551\) −38.6697 −0.0701810
\(552\) 0 0
\(553\) −94.1206 + 68.3826i −0.170200 + 0.123658i
\(554\) 0 0
\(555\) −11.3648 34.9773i −0.0204772 0.0630222i
\(556\) 0 0
\(557\) 264.552 364.125i 0.474959 0.653725i −0.502567 0.864538i \(-0.667611\pi\)
0.977526 + 0.210813i \(0.0676110\pi\)
\(558\) 0 0
\(559\) −1.00686 + 3.09879i −0.00180118 + 0.00554345i
\(560\) 0 0
\(561\) 140.213 248.364i 0.249934 0.442717i
\(562\) 0 0
\(563\) −297.055 96.5192i −0.527630 0.171437i 0.0330754 0.999453i \(-0.489470\pi\)
−0.560705 + 0.828016i \(0.689470\pi\)
\(564\) 0 0
\(565\) 8.34926 + 6.06609i 0.0147774 + 0.0107364i
\(566\) 0 0
\(567\) 6.76838 2.19918i 0.0119372 0.00387862i
\(568\) 0 0
\(569\) 331.841 + 456.740i 0.583200 + 0.802706i 0.994042 0.109000i \(-0.0347650\pi\)
−0.410841 + 0.911707i \(0.634765\pi\)
\(570\) 0 0
\(571\) 224.552i 0.393260i −0.980478 0.196630i \(-0.937000\pi\)
0.980478 0.196630i \(-0.0629998\pi\)
\(572\) 0 0
\(573\) 216.129 0.377189
\(574\) 0 0
\(575\) 485.686 352.871i 0.844671 0.613689i
\(576\) 0 0
\(577\) −326.124 1003.71i −0.565207 1.73953i −0.667337 0.744756i \(-0.732566\pi\)
0.102130 0.994771i \(-0.467434\pi\)
\(578\) 0 0
\(579\) −42.7481 + 58.8377i −0.0738309 + 0.101619i
\(580\) 0 0
\(581\) −4.85658 + 14.9470i −0.00835900 + 0.0257264i
\(582\) 0 0
\(583\) 128.727 635.739i 0.220800 1.09046i
\(584\) 0 0
\(585\) 0.210959 + 0.0685446i 0.000360613 + 0.000117170i
\(586\) 0 0
\(587\) −64.2470 46.6782i −0.109450 0.0795200i 0.531714 0.846924i \(-0.321548\pi\)
−0.641164 + 0.767404i \(0.721548\pi\)
\(588\) 0 0
\(589\) −69.8186 + 22.6855i −0.118538 + 0.0385152i
\(590\) 0 0
\(591\) 279.297 + 384.419i 0.472583 + 0.650455i
\(592\) 0 0
\(593\) 709.519i 1.19649i −0.801313 0.598245i \(-0.795865\pi\)
0.801313 0.598245i \(-0.204135\pi\)
\(594\) 0 0
\(595\) 4.18307 0.00703037
\(596\) 0 0
\(597\) −211.561 + 153.708i −0.354374 + 0.257468i
\(598\) 0 0
\(599\) −215.771 664.076i −0.360219 1.10864i −0.952921 0.303219i \(-0.901939\pi\)
0.592702 0.805422i \(-0.298061\pi\)
\(600\) 0 0
\(601\) 131.365 180.808i 0.218577 0.300845i −0.685621 0.727958i \(-0.740469\pi\)
0.904198 + 0.427113i \(0.140469\pi\)
\(602\) 0 0
\(603\) 67.6100 208.082i 0.112123 0.345078i
\(604\) 0 0
\(605\) 22.0911 + 36.6112i 0.0365141 + 0.0605144i
\(606\) 0 0
\(607\) −906.706 294.607i −1.49375 0.485348i −0.555561 0.831476i \(-0.687497\pi\)
−0.938188 + 0.346127i \(0.887497\pi\)
\(608\) 0 0
\(609\) 19.7496 + 14.3490i 0.0324296 + 0.0235615i
\(610\) 0 0
\(611\) −12.1692 + 3.95402i −0.0199169 + 0.00647139i
\(612\) 0 0
\(613\) −16.3918 22.5614i −0.0267403 0.0368049i 0.795438 0.606036i \(-0.207241\pi\)
−0.822178 + 0.569231i \(0.807241\pi\)
\(614\) 0 0
\(615\) 32.7809i 0.0533023i
\(616\) 0 0
\(617\) −997.165 −1.61615 −0.808075 0.589079i \(-0.799491\pi\)
−0.808075 + 0.589079i \(0.799491\pi\)
\(618\) 0 0
\(619\) −18.8208 + 13.6741i −0.0304052 + 0.0220907i −0.602884 0.797829i \(-0.705982\pi\)
0.572479 + 0.819919i \(0.305982\pi\)
\(620\) 0 0
\(621\) 38.7522 + 119.267i 0.0624030 + 0.192057i
\(622\) 0 0
\(623\) 34.8456 47.9608i 0.0559319 0.0769837i
\(624\) 0 0
\(625\) 190.246 585.517i 0.304394 0.936828i
\(626\) 0 0
\(627\) −40.5130 8.20321i −0.0646140 0.0130833i
\(628\) 0 0
\(629\) −855.434 277.947i −1.35999 0.441888i
\(630\) 0 0
\(631\) −423.736 307.862i −0.671531 0.487896i 0.199006 0.979998i \(-0.436229\pi\)
−0.870537 + 0.492103i \(0.836229\pi\)
\(632\) 0 0
\(633\) −30.7773 + 10.0002i −0.0486214 + 0.0157980i
\(634\) 0 0
\(635\) −30.9603 42.6132i −0.0487564 0.0671074i
\(636\) 0 0
\(637\) 10.1214i 0.0158891i
\(638\) 0 0
\(639\) 285.156 0.446253
\(640\) 0 0
\(641\) 54.5371 39.6235i 0.0850813 0.0618152i −0.544431 0.838805i \(-0.683255\pi\)
0.629513 + 0.776990i \(0.283255\pi\)
\(642\) 0 0
\(643\) 249.209 + 766.988i 0.387573 + 1.19283i 0.934597 + 0.355710i \(0.115761\pi\)
−0.547024 + 0.837117i \(0.684239\pi\)
\(644\) 0 0
\(645\) 5.60266 7.71140i 0.00868629 0.0119557i
\(646\) 0 0
\(647\) 300.028 923.392i 0.463722 1.42719i −0.396860 0.917879i \(-0.629900\pi\)
0.860582 0.509311i \(-0.170100\pi\)
\(648\) 0 0
\(649\) −493.179 278.422i −0.759906 0.429001i
\(650\) 0 0
\(651\) 44.0759 + 14.3211i 0.0677050 + 0.0219987i
\(652\) 0 0
\(653\) −22.6871 16.4831i −0.0347429 0.0252422i 0.570278 0.821452i \(-0.306835\pi\)
−0.605021 + 0.796209i \(0.706835\pi\)
\(654\) 0 0
\(655\) 55.7792 18.1238i 0.0851591 0.0276699i
\(656\) 0 0
\(657\) 200.182 + 275.526i 0.304690 + 0.419370i
\(658\) 0 0
\(659\) 570.449i 0.865628i 0.901483 + 0.432814i \(0.142479\pi\)
−0.901483 + 0.432814i \(0.857521\pi\)
\(660\) 0 0
\(661\) 854.772 1.29315 0.646575 0.762851i \(-0.276201\pi\)
0.646575 + 0.762851i \(0.276201\pi\)
\(662\) 0 0
\(663\) 4.38883 3.18867i 0.00661965 0.00480946i
\(664\) 0 0
\(665\) −0.187341 0.576577i −0.000281716 0.000867034i
\(666\) 0 0
\(667\) −252.846 + 348.013i −0.379080 + 0.521758i
\(668\) 0 0
\(669\) 50.4622 155.307i 0.0754293 0.232147i
\(670\) 0 0
\(671\) 407.739 186.276i 0.607659 0.277609i
\(672\) 0 0
\(673\) 336.109 + 109.208i 0.499418 + 0.162271i 0.547885 0.836554i \(-0.315433\pi\)
−0.0484662 + 0.998825i \(0.515433\pi\)
\(674\) 0 0
\(675\) 104.569 + 75.9741i 0.154918 + 0.112554i
\(676\) 0 0
\(677\) −1181.53 + 383.903i −1.74525 + 0.567065i −0.995509 0.0946695i \(-0.969821\pi\)
−0.749738 + 0.661735i \(0.769821\pi\)
\(678\) 0 0
\(679\) 47.1787 + 64.9359i 0.0694826 + 0.0956346i
\(680\) 0 0
\(681\) 501.933i 0.737053i
\(682\) 0 0
\(683\) 818.617 1.19856 0.599281 0.800539i \(-0.295453\pi\)
0.599281 + 0.800539i \(0.295453\pi\)
\(684\) 0 0
\(685\) 41.9888 30.5067i 0.0612975 0.0445353i
\(686\) 0 0
\(687\) −122.155 375.956i −0.177810 0.547243i
\(688\) 0 0
\(689\) 7.25187 9.98134i 0.0105252 0.0144867i
\(690\) 0 0
\(691\) −84.5050 + 260.080i −0.122294 + 0.376381i −0.993398 0.114716i \(-0.963404\pi\)
0.871105 + 0.491098i \(0.163404\pi\)
\(692\) 0 0
\(693\) 17.6471 + 19.2225i 0.0254648 + 0.0277381i
\(694\) 0 0
\(695\) 71.8475 + 23.3447i 0.103378 + 0.0335895i
\(696\) 0 0
\(697\) −648.603 471.238i −0.930564 0.676094i
\(698\) 0 0
\(699\) −492.251 + 159.942i −0.704222 + 0.228816i
\(700\) 0 0
\(701\) −298.072 410.262i −0.425210 0.585252i 0.541635 0.840614i \(-0.317805\pi\)
−0.966846 + 0.255362i \(0.917805\pi\)
\(702\) 0 0
\(703\) 130.358i 0.185430i
\(704\) 0 0
\(705\) 37.4323 0.0530954
\(706\) 0 0
\(707\) −16.6875 + 12.1242i −0.0236033 + 0.0171488i
\(708\) 0 0
\(709\) 178.793 + 550.269i 0.252177 + 0.776119i 0.994373 + 0.105937i \(0.0337842\pi\)
−0.742196 + 0.670183i \(0.766216\pi\)
\(710\) 0 0
\(711\) 259.437 357.084i 0.364890 0.502228i
\(712\) 0 0
\(713\) −252.356 + 776.672i −0.353936 + 1.08930i
\(714\) 0 0
\(715\) 0.0928224 + 0.808008i 0.000129822 + 0.00113008i
\(716\) 0 0
\(717\) −405.114 131.630i −0.565013 0.183584i
\(718\) 0 0
\(719\) 31.7569 + 23.0727i 0.0441681 + 0.0320900i 0.609650 0.792671i \(-0.291310\pi\)
−0.565482 + 0.824761i \(0.691310\pi\)
\(720\) 0 0
\(721\) 23.7165 7.70597i 0.0328940 0.0106879i
\(722\) 0 0
\(723\) 380.167 + 523.255i 0.525819 + 0.723728i
\(724\) 0 0
\(725\) 443.374i 0.611550i
\(726\) 0 0
\(727\) −918.828 −1.26386 −0.631932 0.775024i \(-0.717738\pi\)
−0.631932 + 0.775024i \(0.717738\pi\)
\(728\) 0 0
\(729\) −21.8435 + 15.8702i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) −72.0374 221.708i −0.0985463 0.303294i
\(732\) 0 0
\(733\) 434.317 597.786i 0.592520 0.815534i −0.402478 0.915430i \(-0.631851\pi\)
0.994998 + 0.0998958i \(0.0318509\pi\)
\(734\) 0 0
\(735\) 9.14979 28.1602i 0.0124487 0.0383131i
\(736\) 0 0
\(737\) 796.990 91.5568i 1.08140 0.124229i
\(738\) 0 0
\(739\) −1082.21 351.633i −1.46443 0.475822i −0.535011 0.844845i \(-0.679692\pi\)
−0.929420 + 0.369023i \(0.879692\pi\)
\(740\) 0 0
\(741\) −0.636069 0.462131i −0.000858393 0.000623659i
\(742\) 0 0
\(743\) −179.099 + 58.1929i −0.241049 + 0.0783215i −0.427050 0.904228i \(-0.640447\pi\)
0.186001 + 0.982550i \(0.440447\pi\)
\(744\) 0 0
\(745\) −48.0325 66.1111i −0.0644732 0.0887397i
\(746\) 0 0
\(747\) 59.6257i 0.0798203i
\(748\) 0 0
\(749\) 63.6848 0.0850264
\(750\) 0 0
\(751\) 489.777 355.844i 0.652166 0.473827i −0.211842 0.977304i \(-0.567946\pi\)
0.864008 + 0.503477i \(0.167946\pi\)
\(752\) 0 0
\(753\) 192.375 + 592.068i 0.255477 + 0.786279i
\(754\) 0 0
\(755\) −55.3365 + 76.1641i −0.0732933 + 0.100880i
\(756\) 0 0
\(757\) −120.088 + 369.594i −0.158637 + 0.488235i −0.998511 0.0545462i \(-0.982629\pi\)
0.839874 + 0.542781i \(0.182629\pi\)
\(758\) 0 0
\(759\) −338.724 + 310.964i −0.446277 + 0.409702i
\(760\) 0 0
\(761\) 664.937 + 216.051i 0.873768 + 0.283904i 0.711367 0.702821i \(-0.248076\pi\)
0.162400 + 0.986725i \(0.448076\pi\)
\(762\) 0 0
\(763\) −20.5870 14.9574i −0.0269817 0.0196034i
\(764\) 0 0
\(765\) −15.0934 + 4.90415i −0.0197299 + 0.00641065i
\(766\) 0 0
\(767\) −6.33178 8.71494i −0.00825525 0.0113624i
\(768\) 0 0
\(769\) 337.074i 0.438328i −0.975688 0.219164i \(-0.929667\pi\)
0.975688 0.219164i \(-0.0703330\pi\)
\(770\) 0 0
\(771\) −61.9801 −0.0803892
\(772\) 0 0
\(773\) 643.324 467.403i 0.832244 0.604660i −0.0879495 0.996125i \(-0.528031\pi\)
0.920193 + 0.391464i \(0.128031\pi\)
\(774\) 0 0
\(775\) 260.104 + 800.517i 0.335618 + 1.03292i
\(776\) 0 0
\(777\) 48.3710 66.5770i 0.0622535 0.0856846i
\(778\) 0 0
\(779\) −35.9054 + 110.505i −0.0460916 + 0.141855i
\(780\) 0 0
\(781\) 434.476 + 951.026i 0.556308 + 1.21770i
\(782\) 0 0
\(783\) −88.0833 28.6200i −0.112495 0.0365517i
\(784\) 0 0
\(785\) 29.8127 + 21.6602i 0.0379780 + 0.0275926i
\(786\) 0 0
\(787\) 508.815 165.324i 0.646525 0.210069i 0.0326436 0.999467i \(-0.489607\pi\)
0.613881 + 0.789398i \(0.289607\pi\)
\(788\) 0 0
\(789\) −371.259 510.994i −0.470544 0.647648i
\(790\) 0 0
\(791\) 23.0928i 0.0291944i
\(792\) 0 0
\(793\) 8.52651 0.0107522
\(794\) 0 0
\(795\) −29.1997 + 21.2149i −0.0367292 + 0.0266854i
\(796\) 0 0
\(797\) −219.724 676.242i −0.275689 0.848484i −0.989036 0.147673i \(-0.952822\pi\)
0.713347 0.700811i \(-0.247178\pi\)
\(798\) 0 0
\(799\) 538.102 740.634i 0.673470 0.926952i
\(800\) 0 0
\(801\) −69.5020 + 213.905i −0.0867690 + 0.267047i
\(802\) 0 0
\(803\) −613.905 + 1087.43i −0.764514 + 1.35421i
\(804\) 0 0
\(805\) −6.41393 2.08401i −0.00796761 0.00258883i
\(806\) 0 0
\(807\) 18.7445 + 13.6187i 0.0232274 + 0.0168757i
\(808\) 0 0
\(809\) −102.321 + 33.2462i −0.126479 + 0.0410954i −0.371572 0.928404i \(-0.621181\pi\)
0.245094 + 0.969499i \(0.421181\pi\)
\(810\) 0 0
\(811\) 738.698 + 1016.73i 0.910848 + 1.25368i 0.966876 + 0.255246i \(0.0821564\pi\)
−0.0560279 + 0.998429i \(0.517844\pi\)
\(812\) 0 0
\(813\) 122.703i 0.150926i
\(814\) 0 0
\(815\) 98.8308 0.121265
\(816\) 0 0
\(817\) −27.3331 + 19.8587i −0.0334555 + 0.0243068i
\(818\) 0 0
\(819\) 0.153377 + 0.472045i 0.000187273 + 0.000576367i
\(820\) 0 0
\(821\) −608.067 + 836.933i −0.740642 + 1.01941i 0.257939 + 0.966161i \(0.416957\pi\)
−0.998581 + 0.0532455i \(0.983043\pi\)
\(822\) 0 0
\(823\) 165.580 509.603i 0.201191 0.619202i −0.798657 0.601786i \(-0.794456\pi\)
0.999848 0.0174160i \(-0.00554397\pi\)
\(824\) 0 0
\(825\) −94.0552 + 464.508i −0.114006 + 0.563040i
\(826\) 0 0
\(827\) −131.119 42.6030i −0.158547 0.0515151i 0.228668 0.973504i \(-0.426563\pi\)
−0.387215 + 0.921989i \(0.626563\pi\)
\(828\) 0 0
\(829\) 7.75076 + 5.63126i 0.00934954 + 0.00679283i 0.592450 0.805607i \(-0.298161\pi\)
−0.583101 + 0.812400i \(0.698161\pi\)
\(830\) 0 0
\(831\) 130.706 42.4690i 0.157288 0.0511059i
\(832\) 0 0
\(833\) −425.645 585.850i −0.510978 0.703301i
\(834\) 0 0
\(835\) 90.8011i 0.108744i
\(836\) 0 0
\(837\) −175.825 −0.210066
\(838\) 0 0
\(839\) −388.855 + 282.520i −0.463474 + 0.336734i −0.794893 0.606750i \(-0.792473\pi\)
0.331418 + 0.943484i \(0.392473\pi\)
\(840\) 0 0
\(841\) 161.710 + 497.693i 0.192283 + 0.591787i
\(842\) 0 0
\(843\) 349.293 480.760i 0.414345 0.570297i
\(844\) 0 0
\(845\) 18.4504 56.7845i 0.0218348 0.0672006i
\(846\) 0 0
\(847\) −37.2212 + 88.1433i −0.0439447 + 0.104065i
\(848\) 0 0
\(849\) −197.145 64.0563i −0.232209 0.0754491i
\(850\) 0 0
\(851\) 1173.17 + 852.357i 1.37858 + 1.00159i
\(852\) 0 0
\(853\) −1443.72 + 469.094i −1.69252 + 0.549934i −0.987274 0.159026i \(-0.949165\pi\)
−0.705248 + 0.708960i \(0.749165\pi\)
\(854\) 0 0
\(855\) 1.35193 + 1.86078i 0.00158121 + 0.00217635i
\(856\) 0 0
\(857\) 229.336i 0.267603i 0.991008 + 0.133802i \(0.0427185\pi\)
−0.991008 + 0.133802i \(0.957282\pi\)
\(858\) 0 0
\(859\) 308.792 0.359478 0.179739 0.983714i \(-0.442475\pi\)
0.179739 + 0.983714i \(0.442475\pi\)
\(860\) 0 0
\(861\) 59.3424 43.1148i 0.0689226 0.0500752i
\(862\) 0 0
\(863\) −159.802 491.821i −0.185171 0.569897i 0.814781 0.579770i \(-0.196857\pi\)
−0.999951 + 0.00987257i \(0.996857\pi\)
\(864\) 0 0
\(865\) 22.8879 31.5024i 0.0264600 0.0364190i
\(866\) 0 0
\(867\) 34.7425 106.927i 0.0400721 0.123329i
\(868\) 0 0
\(869\) 1586.20 + 321.180i 1.82532 + 0.369597i
\(870\) 0 0
\(871\) 14.5122 + 4.71530i 0.0166616 + 0.00541367i
\(872\) 0 0
\(873\) −246.360 178.991i −0.282199 0.205030i
\(874\) 0 0
\(875\) −13.2549 + 4.30677i −0.0151484 + 0.00492202i
\(876\) 0 0
\(877\) 148.255 + 204.056i 0.169048 + 0.232675i 0.885133 0.465339i \(-0.154067\pi\)
−0.716084 + 0.698014i \(0.754067\pi\)
\(878\) 0 0
\(879\) 19.9465i 0.0226923i
\(880\) 0 0
\(881\) 830.794 0.943012 0.471506 0.881863i \(-0.343711\pi\)
0.471506 + 0.881863i \(0.343711\pi\)
\(882\) 0 0
\(883\) 435.210 316.199i 0.492877 0.358096i −0.313413 0.949617i \(-0.601472\pi\)
0.806290 + 0.591521i \(0.201472\pi\)
\(884\) 0 0
\(885\) 9.73821 + 29.9711i 0.0110036 + 0.0338657i
\(886\) 0 0
\(887\) −840.566 + 1156.94i −0.947651 + 1.30433i 0.00491261 + 0.999988i \(0.498436\pi\)
−0.952563 + 0.304341i \(0.901564\pi\)
\(888\) 0 0
\(889\) 36.4213 112.093i 0.0409688 0.126089i
\(890\) 0 0
\(891\) −86.2105 48.6697i −0.0967571 0.0546237i
\(892\) 0 0
\(893\) −126.185 41.0001i −0.141305 0.0459127i
\(894\) 0 0
\(895\) 7.75540 + 5.63463i 0.00866525 + 0.00629567i
\(896\) 0 0
\(897\) −8.31801 + 2.70269i −0.00927315 + 0.00301303i
\(898\) 0 0
\(899\) −354.505 487.935i −0.394333 0.542753i
\(900\) 0 0
\(901\) 882.717i 0.979708i
\(902\) 0 0
\(903\) 21.3286 0.0236197
\(904\) 0 0
\(905\) −74.2103 + 53.9169i −0.0820003 + 0.0595767i
\(906\) 0 0
\(907\) 418.026 + 1286.55i 0.460889 + 1.41847i 0.864080 + 0.503355i \(0.167901\pi\)
−0.403191 + 0.915116i \(0.632099\pi\)
\(908\) 0 0
\(909\) 45.9980 63.3108i 0.0506029 0.0696489i
\(910\) 0 0
\(911\) 263.965 812.400i 0.289753 0.891768i −0.695181 0.718835i \(-0.744676\pi\)
0.984934 0.172933i \(-0.0553243\pi\)
\(912\) 0 0
\(913\) 198.858 90.8485i 0.217808 0.0995054i
\(914\) 0 0
\(915\) −23.7229 7.70803i −0.0259266 0.00842408i
\(916\) 0 0
\(917\) 106.172 + 77.1385i 0.115782 + 0.0841204i
\(918\) 0 0
\(919\) 314.056 102.043i 0.341737 0.111037i −0.133120 0.991100i \(-0.542500\pi\)
0.474857 + 0.880063i \(0.342500\pi\)
\(920\) 0 0
\(921\) 200.416 + 275.849i 0.217607 + 0.299510i
\(922\) 0 0
\(923\) 19.8875i 0.0215466i
\(924\) 0 0
\(925\) 1494.64 1.61582
\(926\) 0 0
\(927\) −76.5400 + 55.6096i −0.0825674 + 0.0599887i
\(928\) 0 0
\(929\) −35.3551 108.812i −0.0380572 0.117128i 0.930223 0.366995i \(-0.119613\pi\)
−0.968280 + 0.249867i \(0.919613\pi\)
\(930\) 0 0
\(931\) −61.6884 + 84.9068i −0.0662603 + 0.0911995i
\(932\) 0 0
\(933\) −144.735 + 445.450i −0.155129 + 0.477438i
\(934\) 0 0
\(935\) −39.3529 42.8660i −0.0420886 0.0458460i
\(936\) 0 0
\(937\) 1540.46 + 500.527i 1.64404 + 0.534181i 0.977436 0.211233i \(-0.0677478\pi\)
0.666603 + 0.745413i \(0.267748\pi\)
\(938\) 0 0
\(939\) −482.887 350.838i −0.514257 0.373629i
\(940\) 0 0
\(941\) 722.085 234.620i 0.767359 0.249330i 0.100925 0.994894i \(-0.467820\pi\)
0.666434 + 0.745564i \(0.267820\pi\)
\(942\) 0 0
\(943\) 759.735 + 1045.69i 0.805658 + 1.10889i
\(944\) 0 0
\(945\) 1.45200i 0.00153651i
\(946\) 0 0
\(947\) −1855.32 −1.95915 −0.979575 0.201079i \(-0.935555\pi\)
−0.979575 + 0.201079i \(0.935555\pi\)
\(948\) 0 0
\(949\) −19.2160 + 13.9612i −0.0202486 + 0.0147115i
\(950\) 0 0
\(951\) 35.0960 + 108.014i 0.0369043 + 0.113580i
\(952\) 0 0
\(953\) −955.025 + 1314.48i −1.00212 + 1.37931i −0.0781115 + 0.996945i \(0.524889\pi\)
−0.924013 + 0.382361i \(0.875111\pi\)
\(954\) 0 0
\(955\) 13.6265 41.9381i 0.0142686 0.0439142i
\(956\) 0 0
\(957\) −38.7569 337.374i −0.0404983 0.352533i
\(958\) 0 0
\(959\) 110.451 + 35.8876i 0.115173 + 0.0374219i
\(960\) 0 0
\(961\) −148.843 108.141i −0.154884 0.112530i
\(962\) 0 0
\(963\) −229.788 + 74.6627i −0.238617 + 0.0775313i
\(964\) 0 0
\(965\) 8.72179 + 12.0045i 0.00903812 + 0.0124399i
\(966\) 0 0
\(967\) 325.104i 0.336199i −0.985770 0.168099i \(-0.946237\pi\)
0.985770 0.168099i \(-0.0537629\pi\)
\(968\) 0 0
\(969\) 56.2519 0.0580515
\(970\) 0 0
\(971\) 227.145 165.031i 0.233929 0.169960i −0.464645 0.885497i \(-0.653818\pi\)
0.698574 + 0.715537i \(0.253818\pi\)
\(972\) 0 0
\(973\) 52.2365 + 160.767i 0.0536860 + 0.165229i
\(974\) 0 0
\(975\) −5.29864 + 7.29296i −0.00543450 + 0.00747995i
\(976\) 0 0
\(977\) 497.452 1531.00i 0.509163 1.56704i −0.284495 0.958678i \(-0.591826\pi\)
0.793658 0.608364i \(-0.208174\pi\)
\(978\) 0 0
\(979\) −819.293 + 94.1188i −0.836867 + 0.0961377i
\(980\) 0 0
\(981\) 91.8181 + 29.8335i 0.0935964 + 0.0304113i
\(982\) 0 0
\(983\) −302.881 220.056i −0.308119 0.223862i 0.422970 0.906144i \(-0.360988\pi\)
−0.731089 + 0.682282i \(0.760988\pi\)
\(984\) 0 0
\(985\) 92.2025 29.9584i 0.0936066 0.0304146i
\(986\) 0 0
\(987\) 49.2324 + 67.7626i 0.0498808 + 0.0686551i
\(988\) 0 0
\(989\) 375.836i 0.380016i
\(990\) 0 0
\(991\) 943.875 0.952447 0.476223 0.879324i \(-0.342005\pi\)
0.476223 + 0.879324i \(0.342005\pi\)
\(992\) 0 0
\(993\) 148.279 107.731i 0.149324 0.108490i
\(994\) 0 0
\(995\) 16.4873 + 50.7427i 0.0165702 + 0.0509977i
\(996\) 0 0
\(997\) 400.666 551.470i 0.401872 0.553129i −0.559341 0.828938i \(-0.688946\pi\)
0.961213 + 0.275809i \(0.0889457\pi\)
\(998\) 0 0
\(999\) −96.4793 + 296.933i −0.0965759 + 0.297230i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 528.3.bf.c.145.1 16
4.3 odd 2 66.3.f.a.13.4 16
11.6 odd 10 inner 528.3.bf.c.193.1 16
12.11 even 2 198.3.j.b.145.2 16
44.7 even 10 726.3.d.e.241.2 16
44.15 odd 10 726.3.d.e.241.10 16
44.39 even 10 66.3.f.a.61.4 yes 16
132.59 even 10 2178.3.d.m.1693.4 16
132.83 odd 10 198.3.j.b.127.2 16
132.95 odd 10 2178.3.d.m.1693.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.f.a.13.4 16 4.3 odd 2
66.3.f.a.61.4 yes 16 44.39 even 10
198.3.j.b.127.2 16 132.83 odd 10
198.3.j.b.145.2 16 12.11 even 2
528.3.bf.c.145.1 16 1.1 even 1 trivial
528.3.bf.c.193.1 16 11.6 odd 10 inner
726.3.d.e.241.2 16 44.7 even 10
726.3.d.e.241.10 16 44.15 odd 10
2178.3.d.m.1693.4 16 132.59 even 10
2178.3.d.m.1693.12 16 132.95 odd 10