Properties

Label 2178.3.d.m.1693.12
Level $2178$
Weight $3$
Character 2178.1693
Analytic conductor $59.346$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2178,3,Mod(1693,2178)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2178.1693"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2178, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2178.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-32,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.3462015777\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.6879707136000000000000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1693.12
Root \(-0.492303 - 0.159959i\) of defining polynomial
Character \(\chi\) \(=\) 2178.1693
Dual form 2178.3.d.m.1693.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} -0.353386 q^{5} -0.790744i q^{7} -2.82843i q^{8} -0.499764i q^{10} -0.209228i q^{13} +1.11828 q^{14} +4.00000 q^{16} +14.9696i q^{17} -2.16953i q^{19} +0.706772 q^{20} +24.1342 q^{23} -24.8751 q^{25} +0.295893 q^{26} +1.58149i q^{28} -17.8240i q^{29} +33.8376 q^{31} +5.65685i q^{32} -21.1702 q^{34} +0.279438i q^{35} -60.0856 q^{37} +3.06818 q^{38} +0.999527i q^{40} -53.5564i q^{41} +15.5727i q^{43} +34.1309i q^{46} +61.1556 q^{47} +48.3747 q^{49} -35.1787i q^{50} +0.418456i q^{52} -58.9673 q^{53} -2.23656 q^{56} +25.2069 q^{58} +51.4857 q^{59} +40.7522i q^{61} +47.8535i q^{62} -8.00000 q^{64} +0.0739383i q^{65} -72.9302 q^{67} -29.9392i q^{68} -0.395185 q^{70} +95.0520 q^{71} +113.523i q^{73} -84.9738i q^{74} +4.33906i q^{76} +147.127i q^{79} -1.41354 q^{80} +75.7401 q^{82} +19.8752i q^{83} -5.29005i q^{85} -22.0232 q^{86} +74.9710 q^{89} -0.165446 q^{91} -48.2684 q^{92} +86.4870i q^{94} +0.766683i q^{95} +101.506 q^{97} +68.4122i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} - 8 q^{5} - 48 q^{14} + 64 q^{16} + 16 q^{20} + 8 q^{23} - 8 q^{25} - 128 q^{26} - 8 q^{31} - 64 q^{34} + 96 q^{37} + 208 q^{38} + 128 q^{47} - 64 q^{49} - 16 q^{53} + 96 q^{56} + 64 q^{58}+ \cdots + 184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2178\mathbb{Z}\right)^\times\).

\(n\) \(1333\) \(1937\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) −0.353386 −0.0706772 −0.0353386 0.999375i \(-0.511251\pi\)
−0.0353386 + 0.999375i \(0.511251\pi\)
\(6\) 0 0
\(7\) − 0.790744i − 0.112963i −0.998404 0.0564817i \(-0.982012\pi\)
0.998404 0.0564817i \(-0.0179883\pi\)
\(8\) − 2.82843i − 0.353553i
\(9\) 0 0
\(10\) − 0.499764i − 0.0499764i
\(11\) 0 0
\(12\) 0 0
\(13\) − 0.209228i − 0.0160945i −0.999968 0.00804724i \(-0.997438\pi\)
0.999968 0.00804724i \(-0.00256154\pi\)
\(14\) 1.11828 0.0798772
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 14.9696i 0.880565i 0.897859 + 0.440282i \(0.145122\pi\)
−0.897859 + 0.440282i \(0.854878\pi\)
\(18\) 0 0
\(19\) − 2.16953i − 0.114186i −0.998369 0.0570930i \(-0.981817\pi\)
0.998369 0.0570930i \(-0.0181831\pi\)
\(20\) 0.706772 0.0353386
\(21\) 0 0
\(22\) 0 0
\(23\) 24.1342 1.04931 0.524656 0.851314i \(-0.324194\pi\)
0.524656 + 0.851314i \(0.324194\pi\)
\(24\) 0 0
\(25\) −24.8751 −0.995005
\(26\) 0.295893 0.0113805
\(27\) 0 0
\(28\) 1.58149i 0.0564817i
\(29\) − 17.8240i − 0.614621i −0.951609 0.307310i \(-0.900571\pi\)
0.951609 0.307310i \(-0.0994290\pi\)
\(30\) 0 0
\(31\) 33.8376 1.09153 0.545767 0.837937i \(-0.316238\pi\)
0.545767 + 0.837937i \(0.316238\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) −21.1702 −0.622653
\(35\) 0.279438i 0.00798394i
\(36\) 0 0
\(37\) −60.0856 −1.62393 −0.811967 0.583703i \(-0.801603\pi\)
−0.811967 + 0.583703i \(0.801603\pi\)
\(38\) 3.06818 0.0807416
\(39\) 0 0
\(40\) 0.999527i 0.0249882i
\(41\) − 53.5564i − 1.30625i −0.757249 0.653126i \(-0.773457\pi\)
0.757249 0.653126i \(-0.226543\pi\)
\(42\) 0 0
\(43\) 15.5727i 0.362157i 0.983469 + 0.181078i \(0.0579588\pi\)
−0.983469 + 0.181078i \(0.942041\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 34.1309i 0.741976i
\(47\) 61.1556 1.30118 0.650591 0.759428i \(-0.274521\pi\)
0.650591 + 0.759428i \(0.274521\pi\)
\(48\) 0 0
\(49\) 48.3747 0.987239
\(50\) − 35.1787i − 0.703575i
\(51\) 0 0
\(52\) 0.418456i 0.00804724i
\(53\) −58.9673 −1.11259 −0.556295 0.830985i \(-0.687778\pi\)
−0.556295 + 0.830985i \(0.687778\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.23656 −0.0399386
\(57\) 0 0
\(58\) 25.2069 0.434602
\(59\) 51.4857 0.872639 0.436320 0.899792i \(-0.356282\pi\)
0.436320 + 0.899792i \(0.356282\pi\)
\(60\) 0 0
\(61\) 40.7522i 0.668069i 0.942561 + 0.334034i \(0.108410\pi\)
−0.942561 + 0.334034i \(0.891590\pi\)
\(62\) 47.8535i 0.771831i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 0.0739383i 0.00113751i
\(66\) 0 0
\(67\) −72.9302 −1.08851 −0.544255 0.838920i \(-0.683188\pi\)
−0.544255 + 0.838920i \(0.683188\pi\)
\(68\) − 29.9392i − 0.440282i
\(69\) 0 0
\(70\) −0.395185 −0.00564550
\(71\) 95.0520 1.33876 0.669380 0.742920i \(-0.266560\pi\)
0.669380 + 0.742920i \(0.266560\pi\)
\(72\) 0 0
\(73\) 113.523i 1.55511i 0.628814 + 0.777555i \(0.283541\pi\)
−0.628814 + 0.777555i \(0.716459\pi\)
\(74\) − 84.9738i − 1.14829i
\(75\) 0 0
\(76\) 4.33906i 0.0570930i
\(77\) 0 0
\(78\) 0 0
\(79\) 147.127i 1.86236i 0.364556 + 0.931182i \(0.381221\pi\)
−0.364556 + 0.931182i \(0.618779\pi\)
\(80\) −1.41354 −0.0176693
\(81\) 0 0
\(82\) 75.7401 0.923660
\(83\) 19.8752i 0.239461i 0.992806 + 0.119730i \(0.0382030\pi\)
−0.992806 + 0.119730i \(0.961797\pi\)
\(84\) 0 0
\(85\) − 5.29005i − 0.0622359i
\(86\) −22.0232 −0.256084
\(87\) 0 0
\(88\) 0 0
\(89\) 74.9710 0.842371 0.421185 0.906975i \(-0.361614\pi\)
0.421185 + 0.906975i \(0.361614\pi\)
\(90\) 0 0
\(91\) −0.165446 −0.00181809
\(92\) −48.2684 −0.524656
\(93\) 0 0
\(94\) 86.4870i 0.920075i
\(95\) 0.766683i 0.00807034i
\(96\) 0 0
\(97\) 101.506 1.04645 0.523227 0.852194i \(-0.324728\pi\)
0.523227 + 0.852194i \(0.324728\pi\)
\(98\) 68.4122i 0.698084i
\(99\) 0 0
\(100\) 49.7502 0.497502
\(101\) 26.0855i 0.258272i 0.991627 + 0.129136i \(0.0412204\pi\)
−0.991627 + 0.129136i \(0.958780\pi\)
\(102\) 0 0
\(103\) −31.5362 −0.306177 −0.153088 0.988212i \(-0.548922\pi\)
−0.153088 + 0.988212i \(0.548922\pi\)
\(104\) −0.591787 −0.00569026
\(105\) 0 0
\(106\) − 83.3923i − 0.786720i
\(107\) − 80.5378i − 0.752690i −0.926480 0.376345i \(-0.877181\pi\)
0.926480 0.376345i \(-0.122819\pi\)
\(108\) 0 0
\(109\) − 32.1811i − 0.295239i −0.989044 0.147620i \(-0.952839\pi\)
0.989044 0.147620i \(-0.0471612\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 3.16297i − 0.0282408i
\(113\) 29.2039 0.258441 0.129221 0.991616i \(-0.458752\pi\)
0.129221 + 0.991616i \(0.458752\pi\)
\(114\) 0 0
\(115\) −8.52869 −0.0741625
\(116\) 35.6480i 0.307310i
\(117\) 0 0
\(118\) 72.8118i 0.617049i
\(119\) 11.8371 0.0994716
\(120\) 0 0
\(121\) 0 0
\(122\) −57.6323 −0.472396
\(123\) 0 0
\(124\) −67.6751 −0.545767
\(125\) 17.6252 0.141001
\(126\) 0 0
\(127\) 149.052i 1.17364i 0.809719 + 0.586818i \(0.199620\pi\)
−0.809719 + 0.586818i \(0.800380\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 0 0
\(130\) −0.104565 −0.000804343 0
\(131\) 165.965i 1.26691i 0.773780 + 0.633454i \(0.218364\pi\)
−0.773780 + 0.633454i \(0.781636\pi\)
\(132\) 0 0
\(133\) −1.71554 −0.0128988
\(134\) − 103.139i − 0.769693i
\(135\) 0 0
\(136\) 42.3404 0.311327
\(137\) 146.868 1.07203 0.536014 0.844209i \(-0.319930\pi\)
0.536014 + 0.844209i \(0.319930\pi\)
\(138\) 0 0
\(139\) 213.774i 1.53795i 0.639281 + 0.768973i \(0.279232\pi\)
−0.639281 + 0.768973i \(0.720768\pi\)
\(140\) − 0.558876i − 0.00399197i
\(141\) 0 0
\(142\) 134.424i 0.946646i
\(143\) 0 0
\(144\) 0 0
\(145\) 6.29876i 0.0434397i
\(146\) −160.546 −1.09963
\(147\) 0 0
\(148\) 120.171 0.811967
\(149\) 231.242i 1.55196i 0.630757 + 0.775981i \(0.282745\pi\)
−0.630757 + 0.775981i \(0.717255\pi\)
\(150\) 0 0
\(151\) − 266.405i − 1.76427i −0.470992 0.882137i \(-0.656104\pi\)
0.470992 0.882137i \(-0.343896\pi\)
\(152\) −6.13636 −0.0403708
\(153\) 0 0
\(154\) 0 0
\(155\) −11.9577 −0.0771466
\(156\) 0 0
\(157\) −104.278 −0.664193 −0.332097 0.943245i \(-0.607756\pi\)
−0.332097 + 0.943245i \(0.607756\pi\)
\(158\) −208.069 −1.31689
\(159\) 0 0
\(160\) − 1.99905i − 0.0124941i
\(161\) − 19.0839i − 0.118534i
\(162\) 0 0
\(163\) −279.668 −1.71575 −0.857877 0.513855i \(-0.828217\pi\)
−0.857877 + 0.513855i \(0.828217\pi\)
\(164\) 107.113i 0.653126i
\(165\) 0 0
\(166\) −28.1078 −0.169324
\(167\) 256.946i 1.53860i 0.638889 + 0.769299i \(0.279394\pi\)
−0.638889 + 0.769299i \(0.720606\pi\)
\(168\) 0 0
\(169\) 168.956 0.999741
\(170\) 7.48126 0.0440074
\(171\) 0 0
\(172\) − 31.1455i − 0.181078i
\(173\) 110.189i 0.636929i 0.947935 + 0.318464i \(0.103167\pi\)
−0.947935 + 0.318464i \(0.896833\pi\)
\(174\) 0 0
\(175\) 19.6698i 0.112399i
\(176\) 0 0
\(177\) 0 0
\(178\) 106.025i 0.595646i
\(179\) −27.1267 −0.151546 −0.0757729 0.997125i \(-0.524142\pi\)
−0.0757729 + 0.997125i \(0.524142\pi\)
\(180\) 0 0
\(181\) 259.571 1.43410 0.717048 0.697024i \(-0.245493\pi\)
0.717048 + 0.697024i \(0.245493\pi\)
\(182\) − 0.233976i − 0.00128558i
\(183\) 0 0
\(184\) − 68.2618i − 0.370988i
\(185\) 21.2334 0.114775
\(186\) 0 0
\(187\) 0 0
\(188\) −122.311 −0.650591
\(189\) 0 0
\(190\) −1.08425 −0.00570660
\(191\) 124.782 0.653310 0.326655 0.945144i \(-0.394078\pi\)
0.326655 + 0.945144i \(0.394078\pi\)
\(192\) 0 0
\(193\) 41.9892i 0.217560i 0.994066 + 0.108780i \(0.0346945\pi\)
−0.994066 + 0.108780i \(0.965306\pi\)
\(194\) 143.551i 0.739954i
\(195\) 0 0
\(196\) −96.7494 −0.493620
\(197\) − 274.338i − 1.39258i −0.717760 0.696290i \(-0.754833\pi\)
0.717760 0.696290i \(-0.245167\pi\)
\(198\) 0 0
\(199\) −150.979 −0.758690 −0.379345 0.925255i \(-0.623851\pi\)
−0.379345 + 0.925255i \(0.623851\pi\)
\(200\) 70.3575i 0.351787i
\(201\) 0 0
\(202\) −36.8904 −0.182626
\(203\) −14.0942 −0.0694296
\(204\) 0 0
\(205\) 18.9261i 0.0923223i
\(206\) − 44.5989i − 0.216500i
\(207\) 0 0
\(208\) − 0.836913i − 0.00402362i
\(209\) 0 0
\(210\) 0 0
\(211\) 18.6837i 0.0885486i 0.999019 + 0.0442743i \(0.0140976\pi\)
−0.999019 + 0.0442743i \(0.985902\pi\)
\(212\) 117.935 0.556295
\(213\) 0 0
\(214\) 113.898 0.532232
\(215\) − 5.50319i − 0.0255963i
\(216\) 0 0
\(217\) − 26.7568i − 0.123303i
\(218\) 45.5109 0.208766
\(219\) 0 0
\(220\) 0 0
\(221\) 3.13206 0.0141722
\(222\) 0 0
\(223\) −94.2808 −0.422784 −0.211392 0.977401i \(-0.567800\pi\)
−0.211392 + 0.977401i \(0.567800\pi\)
\(224\) 4.47312 0.0199693
\(225\) 0 0
\(226\) 41.3005i 0.182746i
\(227\) 289.791i 1.27661i 0.769782 + 0.638306i \(0.220365\pi\)
−0.769782 + 0.638306i \(0.779635\pi\)
\(228\) 0 0
\(229\) −228.228 −0.996631 −0.498315 0.866996i \(-0.666048\pi\)
−0.498315 + 0.866996i \(0.666048\pi\)
\(230\) − 12.0614i − 0.0524408i
\(231\) 0 0
\(232\) −50.4139 −0.217301
\(233\) 298.827i 1.28252i 0.767324 + 0.641260i \(0.221588\pi\)
−0.767324 + 0.641260i \(0.778412\pi\)
\(234\) 0 0
\(235\) −21.6115 −0.0919640
\(236\) −102.971 −0.436320
\(237\) 0 0
\(238\) 16.7402i 0.0703370i
\(239\) 245.929i 1.02899i 0.857492 + 0.514496i \(0.172021\pi\)
−0.857492 + 0.514496i \(0.827979\pi\)
\(240\) 0 0
\(241\) 373.418i 1.54945i 0.632297 + 0.774726i \(0.282112\pi\)
−0.632297 + 0.774726i \(0.717888\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) − 81.5044i − 0.334034i
\(245\) −17.0950 −0.0697753
\(246\) 0 0
\(247\) −0.453927 −0.00183776
\(248\) − 95.7071i − 0.385916i
\(249\) 0 0
\(250\) 24.9258i 0.0997031i
\(251\) 359.422 1.43196 0.715980 0.698121i \(-0.245980\pi\)
0.715980 + 0.698121i \(0.245980\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −210.791 −0.829886
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 35.7842 0.139238 0.0696191 0.997574i \(-0.477822\pi\)
0.0696191 + 0.997574i \(0.477822\pi\)
\(258\) 0 0
\(259\) 47.5123i 0.183445i
\(260\) − 0.147877i 0 0.000568756i
\(261\) 0 0
\(262\) −234.710 −0.895840
\(263\) − 364.668i − 1.38657i −0.720663 0.693286i \(-0.756162\pi\)
0.720663 0.693286i \(-0.243838\pi\)
\(264\) 0 0
\(265\) 20.8382 0.0786348
\(266\) − 2.42615i − 0.00912085i
\(267\) 0 0
\(268\) 145.860 0.544255
\(269\) 13.3769 0.0497283 0.0248641 0.999691i \(-0.492085\pi\)
0.0248641 + 0.999691i \(0.492085\pi\)
\(270\) 0 0
\(271\) − 70.8425i − 0.261411i −0.991421 0.130706i \(-0.958276\pi\)
0.991421 0.130706i \(-0.0417243\pi\)
\(272\) 59.8784i 0.220141i
\(273\) 0 0
\(274\) 207.702i 0.758038i
\(275\) 0 0
\(276\) 0 0
\(277\) 79.3467i 0.286450i 0.989690 + 0.143225i \(0.0457473\pi\)
−0.989690 + 0.143225i \(0.954253\pi\)
\(278\) −302.323 −1.08749
\(279\) 0 0
\(280\) 0.790370 0.00282275
\(281\) 343.092i 1.22097i 0.792029 + 0.610484i \(0.209025\pi\)
−0.792029 + 0.610484i \(0.790975\pi\)
\(282\) 0 0
\(283\) − 119.679i − 0.422895i −0.977389 0.211447i \(-0.932182\pi\)
0.977389 0.211447i \(-0.0678177\pi\)
\(284\) −190.104 −0.669380
\(285\) 0 0
\(286\) 0 0
\(287\) −42.3493 −0.147559
\(288\) 0 0
\(289\) 64.9111 0.224606
\(290\) −8.90779 −0.0307165
\(291\) 0 0
\(292\) − 227.046i − 0.777555i
\(293\) 11.5161i 0.0393042i 0.999807 + 0.0196521i \(0.00625585\pi\)
−0.999807 + 0.0196521i \(0.993744\pi\)
\(294\) 0 0
\(295\) −18.1943 −0.0616757
\(296\) 169.948i 0.574147i
\(297\) 0 0
\(298\) −327.026 −1.09740
\(299\) − 5.04955i − 0.0168881i
\(300\) 0 0
\(301\) 12.3141 0.0409105
\(302\) 376.754 1.24753
\(303\) 0 0
\(304\) − 8.67813i − 0.0285465i
\(305\) − 14.4013i − 0.0472172i
\(306\) 0 0
\(307\) − 196.858i − 0.641231i −0.947210 0.320615i \(-0.896110\pi\)
0.947210 0.320615i \(-0.103890\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) − 16.9108i − 0.0545509i
\(311\) −270.416 −0.869504 −0.434752 0.900550i \(-0.643164\pi\)
−0.434752 + 0.900550i \(0.643164\pi\)
\(312\) 0 0
\(313\) 344.610 1.10099 0.550495 0.834839i \(-0.314439\pi\)
0.550495 + 0.834839i \(0.314439\pi\)
\(314\) − 147.472i − 0.469656i
\(315\) 0 0
\(316\) − 294.253i − 0.931182i
\(317\) −65.5714 −0.206850 −0.103425 0.994637i \(-0.532980\pi\)
−0.103425 + 0.994637i \(0.532980\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 2.82709 0.00883465
\(321\) 0 0
\(322\) 26.9888 0.0838161
\(323\) 32.4770 0.100548
\(324\) 0 0
\(325\) 5.20458i 0.0160141i
\(326\) − 395.510i − 1.21322i
\(327\) 0 0
\(328\) −151.480 −0.461830
\(329\) − 48.3584i − 0.146986i
\(330\) 0 0
\(331\) 105.818 0.319693 0.159847 0.987142i \(-0.448900\pi\)
0.159847 + 0.987142i \(0.448900\pi\)
\(332\) − 39.7505i − 0.119730i
\(333\) 0 0
\(334\) −363.376 −1.08795
\(335\) 25.7725 0.0769329
\(336\) 0 0
\(337\) − 225.621i − 0.669498i −0.942307 0.334749i \(-0.891348\pi\)
0.942307 0.334749i \(-0.108652\pi\)
\(338\) 238.940i 0.706924i
\(339\) 0 0
\(340\) 10.5801i 0.0311179i
\(341\) 0 0
\(342\) 0 0
\(343\) − 76.9984i − 0.224485i
\(344\) 44.0464 0.128042
\(345\) 0 0
\(346\) −155.830 −0.450377
\(347\) − 135.569i − 0.390687i −0.980735 0.195344i \(-0.937418\pi\)
0.980735 0.195344i \(-0.0625822\pi\)
\(348\) 0 0
\(349\) 500.154i 1.43311i 0.697533 + 0.716553i \(0.254281\pi\)
−0.697533 + 0.716553i \(0.745719\pi\)
\(350\) −27.8174 −0.0794782
\(351\) 0 0
\(352\) 0 0
\(353\) −320.592 −0.908192 −0.454096 0.890953i \(-0.650038\pi\)
−0.454096 + 0.890953i \(0.650038\pi\)
\(354\) 0 0
\(355\) −33.5900 −0.0946199
\(356\) −149.942 −0.421185
\(357\) 0 0
\(358\) − 38.3630i − 0.107159i
\(359\) 113.433i 0.315971i 0.987441 + 0.157985i \(0.0504999\pi\)
−0.987441 + 0.157985i \(0.949500\pi\)
\(360\) 0 0
\(361\) 356.293 0.986962
\(362\) 367.089i 1.01406i
\(363\) 0 0
\(364\) 0.330892 0.000909043 0
\(365\) − 40.1175i − 0.109911i
\(366\) 0 0
\(367\) 89.5681 0.244055 0.122027 0.992527i \(-0.461060\pi\)
0.122027 + 0.992527i \(0.461060\pi\)
\(368\) 96.5367 0.262328
\(369\) 0 0
\(370\) 30.0286i 0.0811583i
\(371\) 46.6280i 0.125682i
\(372\) 0 0
\(373\) − 275.552i − 0.738744i −0.929282 0.369372i \(-0.879573\pi\)
0.929282 0.369372i \(-0.120427\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) − 172.974i − 0.460037i
\(377\) −3.72928 −0.00989200
\(378\) 0 0
\(379\) −175.545 −0.463179 −0.231590 0.972814i \(-0.574393\pi\)
−0.231590 + 0.972814i \(0.574393\pi\)
\(380\) − 1.53337i − 0.00403517i
\(381\) 0 0
\(382\) 176.469i 0.461960i
\(383\) 51.1788 0.133626 0.0668131 0.997766i \(-0.478717\pi\)
0.0668131 + 0.997766i \(0.478717\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −59.3817 −0.153838
\(387\) 0 0
\(388\) −203.012 −0.523227
\(389\) 22.9064 0.0588854 0.0294427 0.999566i \(-0.490627\pi\)
0.0294427 + 0.999566i \(0.490627\pi\)
\(390\) 0 0
\(391\) 361.279i 0.923987i
\(392\) − 136.824i − 0.349042i
\(393\) 0 0
\(394\) 387.973 0.984703
\(395\) − 51.9925i − 0.131627i
\(396\) 0 0
\(397\) 131.054 0.330112 0.165056 0.986284i \(-0.447220\pi\)
0.165056 + 0.986284i \(0.447220\pi\)
\(398\) − 213.517i − 0.536475i
\(399\) 0 0
\(400\) −99.5005 −0.248751
\(401\) −775.849 −1.93479 −0.967393 0.253279i \(-0.918491\pi\)
−0.967393 + 0.253279i \(0.918491\pi\)
\(402\) 0 0
\(403\) − 7.07977i − 0.0175677i
\(404\) − 52.1710i − 0.129136i
\(405\) 0 0
\(406\) − 19.9322i − 0.0490942i
\(407\) 0 0
\(408\) 0 0
\(409\) 747.379i 1.82733i 0.406464 + 0.913667i \(0.366762\pi\)
−0.406464 + 0.913667i \(0.633238\pi\)
\(410\) −26.7655 −0.0652817
\(411\) 0 0
\(412\) 63.0724 0.153088
\(413\) − 40.7120i − 0.0985763i
\(414\) 0 0
\(415\) − 7.02364i − 0.0169244i
\(416\) 1.18357 0.00284513
\(417\) 0 0
\(418\) 0 0
\(419\) 408.427 0.974765 0.487383 0.873189i \(-0.337952\pi\)
0.487383 + 0.873189i \(0.337952\pi\)
\(420\) 0 0
\(421\) 104.511 0.248245 0.124123 0.992267i \(-0.460388\pi\)
0.124123 + 0.992267i \(0.460388\pi\)
\(422\) −26.4228 −0.0626133
\(423\) 0 0
\(424\) 166.785i 0.393360i
\(425\) − 372.371i − 0.876166i
\(426\) 0 0
\(427\) 32.2245 0.0754673
\(428\) 161.076i 0.376345i
\(429\) 0 0
\(430\) 7.78269 0.0180993
\(431\) − 289.063i − 0.670680i −0.942097 0.335340i \(-0.891149\pi\)
0.942097 0.335340i \(-0.108851\pi\)
\(432\) 0 0
\(433\) 550.999 1.27252 0.636258 0.771476i \(-0.280481\pi\)
0.636258 + 0.771476i \(0.280481\pi\)
\(434\) 37.8399 0.0871886
\(435\) 0 0
\(436\) 64.3622i 0.147620i
\(437\) − 52.3599i − 0.119817i
\(438\) 0 0
\(439\) − 576.891i − 1.31410i −0.753846 0.657051i \(-0.771804\pi\)
0.753846 0.657051i \(-0.228196\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.42940i 0.0100213i
\(443\) 178.241 0.402349 0.201175 0.979555i \(-0.435524\pi\)
0.201175 + 0.979555i \(0.435524\pi\)
\(444\) 0 0
\(445\) −26.4937 −0.0595364
\(446\) − 133.333i − 0.298953i
\(447\) 0 0
\(448\) 6.32595i 0.0141204i
\(449\) −622.710 −1.38688 −0.693441 0.720513i \(-0.743906\pi\)
−0.693441 + 0.720513i \(0.743906\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −58.4078 −0.129221
\(453\) 0 0
\(454\) −409.827 −0.902702
\(455\) 0.0584663 0.000128497 0
\(456\) 0 0
\(457\) − 787.808i − 1.72387i −0.507021 0.861934i \(-0.669253\pi\)
0.507021 0.861934i \(-0.330747\pi\)
\(458\) − 322.764i − 0.704725i
\(459\) 0 0
\(460\) 17.0574 0.0370812
\(461\) − 377.985i − 0.819924i −0.912103 0.409962i \(-0.865542\pi\)
0.912103 0.409962i \(-0.134458\pi\)
\(462\) 0 0
\(463\) −49.3159 −0.106514 −0.0532569 0.998581i \(-0.516960\pi\)
−0.0532569 + 0.998581i \(0.516960\pi\)
\(464\) − 71.2960i − 0.153655i
\(465\) 0 0
\(466\) −422.605 −0.906878
\(467\) 117.187 0.250936 0.125468 0.992098i \(-0.459957\pi\)
0.125468 + 0.992098i \(0.459957\pi\)
\(468\) 0 0
\(469\) 57.6691i 0.122962i
\(470\) − 30.5633i − 0.0650283i
\(471\) 0 0
\(472\) − 145.624i − 0.308525i
\(473\) 0 0
\(474\) 0 0
\(475\) 53.9674i 0.113616i
\(476\) −23.6742 −0.0497358
\(477\) 0 0
\(478\) −347.797 −0.727608
\(479\) − 920.732i − 1.92220i −0.276209 0.961098i \(-0.589078\pi\)
0.276209 0.961098i \(-0.410922\pi\)
\(480\) 0 0
\(481\) 12.5716i 0.0261364i
\(482\) −528.093 −1.09563
\(483\) 0 0
\(484\) 0 0
\(485\) −35.8708 −0.0739604
\(486\) 0 0
\(487\) 388.108 0.796936 0.398468 0.917182i \(-0.369542\pi\)
0.398468 + 0.917182i \(0.369542\pi\)
\(488\) 115.265 0.236198
\(489\) 0 0
\(490\) − 24.1759i − 0.0493386i
\(491\) 364.974i 0.743328i 0.928367 + 0.371664i \(0.121213\pi\)
−0.928367 + 0.371664i \(0.878787\pi\)
\(492\) 0 0
\(493\) 266.818 0.541213
\(494\) − 0.641950i − 0.00129949i
\(495\) 0 0
\(496\) 135.350 0.272884
\(497\) − 75.1617i − 0.151231i
\(498\) 0 0
\(499\) −245.125 −0.491232 −0.245616 0.969367i \(-0.578990\pi\)
−0.245616 + 0.969367i \(0.578990\pi\)
\(500\) −35.2504 −0.0705007
\(501\) 0 0
\(502\) 508.299i 1.01255i
\(503\) − 294.256i − 0.585002i −0.956265 0.292501i \(-0.905513\pi\)
0.956265 0.292501i \(-0.0944875\pi\)
\(504\) 0 0
\(505\) − 9.21825i − 0.0182540i
\(506\) 0 0
\(507\) 0 0
\(508\) − 298.103i − 0.586818i
\(509\) 855.189 1.68013 0.840067 0.542482i \(-0.182515\pi\)
0.840067 + 0.542482i \(0.182515\pi\)
\(510\) 0 0
\(511\) 89.7677 0.175671
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 50.6065i 0.0984563i
\(515\) 11.1445 0.0216397
\(516\) 0 0
\(517\) 0 0
\(518\) −67.1925 −0.129715
\(519\) 0 0
\(520\) 0.209129 0.000402172 0
\(521\) 607.086 1.16523 0.582617 0.812747i \(-0.302029\pi\)
0.582617 + 0.812747i \(0.302029\pi\)
\(522\) 0 0
\(523\) 674.935i 1.29051i 0.763969 + 0.645253i \(0.223248\pi\)
−0.763969 + 0.645253i \(0.776752\pi\)
\(524\) − 331.930i − 0.633454i
\(525\) 0 0
\(526\) 515.719 0.980454
\(527\) 506.535i 0.961166i
\(528\) 0 0
\(529\) 53.4586 0.101056
\(530\) 29.4697i 0.0556032i
\(531\) 0 0
\(532\) 3.43109 0.00644941
\(533\) −11.2055 −0.0210234
\(534\) 0 0
\(535\) 28.4609i 0.0531980i
\(536\) 206.278i 0.384846i
\(537\) 0 0
\(538\) 18.9178i 0.0351632i
\(539\) 0 0
\(540\) 0 0
\(541\) 233.688i 0.431956i 0.976398 + 0.215978i \(0.0692940\pi\)
−0.976398 + 0.215978i \(0.930706\pi\)
\(542\) 100.186 0.184846
\(543\) 0 0
\(544\) −84.6808 −0.155663
\(545\) 11.3724i 0.0208667i
\(546\) 0 0
\(547\) 953.254i 1.74269i 0.490667 + 0.871347i \(0.336753\pi\)
−0.490667 + 0.871347i \(0.663247\pi\)
\(548\) −293.735 −0.536014
\(549\) 0 0
\(550\) 0 0
\(551\) −38.6697 −0.0701810
\(552\) 0 0
\(553\) 116.339 0.210379
\(554\) −112.213 −0.202551
\(555\) 0 0
\(556\) − 427.549i − 0.768973i
\(557\) 450.083i 0.808049i 0.914748 + 0.404025i \(0.132389\pi\)
−0.914748 + 0.404025i \(0.867611\pi\)
\(558\) 0 0
\(559\) 3.25826 0.00582873
\(560\) 1.11775i 0.00199598i
\(561\) 0 0
\(562\) −485.205 −0.863354
\(563\) 312.343i 0.554783i 0.960757 + 0.277391i \(0.0894698\pi\)
−0.960757 + 0.277391i \(0.910530\pi\)
\(564\) 0 0
\(565\) −10.3202 −0.0182659
\(566\) 169.252 0.299032
\(567\) 0 0
\(568\) − 268.848i − 0.473323i
\(569\) − 564.562i − 0.992200i −0.868265 0.496100i \(-0.834765\pi\)
0.868265 0.496100i \(-0.165235\pi\)
\(570\) 0 0
\(571\) − 224.552i − 0.393260i −0.980478 0.196630i \(-0.937000\pi\)
0.980478 0.196630i \(-0.0629998\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) − 59.8910i − 0.104340i
\(575\) −600.341 −1.04407
\(576\) 0 0
\(577\) −1055.36 −1.82905 −0.914524 0.404532i \(-0.867434\pi\)
−0.914524 + 0.404532i \(0.867434\pi\)
\(578\) 91.7981i 0.158820i
\(579\) 0 0
\(580\) − 12.5975i − 0.0217198i
\(581\) 15.7162 0.0270503
\(582\) 0 0
\(583\) 0 0
\(584\) 321.092 0.549815
\(585\) 0 0
\(586\) −16.2862 −0.0277922
\(587\) 79.4137 0.135287 0.0676437 0.997710i \(-0.478452\pi\)
0.0676437 + 0.997710i \(0.478452\pi\)
\(588\) 0 0
\(589\) − 73.4117i − 0.124638i
\(590\) − 25.7307i − 0.0436113i
\(591\) 0 0
\(592\) −240.342 −0.405984
\(593\) − 709.519i − 1.19649i −0.801313 0.598245i \(-0.795865\pi\)
0.801313 0.598245i \(-0.204135\pi\)
\(594\) 0 0
\(595\) −4.18307 −0.00703037
\(596\) − 462.484i − 0.775981i
\(597\) 0 0
\(598\) 7.14114 0.0119417
\(599\) −698.251 −1.16569 −0.582847 0.812582i \(-0.698061\pi\)
−0.582847 + 0.812582i \(0.698061\pi\)
\(600\) 0 0
\(601\) − 223.491i − 0.371865i −0.982562 0.185933i \(-0.940469\pi\)
0.982562 0.185933i \(-0.0595306\pi\)
\(602\) 17.4147i 0.0289281i
\(603\) 0 0
\(604\) 532.811i 0.882137i
\(605\) 0 0
\(606\) 0 0
\(607\) − 953.367i − 1.57062i −0.619102 0.785310i \(-0.712503\pi\)
0.619102 0.785310i \(-0.287497\pi\)
\(608\) 12.2727 0.0201854
\(609\) 0 0
\(610\) 20.3665 0.0333876
\(611\) − 12.7955i − 0.0209418i
\(612\) 0 0
\(613\) − 27.8874i − 0.0454934i −0.999741 0.0227467i \(-0.992759\pi\)
0.999741 0.0227467i \(-0.00724112\pi\)
\(614\) 278.399 0.453418
\(615\) 0 0
\(616\) 0 0
\(617\) 997.165 1.61615 0.808075 0.589079i \(-0.200509\pi\)
0.808075 + 0.589079i \(0.200509\pi\)
\(618\) 0 0
\(619\) −23.2638 −0.0375829 −0.0187915 0.999823i \(-0.505982\pi\)
−0.0187915 + 0.999823i \(0.505982\pi\)
\(620\) 23.9154 0.0385733
\(621\) 0 0
\(622\) − 382.426i − 0.614832i
\(623\) − 59.2828i − 0.0951571i
\(624\) 0 0
\(625\) 615.649 0.985039
\(626\) 487.352i 0.778517i
\(627\) 0 0
\(628\) 208.557 0.332097
\(629\) − 899.457i − 1.42998i
\(630\) 0 0
\(631\) −523.766 −0.830058 −0.415029 0.909808i \(-0.636229\pi\)
−0.415029 + 0.909808i \(0.636229\pi\)
\(632\) 416.137 0.658445
\(633\) 0 0
\(634\) − 92.7320i − 0.146265i
\(635\) − 52.6728i − 0.0829493i
\(636\) 0 0
\(637\) − 10.1214i − 0.0158891i
\(638\) 0 0
\(639\) 0 0
\(640\) 3.99811i 0.00624704i
\(641\) 67.4115 0.105166 0.0525831 0.998617i \(-0.483255\pi\)
0.0525831 + 0.998617i \(0.483255\pi\)
\(642\) 0 0
\(643\) −806.459 −1.25421 −0.627106 0.778934i \(-0.715761\pi\)
−0.627106 + 0.778934i \(0.715761\pi\)
\(644\) 38.1679i 0.0592669i
\(645\) 0 0
\(646\) 45.9295i 0.0710982i
\(647\) 970.912 1.50064 0.750319 0.661076i \(-0.229900\pi\)
0.750319 + 0.661076i \(0.229900\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −7.36038 −0.0113237
\(651\) 0 0
\(652\) 559.336 0.857877
\(653\) −28.0428 −0.0429445 −0.0214723 0.999769i \(-0.506835\pi\)
−0.0214723 + 0.999769i \(0.506835\pi\)
\(654\) 0 0
\(655\) − 58.6497i − 0.0895416i
\(656\) − 214.225i − 0.326563i
\(657\) 0 0
\(658\) 68.3891 0.103935
\(659\) − 570.449i − 0.865628i −0.901483 0.432814i \(-0.857521\pi\)
0.901483 0.432814i \(-0.142479\pi\)
\(660\) 0 0
\(661\) 854.772 1.29315 0.646575 0.762851i \(-0.276201\pi\)
0.646575 + 0.762851i \(0.276201\pi\)
\(662\) 149.650i 0.226057i
\(663\) 0 0
\(664\) 56.2157 0.0846622
\(665\) 0.606249 0.000911653 0
\(666\) 0 0
\(667\) − 430.168i − 0.644929i
\(668\) − 513.892i − 0.769299i
\(669\) 0 0
\(670\) 36.4478i 0.0543998i
\(671\) 0 0
\(672\) 0 0
\(673\) − 353.405i − 0.525119i −0.964916 0.262560i \(-0.915433\pi\)
0.964916 0.262560i \(-0.0845667\pi\)
\(674\) 319.076 0.473407
\(675\) 0 0
\(676\) −337.912 −0.499870
\(677\) 1242.34i 1.83506i 0.397665 + 0.917531i \(0.369821\pi\)
−0.397665 + 0.917531i \(0.630179\pi\)
\(678\) 0 0
\(679\) − 80.2652i − 0.118211i
\(680\) −14.9625 −0.0220037
\(681\) 0 0
\(682\) 0 0
\(683\) 818.617 1.19856 0.599281 0.800539i \(-0.295453\pi\)
0.599281 + 0.800539i \(0.295453\pi\)
\(684\) 0 0
\(685\) −51.9010 −0.0757679
\(686\) 108.892 0.158735
\(687\) 0 0
\(688\) 62.2910i 0.0905392i
\(689\) 12.3376i 0.0179066i
\(690\) 0 0
\(691\) 273.464 0.395751 0.197875 0.980227i \(-0.436596\pi\)
0.197875 + 0.980227i \(0.436596\pi\)
\(692\) − 220.377i − 0.318464i
\(693\) 0 0
\(694\) 191.723 0.276258
\(695\) − 75.5450i − 0.108698i
\(696\) 0 0
\(697\) 801.717 1.15024
\(698\) −707.324 −1.01336
\(699\) 0 0
\(700\) − 39.3397i − 0.0561995i
\(701\) 507.111i 0.723411i 0.932292 + 0.361706i \(0.117805\pi\)
−0.932292 + 0.361706i \(0.882195\pi\)
\(702\) 0 0
\(703\) 130.358i 0.185430i
\(704\) 0 0
\(705\) 0 0
\(706\) − 453.385i − 0.642189i
\(707\) 20.6269 0.0291753
\(708\) 0 0
\(709\) 578.587 0.816060 0.408030 0.912968i \(-0.366216\pi\)
0.408030 + 0.912968i \(0.366216\pi\)
\(710\) − 47.5035i − 0.0669063i
\(711\) 0 0
\(712\) − 212.050i − 0.297823i
\(713\) 816.642 1.14536
\(714\) 0 0
\(715\) 0 0
\(716\) 54.2534 0.0757729
\(717\) 0 0
\(718\) −160.419 −0.223425
\(719\) −39.2537 −0.0545948 −0.0272974 0.999627i \(-0.508690\pi\)
−0.0272974 + 0.999627i \(0.508690\pi\)
\(720\) 0 0
\(721\) 24.9371i 0.0345868i
\(722\) 503.875i 0.697887i
\(723\) 0 0
\(724\) −519.143 −0.717048
\(725\) 443.374i 0.611550i
\(726\) 0 0
\(727\) 918.828 1.26386 0.631932 0.775024i \(-0.282262\pi\)
0.631932 + 0.775024i \(0.282262\pi\)
\(728\) 0.467951i 0 0.000642790i
\(729\) 0 0
\(730\) 56.7347 0.0777188
\(731\) −233.118 −0.318903
\(732\) 0 0
\(733\) − 738.905i − 1.00806i −0.863687 0.504028i \(-0.831851\pi\)
0.863687 0.504028i \(-0.168149\pi\)
\(734\) 126.668i 0.172573i
\(735\) 0 0
\(736\) 136.524i 0.185494i
\(737\) 0 0
\(738\) 0 0
\(739\) − 1137.91i − 1.53979i −0.638168 0.769897i \(-0.720308\pi\)
0.638168 0.769897i \(-0.279692\pi\)
\(740\) −42.4668 −0.0573876
\(741\) 0 0
\(742\) −65.9420 −0.0888706
\(743\) − 188.316i − 0.253454i −0.991938 0.126727i \(-0.959553\pi\)
0.991938 0.126727i \(-0.0404472\pi\)
\(744\) 0 0
\(745\) − 81.7178i − 0.109688i
\(746\) 389.689 0.522371
\(747\) 0 0
\(748\) 0 0
\(749\) −63.6848 −0.0850264
\(750\) 0 0
\(751\) 605.397 0.806122 0.403061 0.915173i \(-0.367946\pi\)
0.403061 + 0.915173i \(0.367946\pi\)
\(752\) 244.622 0.325296
\(753\) 0 0
\(754\) − 5.27400i − 0.00699470i
\(755\) 94.1440i 0.124694i
\(756\) 0 0
\(757\) −388.614 −0.513361 −0.256680 0.966496i \(-0.582629\pi\)
−0.256680 + 0.966496i \(0.582629\pi\)
\(758\) − 248.258i − 0.327517i
\(759\) 0 0
\(760\) 2.16851 0.00285330
\(761\) 699.156i 0.918734i 0.888247 + 0.459367i \(0.151924\pi\)
−0.888247 + 0.459367i \(0.848076\pi\)
\(762\) 0 0
\(763\) −25.4470 −0.0333512
\(764\) −249.564 −0.326655
\(765\) 0 0
\(766\) 72.3778i 0.0944880i
\(767\) − 10.7723i − 0.0140447i
\(768\) 0 0
\(769\) 337.074i 0.438328i 0.975688 + 0.219164i \(0.0703330\pi\)
−0.975688 + 0.219164i \(0.929667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 83.9783i − 0.108780i
\(773\) 795.193 1.02871 0.514355 0.857577i \(-0.328031\pi\)
0.514355 + 0.857577i \(0.328031\pi\)
\(774\) 0 0
\(775\) −841.713 −1.08608
\(776\) − 287.102i − 0.369977i
\(777\) 0 0
\(778\) 32.3946i 0.0416383i
\(779\) −116.192 −0.149156
\(780\) 0 0
\(781\) 0 0
\(782\) −510.926 −0.653358
\(783\) 0 0
\(784\) 193.499 0.246810
\(785\) 36.8505 0.0469433
\(786\) 0 0
\(787\) − 535.000i − 0.679796i −0.940462 0.339898i \(-0.889607\pi\)
0.940462 0.339898i \(-0.110393\pi\)
\(788\) 548.677i 0.696290i
\(789\) 0 0
\(790\) 73.5286 0.0930741
\(791\) − 23.0928i − 0.0291944i
\(792\) 0 0
\(793\) 8.52651 0.0107522
\(794\) 185.339i 0.233424i
\(795\) 0 0
\(796\) 301.959 0.379345
\(797\) 711.043 0.892149 0.446074 0.894996i \(-0.352822\pi\)
0.446074 + 0.894996i \(0.352822\pi\)
\(798\) 0 0
\(799\) 915.474i 1.14578i
\(800\) − 140.715i − 0.175894i
\(801\) 0 0
\(802\) − 1097.22i − 1.36810i
\(803\) 0 0
\(804\) 0 0
\(805\) 6.74400i 0.00837764i
\(806\) 10.0123 0.0124222
\(807\) 0 0
\(808\) 73.7809 0.0913130
\(809\) 107.587i 0.132987i 0.997787 + 0.0664937i \(0.0211812\pi\)
−0.997787 + 0.0664937i \(0.978819\pi\)
\(810\) 0 0
\(811\) − 1256.75i − 1.54963i −0.632189 0.774814i \(-0.717844\pi\)
0.632189 0.774814i \(-0.282156\pi\)
\(812\) 28.1884 0.0347148
\(813\) 0 0
\(814\) 0 0
\(815\) 98.8308 0.121265
\(816\) 0 0
\(817\) 33.7856 0.0413532
\(818\) −1056.95 −1.29212
\(819\) 0 0
\(820\) − 37.8522i − 0.0461612i
\(821\) − 1034.51i − 1.26006i −0.776572 0.630028i \(-0.783043\pi\)
0.776572 0.630028i \(-0.216957\pi\)
\(822\) 0 0
\(823\) −535.829 −0.651067 −0.325534 0.945530i \(-0.605544\pi\)
−0.325534 + 0.945530i \(0.605544\pi\)
\(824\) 89.1979i 0.108250i
\(825\) 0 0
\(826\) 57.5755 0.0697039
\(827\) 137.866i 0.166706i 0.996520 + 0.0833532i \(0.0265630\pi\)
−0.996520 + 0.0833532i \(0.973437\pi\)
\(828\) 0 0
\(829\) −9.58047 −0.0115567 −0.00577833 0.999983i \(-0.501839\pi\)
−0.00577833 + 0.999983i \(0.501839\pi\)
\(830\) 9.93292 0.0119674
\(831\) 0 0
\(832\) 1.67383i 0.00201181i
\(833\) 724.150i 0.869328i
\(834\) 0 0
\(835\) − 90.8011i − 0.108744i
\(836\) 0 0
\(837\) 0 0
\(838\) 577.602i 0.689263i
\(839\) 480.651 0.572886 0.286443 0.958097i \(-0.407527\pi\)
0.286443 + 0.958097i \(0.407527\pi\)
\(840\) 0 0
\(841\) 523.305 0.622241
\(842\) 147.801i 0.175536i
\(843\) 0 0
\(844\) − 37.3675i − 0.0442743i
\(845\) −59.7068 −0.0706589
\(846\) 0 0
\(847\) 0 0
\(848\) −235.869 −0.278148
\(849\) 0 0
\(850\) 526.612 0.619543
\(851\) −1450.12 −1.70401
\(852\) 0 0
\(853\) − 1518.02i − 1.77962i −0.456328 0.889812i \(-0.650835\pi\)
0.456328 0.889812i \(-0.349165\pi\)
\(854\) 45.5724i 0.0533634i
\(855\) 0 0
\(856\) −227.795 −0.266116
\(857\) 229.336i 0.267603i 0.991008 + 0.133802i \(0.0427185\pi\)
−0.991008 + 0.133802i \(0.957282\pi\)
\(858\) 0 0
\(859\) −308.792 −0.359478 −0.179739 0.983714i \(-0.557525\pi\)
−0.179739 + 0.983714i \(0.557525\pi\)
\(860\) 11.0064i 0.0127981i
\(861\) 0 0
\(862\) 408.797 0.474242
\(863\) −517.131 −0.599225 −0.299613 0.954061i \(-0.596857\pi\)
−0.299613 + 0.954061i \(0.596857\pi\)
\(864\) 0 0
\(865\) − 38.9391i − 0.0450164i
\(866\) 779.231i 0.899805i
\(867\) 0 0
\(868\) 53.5137i 0.0616517i
\(869\) 0 0
\(870\) 0 0
\(871\) 15.2590i 0.0175190i
\(872\) −91.0219 −0.104383
\(873\) 0 0
\(874\) 74.0481 0.0847232
\(875\) − 13.9370i − 0.0159280i
\(876\) 0 0
\(877\) 252.227i 0.287602i 0.989607 + 0.143801i \(0.0459325\pi\)
−0.989607 + 0.143801i \(0.954067\pi\)
\(878\) 815.847 0.929210
\(879\) 0 0
\(880\) 0 0
\(881\) −830.794 −0.943012 −0.471506 0.881863i \(-0.656289\pi\)
−0.471506 + 0.881863i \(0.656289\pi\)
\(882\) 0 0
\(883\) 537.950 0.609229 0.304615 0.952476i \(-0.401472\pi\)
0.304615 + 0.952476i \(0.401472\pi\)
\(884\) −6.26412 −0.00708611
\(885\) 0 0
\(886\) 252.071i 0.284504i
\(887\) 1430.06i 1.61224i 0.591753 + 0.806120i \(0.298436\pi\)
−0.591753 + 0.806120i \(0.701564\pi\)
\(888\) 0 0
\(889\) 117.862 0.132578
\(890\) − 37.4678i − 0.0420986i
\(891\) 0 0
\(892\) 188.562 0.211392
\(893\) − 132.679i − 0.148577i
\(894\) 0 0
\(895\) 9.58620 0.0107108
\(896\) −8.94624 −0.00998465
\(897\) 0 0
\(898\) − 880.645i − 0.980674i
\(899\) − 603.121i − 0.670879i
\(900\) 0 0
\(901\) − 882.717i − 0.979708i
\(902\) 0 0
\(903\) 0 0
\(904\) − 82.6010i − 0.0913728i
\(905\) −91.7289 −0.101358
\(906\) 0 0
\(907\) −1352.76 −1.49147 −0.745734 0.666244i \(-0.767901\pi\)
−0.745734 + 0.666244i \(0.767901\pi\)
\(908\) − 579.582i − 0.638306i
\(909\) 0 0
\(910\) 0.0826838i 0 9.08613e-5i
\(911\) 854.208 0.937660 0.468830 0.883288i \(-0.344676\pi\)
0.468830 + 0.883288i \(0.344676\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1114.13 1.21896
\(915\) 0 0
\(916\) 456.457 0.498315
\(917\) 131.236 0.143114
\(918\) 0 0
\(919\) − 330.219i − 0.359324i −0.983728 0.179662i \(-0.942500\pi\)
0.983728 0.179662i \(-0.0575004\pi\)
\(920\) 24.1228i 0.0262204i
\(921\) 0 0
\(922\) 534.551 0.579774
\(923\) − 19.8875i − 0.0215466i
\(924\) 0 0
\(925\) 1494.64 1.61582
\(926\) − 69.7432i − 0.0753166i
\(927\) 0 0
\(928\) 100.828 0.108651
\(929\) 114.412 0.123156 0.0615778 0.998102i \(-0.480387\pi\)
0.0615778 + 0.998102i \(0.480387\pi\)
\(930\) 0 0
\(931\) − 104.951i − 0.112729i
\(932\) − 597.654i − 0.641260i
\(933\) 0 0
\(934\) 165.728i 0.177439i
\(935\) 0 0
\(936\) 0 0
\(937\) − 1619.74i − 1.72864i −0.502938 0.864322i \(-0.667748\pi\)
0.502938 0.864322i \(-0.332252\pi\)
\(938\) −81.5564 −0.0869471
\(939\) 0 0
\(940\) 43.2231 0.0459820
\(941\) − 759.245i − 0.806849i −0.915013 0.403424i \(-0.867820\pi\)
0.915013 0.403424i \(-0.132180\pi\)
\(942\) 0 0
\(943\) − 1292.54i − 1.37067i
\(944\) 205.943 0.218160
\(945\) 0 0
\(946\) 0 0
\(947\) −1855.32 −1.95915 −0.979575 0.201079i \(-0.935555\pi\)
−0.979575 + 0.201079i \(0.935555\pi\)
\(948\) 0 0
\(949\) 23.7522 0.0250287
\(950\) −76.3214 −0.0803383
\(951\) 0 0
\(952\) − 33.4804i − 0.0351685i
\(953\) − 1624.78i − 1.70492i −0.522796 0.852458i \(-0.675111\pi\)
0.522796 0.852458i \(-0.324889\pi\)
\(954\) 0 0
\(955\) −44.0963 −0.0461742
\(956\) − 491.859i − 0.514496i
\(957\) 0 0
\(958\) 1302.11 1.35920
\(959\) − 116.135i − 0.121100i
\(960\) 0 0
\(961\) 183.980 0.191447
\(962\) −17.7789 −0.0184812
\(963\) 0 0
\(964\) − 746.836i − 0.774726i
\(965\) − 14.8384i − 0.0153766i
\(966\) 0 0
\(967\) − 325.104i − 0.336199i −0.985770 0.168099i \(-0.946237\pi\)
0.985770 0.168099i \(-0.0537629\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) − 50.7290i − 0.0522979i
\(971\) −280.767 −0.289152 −0.144576 0.989494i \(-0.546182\pi\)
−0.144576 + 0.989494i \(0.546182\pi\)
\(972\) 0 0
\(973\) 169.041 0.173732
\(974\) 548.867i 0.563519i
\(975\) 0 0
\(976\) 163.009i 0.167017i
\(977\) −1609.79 −1.64769 −0.823843 0.566818i \(-0.808174\pi\)
−0.823843 + 0.566818i \(0.808174\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 34.1899 0.0348877
\(981\) 0 0
\(982\) −516.151 −0.525612
\(983\) 374.382 0.380856 0.190428 0.981701i \(-0.439012\pi\)
0.190428 + 0.981701i \(0.439012\pi\)
\(984\) 0 0
\(985\) 96.9474i 0.0984238i
\(986\) 377.338i 0.382696i
\(987\) 0 0
\(988\) 0.907854 0.000918881 0
\(989\) 375.836i 0.380016i
\(990\) 0 0
\(991\) −943.875 −0.952447 −0.476223 0.879324i \(-0.657995\pi\)
−0.476223 + 0.879324i \(0.657995\pi\)
\(992\) 191.414i 0.192958i
\(993\) 0 0
\(994\) 106.295 0.106936
\(995\) 53.3540 0.0536221
\(996\) 0 0
\(997\) − 681.654i − 0.683705i −0.939754 0.341853i \(-0.888946\pi\)
0.939754 0.341853i \(-0.111054\pi\)
\(998\) − 346.659i − 0.347353i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2178.3.d.m.1693.12 16
3.2 odd 2 726.3.d.e.241.2 16
11.4 even 5 198.3.j.b.127.2 16
11.8 odd 10 198.3.j.b.145.2 16
11.10 odd 2 inner 2178.3.d.m.1693.4 16
33.8 even 10 66.3.f.a.13.4 16
33.26 odd 10 66.3.f.a.61.4 yes 16
33.32 even 2 726.3.d.e.241.10 16
132.59 even 10 528.3.bf.c.193.1 16
132.107 odd 10 528.3.bf.c.145.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.f.a.13.4 16 33.8 even 10
66.3.f.a.61.4 yes 16 33.26 odd 10
198.3.j.b.127.2 16 11.4 even 5
198.3.j.b.145.2 16 11.8 odd 10
528.3.bf.c.145.1 16 132.107 odd 10
528.3.bf.c.193.1 16 132.59 even 10
726.3.d.e.241.2 16 3.2 odd 2
726.3.d.e.241.10 16 33.32 even 2
2178.3.d.m.1693.4 16 11.10 odd 2 inner
2178.3.d.m.1693.12 16 1.1 even 1 trivial