Properties

Label 726.3.d.e.241.10
Level $726$
Weight $3$
Character 726.241
Analytic conductor $19.782$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,3,Mod(241,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 726.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-32,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.7820671926\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.6879707136000000000000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.10
Root \(0.492303 + 0.159959i\) of defining polynomial
Character \(\chi\) \(=\) 726.241
Dual form 726.3.d.e.241.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -1.73205 q^{3} -2.00000 q^{4} +0.353386 q^{5} -2.44949i q^{6} +0.790744i q^{7} -2.82843i q^{8} +3.00000 q^{9} +0.499764i q^{10} +3.46410 q^{12} +0.209228i q^{13} -1.11828 q^{14} -0.612083 q^{15} +4.00000 q^{16} +14.9696i q^{17} +4.24264i q^{18} +2.16953i q^{19} -0.706772 q^{20} -1.36961i q^{21} -24.1342 q^{23} +4.89898i q^{24} -24.8751 q^{25} -0.295893 q^{26} -5.19615 q^{27} -1.58149i q^{28} -17.8240i q^{29} -0.865616i q^{30} +33.8376 q^{31} +5.65685i q^{32} -21.1702 q^{34} +0.279438i q^{35} -6.00000 q^{36} -60.0856 q^{37} -3.06818 q^{38} -0.362394i q^{39} -0.999527i q^{40} -53.5564i q^{41} +1.93692 q^{42} -15.5727i q^{43} +1.06016 q^{45} -34.1309i q^{46} -61.1556 q^{47} -6.92820 q^{48} +48.3747 q^{49} -35.1787i q^{50} -25.9281i q^{51} -0.418456i q^{52} +58.9673 q^{53} -7.34847i q^{54} +2.23656 q^{56} -3.75774i q^{57} +25.2069 q^{58} -51.4857 q^{59} +1.22417 q^{60} -40.7522i q^{61} +47.8535i q^{62} +2.37223i q^{63} -8.00000 q^{64} +0.0739383i q^{65} -72.9302 q^{67} -29.9392i q^{68} +41.8016 q^{69} -0.395185 q^{70} -95.0520 q^{71} -8.48528i q^{72} -113.523i q^{73} -84.9738i q^{74} +43.0850 q^{75} -4.33906i q^{76} +0.512502 q^{78} -147.127i q^{79} +1.41354 q^{80} +9.00000 q^{81} +75.7401 q^{82} +19.8752i q^{83} +2.73922i q^{84} +5.29005i q^{85} +22.0232 q^{86} +30.8721i q^{87} -74.9710 q^{89} +1.49929i q^{90} -0.165446 q^{91} +48.2684 q^{92} -58.6084 q^{93} -86.4870i q^{94} +0.766683i q^{95} -9.79796i q^{96} +101.506 q^{97} +68.4122i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} + 8 q^{5} + 48 q^{9} + 48 q^{14} - 48 q^{15} + 64 q^{16} - 16 q^{20} - 8 q^{23} - 8 q^{25} + 128 q^{26} - 8 q^{31} - 64 q^{34} - 96 q^{36} + 96 q^{37} - 208 q^{38} - 144 q^{42} + 24 q^{45}+ \cdots + 184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) −1.73205 −0.577350
\(4\) −2.00000 −0.500000
\(5\) 0.353386 0.0706772 0.0353386 0.999375i \(-0.488749\pi\)
0.0353386 + 0.999375i \(0.488749\pi\)
\(6\) − 2.44949i − 0.408248i
\(7\) 0.790744i 0.112963i 0.998404 + 0.0564817i \(0.0179883\pi\)
−0.998404 + 0.0564817i \(0.982012\pi\)
\(8\) − 2.82843i − 0.353553i
\(9\) 3.00000 0.333333
\(10\) 0.499764i 0.0499764i
\(11\) 0 0
\(12\) 3.46410 0.288675
\(13\) 0.209228i 0.0160945i 0.999968 + 0.00804724i \(0.00256154\pi\)
−0.999968 + 0.00804724i \(0.997438\pi\)
\(14\) −1.11828 −0.0798772
\(15\) −0.612083 −0.0408055
\(16\) 4.00000 0.250000
\(17\) 14.9696i 0.880565i 0.897859 + 0.440282i \(0.145122\pi\)
−0.897859 + 0.440282i \(0.854878\pi\)
\(18\) 4.24264i 0.235702i
\(19\) 2.16953i 0.114186i 0.998369 + 0.0570930i \(0.0181831\pi\)
−0.998369 + 0.0570930i \(0.981817\pi\)
\(20\) −0.706772 −0.0353386
\(21\) − 1.36961i − 0.0652194i
\(22\) 0 0
\(23\) −24.1342 −1.04931 −0.524656 0.851314i \(-0.675806\pi\)
−0.524656 + 0.851314i \(0.675806\pi\)
\(24\) 4.89898i 0.204124i
\(25\) −24.8751 −0.995005
\(26\) −0.295893 −0.0113805
\(27\) −5.19615 −0.192450
\(28\) − 1.58149i − 0.0564817i
\(29\) − 17.8240i − 0.614621i −0.951609 0.307310i \(-0.900571\pi\)
0.951609 0.307310i \(-0.0994290\pi\)
\(30\) − 0.865616i − 0.0288539i
\(31\) 33.8376 1.09153 0.545767 0.837937i \(-0.316238\pi\)
0.545767 + 0.837937i \(0.316238\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) −21.1702 −0.622653
\(35\) 0.279438i 0.00798394i
\(36\) −6.00000 −0.166667
\(37\) −60.0856 −1.62393 −0.811967 0.583703i \(-0.801603\pi\)
−0.811967 + 0.583703i \(0.801603\pi\)
\(38\) −3.06818 −0.0807416
\(39\) − 0.362394i − 0.00929215i
\(40\) − 0.999527i − 0.0249882i
\(41\) − 53.5564i − 1.30625i −0.757249 0.653126i \(-0.773457\pi\)
0.757249 0.653126i \(-0.226543\pi\)
\(42\) 1.93692 0.0461171
\(43\) − 15.5727i − 0.362157i −0.983469 0.181078i \(-0.942041\pi\)
0.983469 0.181078i \(-0.0579588\pi\)
\(44\) 0 0
\(45\) 1.06016 0.0235591
\(46\) − 34.1309i − 0.741976i
\(47\) −61.1556 −1.30118 −0.650591 0.759428i \(-0.725479\pi\)
−0.650591 + 0.759428i \(0.725479\pi\)
\(48\) −6.92820 −0.144338
\(49\) 48.3747 0.987239
\(50\) − 35.1787i − 0.703575i
\(51\) − 25.9281i − 0.508394i
\(52\) − 0.418456i − 0.00804724i
\(53\) 58.9673 1.11259 0.556295 0.830985i \(-0.312222\pi\)
0.556295 + 0.830985i \(0.312222\pi\)
\(54\) − 7.34847i − 0.136083i
\(55\) 0 0
\(56\) 2.23656 0.0399386
\(57\) − 3.75774i − 0.0659253i
\(58\) 25.2069 0.434602
\(59\) −51.4857 −0.872639 −0.436320 0.899792i \(-0.643718\pi\)
−0.436320 + 0.899792i \(0.643718\pi\)
\(60\) 1.22417 0.0204028
\(61\) − 40.7522i − 0.668069i −0.942561 0.334034i \(-0.891590\pi\)
0.942561 0.334034i \(-0.108410\pi\)
\(62\) 47.8535i 0.771831i
\(63\) 2.37223i 0.0376545i
\(64\) −8.00000 −0.125000
\(65\) 0.0739383i 0.00113751i
\(66\) 0 0
\(67\) −72.9302 −1.08851 −0.544255 0.838920i \(-0.683188\pi\)
−0.544255 + 0.838920i \(0.683188\pi\)
\(68\) − 29.9392i − 0.440282i
\(69\) 41.8016 0.605821
\(70\) −0.395185 −0.00564550
\(71\) −95.0520 −1.33876 −0.669380 0.742920i \(-0.733440\pi\)
−0.669380 + 0.742920i \(0.733440\pi\)
\(72\) − 8.48528i − 0.117851i
\(73\) − 113.523i − 1.55511i −0.628814 0.777555i \(-0.716459\pi\)
0.628814 0.777555i \(-0.283541\pi\)
\(74\) − 84.9738i − 1.14829i
\(75\) 43.0850 0.574466
\(76\) − 4.33906i − 0.0570930i
\(77\) 0 0
\(78\) 0.512502 0.00657054
\(79\) − 147.127i − 1.86236i −0.364556 0.931182i \(-0.618779\pi\)
0.364556 0.931182i \(-0.381221\pi\)
\(80\) 1.41354 0.0176693
\(81\) 9.00000 0.111111
\(82\) 75.7401 0.923660
\(83\) 19.8752i 0.239461i 0.992806 + 0.119730i \(0.0382030\pi\)
−0.992806 + 0.119730i \(0.961797\pi\)
\(84\) 2.73922i 0.0326097i
\(85\) 5.29005i 0.0622359i
\(86\) 22.0232 0.256084
\(87\) 30.8721i 0.354851i
\(88\) 0 0
\(89\) −74.9710 −0.842371 −0.421185 0.906975i \(-0.638386\pi\)
−0.421185 + 0.906975i \(0.638386\pi\)
\(90\) 1.49929i 0.0166588i
\(91\) −0.165446 −0.00181809
\(92\) 48.2684 0.524656
\(93\) −58.6084 −0.630197
\(94\) − 86.4870i − 0.920075i
\(95\) 0.766683i 0.00807034i
\(96\) − 9.79796i − 0.102062i
\(97\) 101.506 1.04645 0.523227 0.852194i \(-0.324728\pi\)
0.523227 + 0.852194i \(0.324728\pi\)
\(98\) 68.4122i 0.698084i
\(99\) 0 0
\(100\) 49.7502 0.497502
\(101\) 26.0855i 0.258272i 0.991627 + 0.129136i \(0.0412204\pi\)
−0.991627 + 0.129136i \(0.958780\pi\)
\(102\) 36.6679 0.359489
\(103\) −31.5362 −0.306177 −0.153088 0.988212i \(-0.548922\pi\)
−0.153088 + 0.988212i \(0.548922\pi\)
\(104\) 0.591787 0.00569026
\(105\) − 0.484001i − 0.00460953i
\(106\) 83.3923i 0.786720i
\(107\) − 80.5378i − 0.752690i −0.926480 0.376345i \(-0.877181\pi\)
0.926480 0.376345i \(-0.122819\pi\)
\(108\) 10.3923 0.0962250
\(109\) 32.1811i 0.295239i 0.989044 + 0.147620i \(0.0471612\pi\)
−0.989044 + 0.147620i \(0.952839\pi\)
\(110\) 0 0
\(111\) 104.071 0.937579
\(112\) 3.16297i 0.0282408i
\(113\) −29.2039 −0.258441 −0.129221 0.991616i \(-0.541248\pi\)
−0.129221 + 0.991616i \(0.541248\pi\)
\(114\) 5.31425 0.0466162
\(115\) −8.52869 −0.0741625
\(116\) 35.6480i 0.307310i
\(117\) 0.627684i 0.00536482i
\(118\) − 72.8118i − 0.617049i
\(119\) −11.8371 −0.0994716
\(120\) 1.73123i 0.0144269i
\(121\) 0 0
\(122\) 57.6323 0.472396
\(123\) 92.7623i 0.754165i
\(124\) −67.6751 −0.545767
\(125\) −17.6252 −0.141001
\(126\) −3.35484 −0.0266257
\(127\) − 149.052i − 1.17364i −0.809719 0.586818i \(-0.800380\pi\)
0.809719 0.586818i \(-0.199620\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 26.9728i 0.209091i
\(130\) −0.104565 −0.000804343 0
\(131\) 165.965i 1.26691i 0.773780 + 0.633454i \(0.218364\pi\)
−0.773780 + 0.633454i \(0.781636\pi\)
\(132\) 0 0
\(133\) −1.71554 −0.0128988
\(134\) − 103.139i − 0.769693i
\(135\) −1.83625 −0.0136018
\(136\) 42.3404 0.311327
\(137\) −146.868 −1.07203 −0.536014 0.844209i \(-0.680070\pi\)
−0.536014 + 0.844209i \(0.680070\pi\)
\(138\) 59.1164i 0.428380i
\(139\) − 213.774i − 1.53795i −0.639281 0.768973i \(-0.720768\pi\)
0.639281 0.768973i \(-0.279232\pi\)
\(140\) − 0.558876i − 0.00399197i
\(141\) 105.925 0.751238
\(142\) − 134.424i − 0.946646i
\(143\) 0 0
\(144\) 12.0000 0.0833333
\(145\) − 6.29876i − 0.0434397i
\(146\) 160.546 1.09963
\(147\) −83.7875 −0.569983
\(148\) 120.171 0.811967
\(149\) 231.242i 1.55196i 0.630757 + 0.775981i \(0.282745\pi\)
−0.630757 + 0.775981i \(0.717255\pi\)
\(150\) 60.9313i 0.406209i
\(151\) 266.405i 1.76427i 0.470992 + 0.882137i \(0.343896\pi\)
−0.470992 + 0.882137i \(0.656104\pi\)
\(152\) 6.13636 0.0403708
\(153\) 44.9088i 0.293522i
\(154\) 0 0
\(155\) 11.9577 0.0771466
\(156\) 0.724788i 0.00464607i
\(157\) −104.278 −0.664193 −0.332097 0.943245i \(-0.607756\pi\)
−0.332097 + 0.943245i \(0.607756\pi\)
\(158\) 208.069 1.31689
\(159\) −102.134 −0.642354
\(160\) 1.99905i 0.0124941i
\(161\) − 19.0839i − 0.118534i
\(162\) 12.7279i 0.0785674i
\(163\) −279.668 −1.71575 −0.857877 0.513855i \(-0.828217\pi\)
−0.857877 + 0.513855i \(0.828217\pi\)
\(164\) 107.113i 0.653126i
\(165\) 0 0
\(166\) −28.1078 −0.169324
\(167\) 256.946i 1.53860i 0.638889 + 0.769299i \(0.279394\pi\)
−0.638889 + 0.769299i \(0.720606\pi\)
\(168\) −3.87384 −0.0230586
\(169\) 168.956 0.999741
\(170\) −7.48126 −0.0440074
\(171\) 6.50860i 0.0380620i
\(172\) 31.1455i 0.181078i
\(173\) 110.189i 0.636929i 0.947935 + 0.318464i \(0.103167\pi\)
−0.947935 + 0.318464i \(0.896833\pi\)
\(174\) −43.6597 −0.250918
\(175\) − 19.6698i − 0.112399i
\(176\) 0 0
\(177\) 89.1759 0.503819
\(178\) − 106.025i − 0.595646i
\(179\) 27.1267 0.151546 0.0757729 0.997125i \(-0.475858\pi\)
0.0757729 + 0.997125i \(0.475858\pi\)
\(180\) −2.12032 −0.0117795
\(181\) 259.571 1.43410 0.717048 0.697024i \(-0.245493\pi\)
0.717048 + 0.697024i \(0.245493\pi\)
\(182\) − 0.233976i − 0.00128558i
\(183\) 70.5849i 0.385710i
\(184\) 68.2618i 0.370988i
\(185\) −21.2334 −0.114775
\(186\) − 82.8847i − 0.445617i
\(187\) 0 0
\(188\) 122.311 0.650591
\(189\) − 4.10882i − 0.0217398i
\(190\) −1.08425 −0.00570660
\(191\) −124.782 −0.653310 −0.326655 0.945144i \(-0.605922\pi\)
−0.326655 + 0.945144i \(0.605922\pi\)
\(192\) 13.8564 0.0721688
\(193\) − 41.9892i − 0.217560i −0.994066 0.108780i \(-0.965306\pi\)
0.994066 0.108780i \(-0.0346945\pi\)
\(194\) 143.551i 0.739954i
\(195\) − 0.128065i 0 0.000656743i
\(196\) −96.7494 −0.493620
\(197\) − 274.338i − 1.39258i −0.717760 0.696290i \(-0.754833\pi\)
0.717760 0.696290i \(-0.245167\pi\)
\(198\) 0 0
\(199\) −150.979 −0.758690 −0.379345 0.925255i \(-0.623851\pi\)
−0.379345 + 0.925255i \(0.623851\pi\)
\(200\) 70.3575i 0.351787i
\(201\) 126.319 0.628452
\(202\) −36.8904 −0.182626
\(203\) 14.0942 0.0694296
\(204\) 51.8562i 0.254197i
\(205\) − 18.9261i − 0.0923223i
\(206\) − 44.5989i − 0.216500i
\(207\) −72.4025 −0.349771
\(208\) 0.836913i 0.00402362i
\(209\) 0 0
\(210\) 0.684480 0.00325943
\(211\) − 18.6837i − 0.0885486i −0.999019 0.0442743i \(-0.985902\pi\)
0.999019 0.0442743i \(-0.0140976\pi\)
\(212\) −117.935 −0.556295
\(213\) 164.635 0.772933
\(214\) 113.898 0.532232
\(215\) − 5.50319i − 0.0255963i
\(216\) 14.6969i 0.0680414i
\(217\) 26.7568i 0.123303i
\(218\) −45.5109 −0.208766
\(219\) 196.628i 0.897844i
\(220\) 0 0
\(221\) −3.13206 −0.0141722
\(222\) 147.179i 0.662968i
\(223\) −94.2808 −0.422784 −0.211392 0.977401i \(-0.567800\pi\)
−0.211392 + 0.977401i \(0.567800\pi\)
\(224\) −4.47312 −0.0199693
\(225\) −74.6254 −0.331668
\(226\) − 41.3005i − 0.182746i
\(227\) 289.791i 1.27661i 0.769782 + 0.638306i \(0.220365\pi\)
−0.769782 + 0.638306i \(0.779635\pi\)
\(228\) 7.51548i 0.0329626i
\(229\) −228.228 −0.996631 −0.498315 0.866996i \(-0.666048\pi\)
−0.498315 + 0.866996i \(0.666048\pi\)
\(230\) − 12.0614i − 0.0524408i
\(231\) 0 0
\(232\) −50.4139 −0.217301
\(233\) 298.827i 1.28252i 0.767324 + 0.641260i \(0.221588\pi\)
−0.767324 + 0.641260i \(0.778412\pi\)
\(234\) −0.887680 −0.00379350
\(235\) −21.6115 −0.0919640
\(236\) 102.971 0.436320
\(237\) 254.831i 1.07524i
\(238\) − 16.7402i − 0.0703370i
\(239\) 245.929i 1.02899i 0.857492 + 0.514496i \(0.172021\pi\)
−0.857492 + 0.514496i \(0.827979\pi\)
\(240\) −2.44833 −0.0102014
\(241\) − 373.418i − 1.54945i −0.632297 0.774726i \(-0.717888\pi\)
0.632297 0.774726i \(-0.282112\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 81.5044i 0.334034i
\(245\) 17.0950 0.0697753
\(246\) −131.186 −0.533275
\(247\) −0.453927 −0.00183776
\(248\) − 95.7071i − 0.385916i
\(249\) − 34.4249i − 0.138253i
\(250\) − 24.9258i − 0.0997031i
\(251\) −359.422 −1.43196 −0.715980 0.698121i \(-0.754020\pi\)
−0.715980 + 0.698121i \(0.754020\pi\)
\(252\) − 4.74446i − 0.0188272i
\(253\) 0 0
\(254\) 210.791 0.829886
\(255\) − 9.16264i − 0.0359319i
\(256\) 16.0000 0.0625000
\(257\) −35.7842 −0.139238 −0.0696191 0.997574i \(-0.522178\pi\)
−0.0696191 + 0.997574i \(0.522178\pi\)
\(258\) −38.1453 −0.147850
\(259\) − 47.5123i − 0.183445i
\(260\) − 0.147877i 0 0.000568756i
\(261\) − 53.4720i − 0.204874i
\(262\) −234.710 −0.895840
\(263\) − 364.668i − 1.38657i −0.720663 0.693286i \(-0.756162\pi\)
0.720663 0.693286i \(-0.243838\pi\)
\(264\) 0 0
\(265\) 20.8382 0.0786348
\(266\) − 2.42615i − 0.00912085i
\(267\) 129.854 0.486343
\(268\) 145.860 0.544255
\(269\) −13.3769 −0.0497283 −0.0248641 0.999691i \(-0.507915\pi\)
−0.0248641 + 0.999691i \(0.507915\pi\)
\(270\) − 2.59685i − 0.00961795i
\(271\) 70.8425i 0.261411i 0.991421 + 0.130706i \(0.0417243\pi\)
−0.991421 + 0.130706i \(0.958276\pi\)
\(272\) 59.8784i 0.220141i
\(273\) 0.286561 0.00104967
\(274\) − 207.702i − 0.758038i
\(275\) 0 0
\(276\) −83.6033 −0.302910
\(277\) − 79.3467i − 0.286450i −0.989690 0.143225i \(-0.954253\pi\)
0.989690 0.143225i \(-0.0457473\pi\)
\(278\) 302.323 1.08749
\(279\) 101.513 0.363845
\(280\) 0.790370 0.00282275
\(281\) 343.092i 1.22097i 0.792029 + 0.610484i \(0.209025\pi\)
−0.792029 + 0.610484i \(0.790975\pi\)
\(282\) 149.800i 0.531205i
\(283\) 119.679i 0.422895i 0.977389 + 0.211447i \(0.0678177\pi\)
−0.977389 + 0.211447i \(0.932182\pi\)
\(284\) 190.104 0.669380
\(285\) − 1.32793i − 0.00465942i
\(286\) 0 0
\(287\) 42.3493 0.147559
\(288\) 16.9706i 0.0589256i
\(289\) 64.9111 0.224606
\(290\) 8.90779 0.0307165
\(291\) −175.813 −0.604170
\(292\) 227.046i 0.777555i
\(293\) 11.5161i 0.0393042i 0.999807 + 0.0196521i \(0.00625585\pi\)
−0.999807 + 0.0196521i \(0.993744\pi\)
\(294\) − 118.493i − 0.403039i
\(295\) −18.1943 −0.0616757
\(296\) 169.948i 0.574147i
\(297\) 0 0
\(298\) −327.026 −1.09740
\(299\) − 5.04955i − 0.0168881i
\(300\) −86.1699 −0.287233
\(301\) 12.3141 0.0409105
\(302\) −376.754 −1.24753
\(303\) − 45.1814i − 0.149113i
\(304\) 8.67813i 0.0285465i
\(305\) − 14.4013i − 0.0472172i
\(306\) −63.5106 −0.207551
\(307\) 196.858i 0.641231i 0.947210 + 0.320615i \(0.103890\pi\)
−0.947210 + 0.320615i \(0.896110\pi\)
\(308\) 0 0
\(309\) 54.6223 0.176771
\(310\) 16.9108i 0.0545509i
\(311\) 270.416 0.869504 0.434752 0.900550i \(-0.356836\pi\)
0.434752 + 0.900550i \(0.356836\pi\)
\(312\) −1.02500 −0.00328527
\(313\) 344.610 1.10099 0.550495 0.834839i \(-0.314439\pi\)
0.550495 + 0.834839i \(0.314439\pi\)
\(314\) − 147.472i − 0.469656i
\(315\) 0.838314i 0.00266131i
\(316\) 294.253i 0.931182i
\(317\) 65.5714 0.206850 0.103425 0.994637i \(-0.467020\pi\)
0.103425 + 0.994637i \(0.467020\pi\)
\(318\) − 144.440i − 0.454213i
\(319\) 0 0
\(320\) −2.82709 −0.00883465
\(321\) 139.496i 0.434566i
\(322\) 26.9888 0.0838161
\(323\) −32.4770 −0.100548
\(324\) −18.0000 −0.0555556
\(325\) − 5.20458i − 0.0160141i
\(326\) − 395.510i − 1.21322i
\(327\) − 55.7393i − 0.170457i
\(328\) −151.480 −0.461830
\(329\) − 48.3584i − 0.146986i
\(330\) 0 0
\(331\) 105.818 0.319693 0.159847 0.987142i \(-0.448900\pi\)
0.159847 + 0.987142i \(0.448900\pi\)
\(332\) − 39.7505i − 0.119730i
\(333\) −180.257 −0.541311
\(334\) −363.376 −1.08795
\(335\) −25.7725 −0.0769329
\(336\) − 5.47843i − 0.0163049i
\(337\) 225.621i 0.669498i 0.942307 + 0.334749i \(0.108652\pi\)
−0.942307 + 0.334749i \(0.891348\pi\)
\(338\) 238.940i 0.706924i
\(339\) 50.5826 0.149211
\(340\) − 10.5801i − 0.0311179i
\(341\) 0 0
\(342\) −9.20455 −0.0269139
\(343\) 76.9984i 0.224485i
\(344\) −44.0464 −0.128042
\(345\) 14.7721 0.0428177
\(346\) −155.830 −0.450377
\(347\) − 135.569i − 0.390687i −0.980735 0.195344i \(-0.937418\pi\)
0.980735 0.195344i \(-0.0625822\pi\)
\(348\) − 61.7441i − 0.177426i
\(349\) − 500.154i − 1.43311i −0.697533 0.716553i \(-0.745719\pi\)
0.697533 0.716553i \(-0.254281\pi\)
\(350\) 27.8174 0.0794782
\(351\) − 1.08718i − 0.00309738i
\(352\) 0 0
\(353\) 320.592 0.908192 0.454096 0.890953i \(-0.349962\pi\)
0.454096 + 0.890953i \(0.349962\pi\)
\(354\) 126.114i 0.356253i
\(355\) −33.5900 −0.0946199
\(356\) 149.942 0.421185
\(357\) 20.5025 0.0574299
\(358\) 38.3630i 0.107159i
\(359\) 113.433i 0.315971i 0.987441 + 0.157985i \(0.0504999\pi\)
−0.987441 + 0.157985i \(0.949500\pi\)
\(360\) − 2.99858i − 0.00832939i
\(361\) 356.293 0.986962
\(362\) 367.089i 1.01406i
\(363\) 0 0
\(364\) 0.330892 0.000909043 0
\(365\) − 40.1175i − 0.109911i
\(366\) −99.8221 −0.272738
\(367\) 89.5681 0.244055 0.122027 0.992527i \(-0.461060\pi\)
0.122027 + 0.992527i \(0.461060\pi\)
\(368\) −96.5367 −0.262328
\(369\) − 160.669i − 0.435418i
\(370\) − 30.0286i − 0.0811583i
\(371\) 46.6280i 0.125682i
\(372\) 117.217 0.315099
\(373\) 275.552i 0.738744i 0.929282 + 0.369372i \(0.120427\pi\)
−0.929282 + 0.369372i \(0.879573\pi\)
\(374\) 0 0
\(375\) 30.5277 0.0814072
\(376\) 172.974i 0.460037i
\(377\) 3.72928 0.00989200
\(378\) 5.81075 0.0153724
\(379\) −175.545 −0.463179 −0.231590 0.972814i \(-0.574393\pi\)
−0.231590 + 0.972814i \(0.574393\pi\)
\(380\) − 1.53337i − 0.00403517i
\(381\) 258.165i 0.677599i
\(382\) − 176.469i − 0.461960i
\(383\) −51.1788 −0.133626 −0.0668131 0.997766i \(-0.521283\pi\)
−0.0668131 + 0.997766i \(0.521283\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 59.3817 0.153838
\(387\) − 46.7182i − 0.120719i
\(388\) −203.012 −0.523227
\(389\) −22.9064 −0.0588854 −0.0294427 0.999566i \(-0.509373\pi\)
−0.0294427 + 0.999566i \(0.509373\pi\)
\(390\) 0.181111 0.000464388 0
\(391\) − 361.279i − 0.923987i
\(392\) − 136.824i − 0.349042i
\(393\) − 287.460i − 0.731450i
\(394\) 387.973 0.984703
\(395\) − 51.9925i − 0.131627i
\(396\) 0 0
\(397\) 131.054 0.330112 0.165056 0.986284i \(-0.447220\pi\)
0.165056 + 0.986284i \(0.447220\pi\)
\(398\) − 213.517i − 0.536475i
\(399\) 2.97141 0.00744714
\(400\) −99.5005 −0.248751
\(401\) 775.849 1.93479 0.967393 0.253279i \(-0.0815090\pi\)
0.967393 + 0.253279i \(0.0815090\pi\)
\(402\) 178.642i 0.444382i
\(403\) 7.07977i 0.0175677i
\(404\) − 52.1710i − 0.129136i
\(405\) 3.18048 0.00785303
\(406\) 19.9322i 0.0490942i
\(407\) 0 0
\(408\) −73.3358 −0.179745
\(409\) − 747.379i − 1.82733i −0.406464 0.913667i \(-0.633238\pi\)
0.406464 0.913667i \(-0.366762\pi\)
\(410\) 26.7655 0.0652817
\(411\) 254.382 0.618935
\(412\) 63.0724 0.153088
\(413\) − 40.7120i − 0.0985763i
\(414\) − 102.393i − 0.247325i
\(415\) 7.02364i 0.0169244i
\(416\) −1.18357 −0.00284513
\(417\) 370.268i 0.887934i
\(418\) 0 0
\(419\) −408.427 −0.974765 −0.487383 0.873189i \(-0.662048\pi\)
−0.487383 + 0.873189i \(0.662048\pi\)
\(420\) 0.968001i 0.00230476i
\(421\) 104.511 0.248245 0.124123 0.992267i \(-0.460388\pi\)
0.124123 + 0.992267i \(0.460388\pi\)
\(422\) 26.4228 0.0626133
\(423\) −183.467 −0.433727
\(424\) − 166.785i − 0.393360i
\(425\) − 372.371i − 0.876166i
\(426\) 232.829i 0.546546i
\(427\) 32.2245 0.0754673
\(428\) 161.076i 0.376345i
\(429\) 0 0
\(430\) 7.78269 0.0180993
\(431\) − 289.063i − 0.670680i −0.942097 0.335340i \(-0.891149\pi\)
0.942097 0.335340i \(-0.108851\pi\)
\(432\) −20.7846 −0.0481125
\(433\) 550.999 1.27252 0.636258 0.771476i \(-0.280481\pi\)
0.636258 + 0.771476i \(0.280481\pi\)
\(434\) −37.8399 −0.0871886
\(435\) 10.9098i 0.0250799i
\(436\) − 64.3622i − 0.147620i
\(437\) − 52.3599i − 0.119817i
\(438\) −278.074 −0.634871
\(439\) 576.891i 1.31410i 0.753846 + 0.657051i \(0.228196\pi\)
−0.753846 + 0.657051i \(0.771804\pi\)
\(440\) 0 0
\(441\) 145.124 0.329080
\(442\) − 4.42940i − 0.0100213i
\(443\) −178.241 −0.402349 −0.201175 0.979555i \(-0.564476\pi\)
−0.201175 + 0.979555i \(0.564476\pi\)
\(444\) −208.142 −0.468789
\(445\) −26.4937 −0.0595364
\(446\) − 133.333i − 0.298953i
\(447\) − 400.523i − 0.896025i
\(448\) − 6.32595i − 0.0141204i
\(449\) 622.710 1.38688 0.693441 0.720513i \(-0.256094\pi\)
0.693441 + 0.720513i \(0.256094\pi\)
\(450\) − 105.536i − 0.234525i
\(451\) 0 0
\(452\) 58.4078 0.129221
\(453\) − 461.428i − 1.01860i
\(454\) −409.827 −0.902702
\(455\) −0.0584663 −0.000128497 0
\(456\) −10.6285 −0.0233081
\(457\) 787.808i 1.72387i 0.507021 + 0.861934i \(0.330747\pi\)
−0.507021 + 0.861934i \(0.669253\pi\)
\(458\) − 322.764i − 0.704725i
\(459\) − 77.7843i − 0.169465i
\(460\) 17.0574 0.0370812
\(461\) − 377.985i − 0.819924i −0.912103 0.409962i \(-0.865542\pi\)
0.912103 0.409962i \(-0.134458\pi\)
\(462\) 0 0
\(463\) −49.3159 −0.106514 −0.0532569 0.998581i \(-0.516960\pi\)
−0.0532569 + 0.998581i \(0.516960\pi\)
\(464\) − 71.2960i − 0.153655i
\(465\) −20.7114 −0.0445406
\(466\) −422.605 −0.906878
\(467\) −117.187 −0.250936 −0.125468 0.992098i \(-0.540043\pi\)
−0.125468 + 0.992098i \(0.540043\pi\)
\(468\) − 1.25537i − 0.00268241i
\(469\) − 57.6691i − 0.122962i
\(470\) − 30.5633i − 0.0650283i
\(471\) 180.615 0.383472
\(472\) 145.624i 0.308525i
\(473\) 0 0
\(474\) −360.385 −0.760307
\(475\) − 53.9674i − 0.113616i
\(476\) 23.6742 0.0497358
\(477\) 176.902 0.370863
\(478\) −347.797 −0.727608
\(479\) − 920.732i − 1.92220i −0.276209 0.961098i \(-0.589078\pi\)
0.276209 0.961098i \(-0.410922\pi\)
\(480\) − 3.46246i − 0.00721347i
\(481\) − 12.5716i − 0.0261364i
\(482\) 528.093 1.09563
\(483\) 33.0544i 0.0684355i
\(484\) 0 0
\(485\) 35.8708 0.0739604
\(486\) − 22.0454i − 0.0453609i
\(487\) 388.108 0.796936 0.398468 0.917182i \(-0.369542\pi\)
0.398468 + 0.917182i \(0.369542\pi\)
\(488\) −115.265 −0.236198
\(489\) 484.399 0.990591
\(490\) 24.1759i 0.0493386i
\(491\) 364.974i 0.743328i 0.928367 + 0.371664i \(0.121213\pi\)
−0.928367 + 0.371664i \(0.878787\pi\)
\(492\) − 185.525i − 0.377083i
\(493\) 266.818 0.541213
\(494\) − 0.641950i − 0.00129949i
\(495\) 0 0
\(496\) 135.350 0.272884
\(497\) − 75.1617i − 0.151231i
\(498\) 48.6842 0.0977595
\(499\) −245.125 −0.491232 −0.245616 0.969367i \(-0.578990\pi\)
−0.245616 + 0.969367i \(0.578990\pi\)
\(500\) 35.2504 0.0705007
\(501\) − 445.043i − 0.888310i
\(502\) − 508.299i − 1.01255i
\(503\) − 294.256i − 0.585002i −0.956265 0.292501i \(-0.905513\pi\)
0.956265 0.292501i \(-0.0944875\pi\)
\(504\) 6.70968 0.0133129
\(505\) 9.21825i 0.0182540i
\(506\) 0 0
\(507\) −292.641 −0.577201
\(508\) 298.103i 0.586818i
\(509\) −855.189 −1.68013 −0.840067 0.542482i \(-0.817485\pi\)
−0.840067 + 0.542482i \(0.817485\pi\)
\(510\) 12.9579 0.0254077
\(511\) 89.7677 0.175671
\(512\) 22.6274i 0.0441942i
\(513\) − 11.2732i − 0.0219751i
\(514\) − 50.6065i − 0.0984563i
\(515\) −11.1445 −0.0216397
\(516\) − 53.9456i − 0.104546i
\(517\) 0 0
\(518\) 67.1925 0.129715
\(519\) − 190.852i − 0.367731i
\(520\) 0.209129 0.000402172 0
\(521\) −607.086 −1.16523 −0.582617 0.812747i \(-0.697971\pi\)
−0.582617 + 0.812747i \(0.697971\pi\)
\(522\) 75.6208 0.144867
\(523\) − 674.935i − 1.29051i −0.763969 0.645253i \(-0.776752\pi\)
0.763969 0.645253i \(-0.223248\pi\)
\(524\) − 331.930i − 0.633454i
\(525\) 34.0692i 0.0648936i
\(526\) 515.719 0.980454
\(527\) 506.535i 0.961166i
\(528\) 0 0
\(529\) 53.4586 0.101056
\(530\) 29.4697i 0.0556032i
\(531\) −154.457 −0.290880
\(532\) 3.43109 0.00644941
\(533\) 11.2055 0.0210234
\(534\) 183.641i 0.343896i
\(535\) − 28.4609i − 0.0531980i
\(536\) 206.278i 0.384846i
\(537\) −46.9848 −0.0874950
\(538\) − 18.9178i − 0.0351632i
\(539\) 0 0
\(540\) 3.67250 0.00680092
\(541\) − 233.688i − 0.431956i −0.976398 0.215978i \(-0.930706\pi\)
0.976398 0.215978i \(-0.0692940\pi\)
\(542\) −100.186 −0.184846
\(543\) −449.591 −0.827976
\(544\) −84.6808 −0.155663
\(545\) 11.3724i 0.0208667i
\(546\) 0.405258i 0 0.000742230i
\(547\) − 953.254i − 1.74269i −0.490667 0.871347i \(-0.663247\pi\)
0.490667 0.871347i \(-0.336753\pi\)
\(548\) 293.735 0.536014
\(549\) − 122.257i − 0.222690i
\(550\) 0 0
\(551\) 38.6697 0.0701810
\(552\) − 118.233i − 0.214190i
\(553\) 116.339 0.210379
\(554\) 112.213 0.202551
\(555\) 36.7773 0.0662655
\(556\) 427.549i 0.768973i
\(557\) 450.083i 0.808049i 0.914748 + 0.404025i \(0.132389\pi\)
−0.914748 + 0.404025i \(0.867611\pi\)
\(558\) 143.561i 0.257277i
\(559\) 3.25826 0.00582873
\(560\) 1.11775i 0.00199598i
\(561\) 0 0
\(562\) −485.205 −0.863354
\(563\) 312.343i 0.554783i 0.960757 + 0.277391i \(0.0894698\pi\)
−0.960757 + 0.277391i \(0.910530\pi\)
\(564\) −211.849 −0.375619
\(565\) −10.3202 −0.0182659
\(566\) −169.252 −0.299032
\(567\) 7.11669i 0.0125515i
\(568\) 268.848i 0.473323i
\(569\) − 564.562i − 0.992200i −0.868265 0.496100i \(-0.834765\pi\)
0.868265 0.496100i \(-0.165235\pi\)
\(570\) 1.87798 0.00329470
\(571\) 224.552i 0.393260i 0.980478 + 0.196630i \(0.0629998\pi\)
−0.980478 + 0.196630i \(0.937000\pi\)
\(572\) 0 0
\(573\) 216.129 0.377189
\(574\) 59.8910i 0.104340i
\(575\) 600.341 1.04407
\(576\) −24.0000 −0.0416667
\(577\) −1055.36 −1.82905 −0.914524 0.404532i \(-0.867434\pi\)
−0.914524 + 0.404532i \(0.867434\pi\)
\(578\) 91.7981i 0.158820i
\(579\) 72.7274i 0.125609i
\(580\) 12.5975i 0.0217198i
\(581\) −15.7162 −0.0270503
\(582\) − 248.638i − 0.427213i
\(583\) 0 0
\(584\) −321.092 −0.549815
\(585\) 0.221815i 0 0.000379171i
\(586\) −16.2862 −0.0277922
\(587\) −79.4137 −0.135287 −0.0676437 0.997710i \(-0.521548\pi\)
−0.0676437 + 0.997710i \(0.521548\pi\)
\(588\) 167.575 0.284991
\(589\) 73.4117i 0.124638i
\(590\) − 25.7307i − 0.0436113i
\(591\) 475.168i 0.804007i
\(592\) −240.342 −0.405984
\(593\) − 709.519i − 1.19649i −0.801313 0.598245i \(-0.795865\pi\)
0.801313 0.598245i \(-0.204135\pi\)
\(594\) 0 0
\(595\) −4.18307 −0.00703037
\(596\) − 462.484i − 0.775981i
\(597\) 261.504 0.438030
\(598\) 7.14114 0.0119417
\(599\) 698.251 1.16569 0.582847 0.812582i \(-0.301939\pi\)
0.582847 + 0.812582i \(0.301939\pi\)
\(600\) − 121.863i − 0.203104i
\(601\) 223.491i 0.371865i 0.982562 + 0.185933i \(0.0595306\pi\)
−0.982562 + 0.185933i \(0.940469\pi\)
\(602\) 17.4147i 0.0289281i
\(603\) −218.791 −0.362837
\(604\) − 532.811i − 0.882137i
\(605\) 0 0
\(606\) 63.8961 0.105439
\(607\) 953.367i 1.57062i 0.619102 + 0.785310i \(0.287497\pi\)
−0.619102 + 0.785310i \(0.712503\pi\)
\(608\) −12.2727 −0.0201854
\(609\) −24.4119 −0.0400852
\(610\) 20.3665 0.0333876
\(611\) − 12.7955i − 0.0209418i
\(612\) − 89.8176i − 0.146761i
\(613\) 27.8874i 0.0454934i 0.999741 + 0.0227467i \(0.00724112\pi\)
−0.999741 + 0.0227467i \(0.992759\pi\)
\(614\) −278.399 −0.453418
\(615\) 32.7809i 0.0533023i
\(616\) 0 0
\(617\) −997.165 −1.61615 −0.808075 0.589079i \(-0.799491\pi\)
−0.808075 + 0.589079i \(0.799491\pi\)
\(618\) 77.2476i 0.124996i
\(619\) −23.2638 −0.0375829 −0.0187915 0.999823i \(-0.505982\pi\)
−0.0187915 + 0.999823i \(0.505982\pi\)
\(620\) −23.9154 −0.0385733
\(621\) 125.405 0.201940
\(622\) 382.426i 0.614832i
\(623\) − 59.2828i − 0.0951571i
\(624\) − 1.44958i − 0.00232304i
\(625\) 615.649 0.985039
\(626\) 487.352i 0.778517i
\(627\) 0 0
\(628\) 208.557 0.332097
\(629\) − 899.457i − 1.42998i
\(630\) −1.18555 −0.00188183
\(631\) −523.766 −0.830058 −0.415029 0.909808i \(-0.636229\pi\)
−0.415029 + 0.909808i \(0.636229\pi\)
\(632\) −416.137 −0.658445
\(633\) 32.3612i 0.0511235i
\(634\) 92.7320i 0.146265i
\(635\) − 52.6728i − 0.0829493i
\(636\) 204.269 0.321177
\(637\) 10.1214i 0.0158891i
\(638\) 0 0
\(639\) −285.156 −0.446253
\(640\) − 3.99811i − 0.00624704i
\(641\) −67.4115 −0.105166 −0.0525831 0.998617i \(-0.516745\pi\)
−0.0525831 + 0.998617i \(0.516745\pi\)
\(642\) −197.277 −0.307284
\(643\) −806.459 −1.25421 −0.627106 0.778934i \(-0.715761\pi\)
−0.627106 + 0.778934i \(0.715761\pi\)
\(644\) 38.1679i 0.0592669i
\(645\) 9.53181i 0.0147780i
\(646\) − 45.9295i − 0.0710982i
\(647\) −970.912 −1.50064 −0.750319 0.661076i \(-0.770100\pi\)
−0.750319 + 0.661076i \(0.770100\pi\)
\(648\) − 25.4558i − 0.0392837i
\(649\) 0 0
\(650\) 7.36038 0.0113237
\(651\) − 46.3442i − 0.0711892i
\(652\) 559.336 0.857877
\(653\) 28.0428 0.0429445 0.0214723 0.999769i \(-0.493165\pi\)
0.0214723 + 0.999769i \(0.493165\pi\)
\(654\) 78.8272 0.120531
\(655\) 58.6497i 0.0895416i
\(656\) − 214.225i − 0.326563i
\(657\) − 340.569i − 0.518370i
\(658\) 68.3891 0.103935
\(659\) − 570.449i − 0.865628i −0.901483 0.432814i \(-0.857521\pi\)
0.901483 0.432814i \(-0.142479\pi\)
\(660\) 0 0
\(661\) 854.772 1.29315 0.646575 0.762851i \(-0.276201\pi\)
0.646575 + 0.762851i \(0.276201\pi\)
\(662\) 149.650i 0.226057i
\(663\) 5.42489 0.00818234
\(664\) 56.2157 0.0846622
\(665\) −0.606249 −0.000911653 0
\(666\) − 254.921i − 0.382765i
\(667\) 430.168i 0.644929i
\(668\) − 513.892i − 0.769299i
\(669\) 163.299 0.244094
\(670\) − 36.4478i − 0.0543998i
\(671\) 0 0
\(672\) 7.74767 0.0115293
\(673\) 353.405i 0.525119i 0.964916 + 0.262560i \(0.0845667\pi\)
−0.964916 + 0.262560i \(0.915433\pi\)
\(674\) −319.076 −0.473407
\(675\) 129.255 0.191489
\(676\) −337.912 −0.499870
\(677\) 1242.34i 1.83506i 0.397665 + 0.917531i \(0.369821\pi\)
−0.397665 + 0.917531i \(0.630179\pi\)
\(678\) 71.5346i 0.105508i
\(679\) 80.2652i 0.118211i
\(680\) 14.9625 0.0220037
\(681\) − 501.933i − 0.737053i
\(682\) 0 0
\(683\) −818.617 −1.19856 −0.599281 0.800539i \(-0.704547\pi\)
−0.599281 + 0.800539i \(0.704547\pi\)
\(684\) − 13.0172i − 0.0190310i
\(685\) −51.9010 −0.0757679
\(686\) −108.892 −0.158735
\(687\) 395.303 0.575405
\(688\) − 62.2910i − 0.0905392i
\(689\) 12.3376i 0.0179066i
\(690\) 20.8909i 0.0302767i
\(691\) 273.464 0.395751 0.197875 0.980227i \(-0.436596\pi\)
0.197875 + 0.980227i \(0.436596\pi\)
\(692\) − 220.377i − 0.318464i
\(693\) 0 0
\(694\) 191.723 0.276258
\(695\) − 75.5450i − 0.108698i
\(696\) 87.3194 0.125459
\(697\) 801.717 1.15024
\(698\) 707.324 1.01336
\(699\) − 517.584i − 0.740463i
\(700\) 39.3397i 0.0561995i
\(701\) 507.111i 0.723411i 0.932292 + 0.361706i \(0.117805\pi\)
−0.932292 + 0.361706i \(0.882195\pi\)
\(702\) 1.53751 0.00219018
\(703\) − 130.358i − 0.185430i
\(704\) 0 0
\(705\) 37.4323 0.0530954
\(706\) 453.385i 0.642189i
\(707\) −20.6269 −0.0291753
\(708\) −178.352 −0.251909
\(709\) 578.587 0.816060 0.408030 0.912968i \(-0.366216\pi\)
0.408030 + 0.912968i \(0.366216\pi\)
\(710\) − 47.5035i − 0.0669063i
\(711\) − 441.380i − 0.620788i
\(712\) 212.050i 0.297823i
\(713\) −816.642 −1.14536
\(714\) 28.9949i 0.0406091i
\(715\) 0 0
\(716\) −54.2534 −0.0757729
\(717\) − 425.962i − 0.594089i
\(718\) −160.419 −0.223425
\(719\) 39.2537 0.0545948 0.0272974 0.999627i \(-0.491310\pi\)
0.0272974 + 0.999627i \(0.491310\pi\)
\(720\) 4.24063 0.00588977
\(721\) − 24.9371i − 0.0345868i
\(722\) 503.875i 0.697887i
\(723\) 646.779i 0.894577i
\(724\) −519.143 −0.717048
\(725\) 443.374i 0.611550i
\(726\) 0 0
\(727\) 918.828 1.26386 0.631932 0.775024i \(-0.282262\pi\)
0.631932 + 0.775024i \(0.282262\pi\)
\(728\) 0.467951i 0 0.000642790i
\(729\) 27.0000 0.0370370
\(730\) 56.7347 0.0777188
\(731\) 233.118 0.318903
\(732\) − 141.170i − 0.192855i
\(733\) 738.905i 1.00806i 0.863687 + 0.504028i \(0.168149\pi\)
−0.863687 + 0.504028i \(0.831851\pi\)
\(734\) 126.668i 0.172573i
\(735\) −29.6093 −0.0402848
\(736\) − 136.524i − 0.185494i
\(737\) 0 0
\(738\) 227.220 0.307887
\(739\) 1137.91i 1.53979i 0.638168 + 0.769897i \(0.279692\pi\)
−0.638168 + 0.769897i \(0.720308\pi\)
\(740\) 42.4668 0.0573876
\(741\) 0.786225 0.00106103
\(742\) −65.9420 −0.0888706
\(743\) − 188.316i − 0.253454i −0.991938 0.126727i \(-0.959553\pi\)
0.991938 0.126727i \(-0.0404472\pi\)
\(744\) 165.769i 0.222808i
\(745\) 81.7178i 0.109688i
\(746\) −389.689 −0.522371
\(747\) 59.6257i 0.0798203i
\(748\) 0 0
\(749\) 63.6848 0.0850264
\(750\) 43.1727i 0.0575636i
\(751\) 605.397 0.806122 0.403061 0.915173i \(-0.367946\pi\)
0.403061 + 0.915173i \(0.367946\pi\)
\(752\) −244.622 −0.325296
\(753\) 622.537 0.826742
\(754\) 5.27400i 0.00699470i
\(755\) 94.1440i 0.124694i
\(756\) 8.21765i 0.0108699i
\(757\) −388.614 −0.513361 −0.256680 0.966496i \(-0.582629\pi\)
−0.256680 + 0.966496i \(0.582629\pi\)
\(758\) − 248.258i − 0.327517i
\(759\) 0 0
\(760\) 2.16851 0.00285330
\(761\) 699.156i 0.918734i 0.888247 + 0.459367i \(0.151924\pi\)
−0.888247 + 0.459367i \(0.848076\pi\)
\(762\) −365.101 −0.479135
\(763\) −25.4470 −0.0333512
\(764\) 249.564 0.326655
\(765\) 15.8702i 0.0207453i
\(766\) − 72.3778i − 0.0944880i
\(767\) − 10.7723i − 0.0140447i
\(768\) −27.7128 −0.0360844
\(769\) − 337.074i − 0.438328i −0.975688 0.219164i \(-0.929667\pi\)
0.975688 0.219164i \(-0.0703330\pi\)
\(770\) 0 0
\(771\) 61.9801 0.0803892
\(772\) 83.9783i 0.108780i
\(773\) −795.193 −1.02871 −0.514355 0.857577i \(-0.671969\pi\)
−0.514355 + 0.857577i \(0.671969\pi\)
\(774\) 66.0696 0.0853612
\(775\) −841.713 −1.08608
\(776\) − 287.102i − 0.369977i
\(777\) 82.2937i 0.105912i
\(778\) − 32.3946i − 0.0416383i
\(779\) 116.192 0.149156
\(780\) 0.256130i 0 0.000328372i
\(781\) 0 0
\(782\) 510.926 0.653358
\(783\) 92.6162i 0.118284i
\(784\) 193.499 0.246810
\(785\) −36.8505 −0.0469433
\(786\) 406.530 0.517213
\(787\) 535.000i 0.679796i 0.940462 + 0.339898i \(0.110393\pi\)
−0.940462 + 0.339898i \(0.889607\pi\)
\(788\) 548.677i 0.696290i
\(789\) 631.624i 0.800537i
\(790\) 73.5286 0.0930741
\(791\) − 23.0928i − 0.0291944i
\(792\) 0 0
\(793\) 8.52651 0.0107522
\(794\) 185.339i 0.233424i
\(795\) −36.0929 −0.0453998
\(796\) 301.959 0.379345
\(797\) −711.043 −0.892149 −0.446074 0.894996i \(-0.647178\pi\)
−0.446074 + 0.894996i \(0.647178\pi\)
\(798\) 4.20221i 0.00526592i
\(799\) − 915.474i − 1.14578i
\(800\) − 140.715i − 0.175894i
\(801\) −224.913 −0.280790
\(802\) 1097.22i 1.36810i
\(803\) 0 0
\(804\) −252.638 −0.314226
\(805\) − 6.74400i − 0.00837764i
\(806\) −10.0123 −0.0124222
\(807\) 23.1695 0.0287106
\(808\) 73.7809 0.0913130
\(809\) 107.587i 0.132987i 0.997787 + 0.0664937i \(0.0211812\pi\)
−0.997787 + 0.0664937i \(0.978819\pi\)
\(810\) 4.49787i 0.00555293i
\(811\) 1256.75i 1.54963i 0.632189 + 0.774814i \(0.282156\pi\)
−0.632189 + 0.774814i \(0.717844\pi\)
\(812\) −28.1884 −0.0347148
\(813\) − 122.703i − 0.150926i
\(814\) 0 0
\(815\) −98.8308 −0.121265
\(816\) − 103.712i − 0.127099i
\(817\) 33.7856 0.0413532
\(818\) 1056.95 1.29212
\(819\) −0.496337 −0.000606029 0
\(820\) 37.8522i 0.0461612i
\(821\) − 1034.51i − 1.26006i −0.776572 0.630028i \(-0.783043\pi\)
0.776572 0.630028i \(-0.216957\pi\)
\(822\) 359.751i 0.437653i
\(823\) −535.829 −0.651067 −0.325534 0.945530i \(-0.605544\pi\)
−0.325534 + 0.945530i \(0.605544\pi\)
\(824\) 89.1979i 0.108250i
\(825\) 0 0
\(826\) 57.5755 0.0697039
\(827\) 137.866i 0.166706i 0.996520 + 0.0833532i \(0.0265630\pi\)
−0.996520 + 0.0833532i \(0.973437\pi\)
\(828\) 144.805 0.174885
\(829\) −9.58047 −0.0115567 −0.00577833 0.999983i \(-0.501839\pi\)
−0.00577833 + 0.999983i \(0.501839\pi\)
\(830\) −9.93292 −0.0119674
\(831\) 137.432i 0.165382i
\(832\) − 1.67383i − 0.00201181i
\(833\) 724.150i 0.869328i
\(834\) −523.638 −0.627864
\(835\) 90.8011i 0.108744i
\(836\) 0 0
\(837\) −175.825 −0.210066
\(838\) − 577.602i − 0.689263i
\(839\) −480.651 −0.572886 −0.286443 0.958097i \(-0.592473\pi\)
−0.286443 + 0.958097i \(0.592473\pi\)
\(840\) −1.36896 −0.00162971
\(841\) 523.305 0.622241
\(842\) 147.801i 0.175536i
\(843\) − 594.253i − 0.704926i
\(844\) 37.3675i 0.0442743i
\(845\) 59.7068 0.0706589
\(846\) − 259.461i − 0.306692i
\(847\) 0 0
\(848\) 235.869 0.278148
\(849\) − 207.291i − 0.244158i
\(850\) 526.612 0.619543
\(851\) 1450.12 1.70401
\(852\) −329.270 −0.386467
\(853\) 1518.02i 1.77962i 0.456328 + 0.889812i \(0.349165\pi\)
−0.456328 + 0.889812i \(0.650835\pi\)
\(854\) 45.5724i 0.0533634i
\(855\) 2.30005i 0.00269011i
\(856\) −227.795 −0.266116
\(857\) 229.336i 0.267603i 0.991008 + 0.133802i \(0.0427185\pi\)
−0.991008 + 0.133802i \(0.957282\pi\)
\(858\) 0 0
\(859\) −308.792 −0.359478 −0.179739 0.983714i \(-0.557525\pi\)
−0.179739 + 0.983714i \(0.557525\pi\)
\(860\) 11.0064i 0.0127981i
\(861\) −73.3512 −0.0851930
\(862\) 408.797 0.474242
\(863\) 517.131 0.599225 0.299613 0.954061i \(-0.403143\pi\)
0.299613 + 0.954061i \(0.403143\pi\)
\(864\) − 29.3939i − 0.0340207i
\(865\) 38.9391i 0.0450164i
\(866\) 779.231i 0.899805i
\(867\) −112.429 −0.129676
\(868\) − 53.5137i − 0.0616517i
\(869\) 0 0
\(870\) −15.4287 −0.0177342
\(871\) − 15.2590i − 0.0175190i
\(872\) 91.0219 0.104383
\(873\) 304.518 0.348818
\(874\) 74.0481 0.0847232
\(875\) − 13.9370i − 0.0159280i
\(876\) − 393.256i − 0.448922i
\(877\) − 252.227i − 0.287602i −0.989607 0.143801i \(-0.954067\pi\)
0.989607 0.143801i \(-0.0459325\pi\)
\(878\) −815.847 −0.929210
\(879\) − 19.9465i − 0.0226923i
\(880\) 0 0
\(881\) 830.794 0.943012 0.471506 0.881863i \(-0.343711\pi\)
0.471506 + 0.881863i \(0.343711\pi\)
\(882\) 205.237i 0.232695i
\(883\) 537.950 0.609229 0.304615 0.952476i \(-0.401472\pi\)
0.304615 + 0.952476i \(0.401472\pi\)
\(884\) 6.26412 0.00708611
\(885\) 31.5135 0.0356085
\(886\) − 252.071i − 0.284504i
\(887\) 1430.06i 1.61224i 0.591753 + 0.806120i \(0.298436\pi\)
−0.591753 + 0.806120i \(0.701564\pi\)
\(888\) − 294.358i − 0.331484i
\(889\) 117.862 0.132578
\(890\) − 37.4678i − 0.0420986i
\(891\) 0 0
\(892\) 188.562 0.211392
\(893\) − 132.679i − 0.148577i
\(894\) 566.425 0.633585
\(895\) 9.58620 0.0107108
\(896\) 8.94624 0.00998465
\(897\) 8.74608i 0.00975036i
\(898\) 880.645i 0.980674i
\(899\) − 603.121i − 0.670879i
\(900\) 149.251 0.165834
\(901\) 882.717i 0.979708i
\(902\) 0 0
\(903\) −21.3286 −0.0236197
\(904\) 82.6010i 0.0913728i
\(905\) 91.7289 0.101358
\(906\) 652.558 0.720262
\(907\) −1352.76 −1.49147 −0.745734 0.666244i \(-0.767901\pi\)
−0.745734 + 0.666244i \(0.767901\pi\)
\(908\) − 579.582i − 0.638306i
\(909\) 78.2565i 0.0860907i
\(910\) − 0.0826838i 0 9.08613e-5i
\(911\) −854.208 −0.937660 −0.468830 0.883288i \(-0.655324\pi\)
−0.468830 + 0.883288i \(0.655324\pi\)
\(912\) − 15.0310i − 0.0164813i
\(913\) 0 0
\(914\) −1114.13 −1.21896
\(915\) 24.9437i 0.0272609i
\(916\) 456.457 0.498315
\(917\) −131.236 −0.143114
\(918\) 110.004 0.119830
\(919\) 330.219i 0.359324i 0.983728 + 0.179662i \(0.0575004\pi\)
−0.983728 + 0.179662i \(0.942500\pi\)
\(920\) 24.1228i 0.0262204i
\(921\) − 340.968i − 0.370215i
\(922\) 534.551 0.579774
\(923\) − 19.8875i − 0.0215466i
\(924\) 0 0
\(925\) 1494.64 1.61582
\(926\) − 69.7432i − 0.0753166i
\(927\) −94.6086 −0.102059
\(928\) 100.828 0.108651
\(929\) −114.412 −0.123156 −0.0615778 0.998102i \(-0.519613\pi\)
−0.0615778 + 0.998102i \(0.519613\pi\)
\(930\) − 29.2903i − 0.0314950i
\(931\) 104.951i 0.112729i
\(932\) − 597.654i − 0.641260i
\(933\) −468.374 −0.502008
\(934\) − 165.728i − 0.177439i
\(935\) 0 0
\(936\) 1.77536 0.00189675
\(937\) 1619.74i 1.72864i 0.502938 + 0.864322i \(0.332252\pi\)
−0.502938 + 0.864322i \(0.667748\pi\)
\(938\) 81.5564 0.0869471
\(939\) −596.881 −0.635656
\(940\) 43.2231 0.0459820
\(941\) − 759.245i − 0.806849i −0.915013 0.403424i \(-0.867820\pi\)
0.915013 0.403424i \(-0.132180\pi\)
\(942\) 255.429i 0.271156i
\(943\) 1292.54i 1.37067i
\(944\) −205.943 −0.218160
\(945\) − 1.45200i − 0.00153651i
\(946\) 0 0
\(947\) 1855.32 1.95915 0.979575 0.201079i \(-0.0644447\pi\)
0.979575 + 0.201079i \(0.0644447\pi\)
\(948\) − 509.662i − 0.537618i
\(949\) 23.7522 0.0250287
\(950\) 76.3214 0.0803383
\(951\) −113.573 −0.119425
\(952\) 33.4804i 0.0351685i
\(953\) − 1624.78i − 1.70492i −0.522796 0.852458i \(-0.675111\pi\)
0.522796 0.852458i \(-0.324889\pi\)
\(954\) 250.177i 0.262240i
\(955\) −44.0963 −0.0461742
\(956\) − 491.859i − 0.514496i
\(957\) 0 0
\(958\) 1302.11 1.35920
\(959\) − 116.135i − 0.121100i
\(960\) 4.89666 0.00510069
\(961\) 183.980 0.191447
\(962\) 17.7789 0.0184812
\(963\) − 241.613i − 0.250897i
\(964\) 746.836i 0.774726i
\(965\) − 14.8384i − 0.0153766i
\(966\) −46.7459 −0.0483912
\(967\) 325.104i 0.336199i 0.985770 + 0.168099i \(0.0537629\pi\)
−0.985770 + 0.168099i \(0.946237\pi\)
\(968\) 0 0
\(969\) 56.2519 0.0580515
\(970\) 50.7290i 0.0522979i
\(971\) 280.767 0.289152 0.144576 0.989494i \(-0.453818\pi\)
0.144576 + 0.989494i \(0.453818\pi\)
\(972\) 31.1769 0.0320750
\(973\) 169.041 0.173732
\(974\) 548.867i 0.563519i
\(975\) 9.01459i 0.00924573i
\(976\) − 163.009i − 0.167017i
\(977\) 1609.79 1.64769 0.823843 0.566818i \(-0.191826\pi\)
0.823843 + 0.566818i \(0.191826\pi\)
\(978\) 685.044i 0.700454i
\(979\) 0 0
\(980\) −34.1899 −0.0348877
\(981\) 96.5433i 0.0984131i
\(982\) −516.151 −0.525612
\(983\) −374.382 −0.380856 −0.190428 0.981701i \(-0.560988\pi\)
−0.190428 + 0.981701i \(0.560988\pi\)
\(984\) 262.371 0.266638
\(985\) − 96.9474i − 0.0984238i
\(986\) 377.338i 0.382696i
\(987\) 83.7591i 0.0848624i
\(988\) 0.907854 0.000918881 0
\(989\) 375.836i 0.380016i
\(990\) 0 0
\(991\) −943.875 −0.952447 −0.476223 0.879324i \(-0.657995\pi\)
−0.476223 + 0.879324i \(0.657995\pi\)
\(992\) 191.414i 0.192958i
\(993\) −183.283 −0.184575
\(994\) 106.295 0.106936
\(995\) −53.3540 −0.0536221
\(996\) 68.8499i 0.0691264i
\(997\) 681.654i 0.683705i 0.939754 + 0.341853i \(0.111054\pi\)
−0.939754 + 0.341853i \(0.888946\pi\)
\(998\) − 346.659i − 0.347353i
\(999\) 312.214 0.312526
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.3.d.e.241.10 16
3.2 odd 2 2178.3.d.m.1693.4 16
11.3 even 5 66.3.f.a.13.4 16
11.7 odd 10 66.3.f.a.61.4 yes 16
11.10 odd 2 inner 726.3.d.e.241.2 16
33.14 odd 10 198.3.j.b.145.2 16
33.29 even 10 198.3.j.b.127.2 16
33.32 even 2 2178.3.d.m.1693.12 16
44.3 odd 10 528.3.bf.c.145.1 16
44.7 even 10 528.3.bf.c.193.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.f.a.13.4 16 11.3 even 5
66.3.f.a.61.4 yes 16 11.7 odd 10
198.3.j.b.127.2 16 33.29 even 10
198.3.j.b.145.2 16 33.14 odd 10
528.3.bf.c.145.1 16 44.3 odd 10
528.3.bf.c.193.1 16 44.7 even 10
726.3.d.e.241.2 16 11.10 odd 2 inner
726.3.d.e.241.10 16 1.1 even 1 trivial
2178.3.d.m.1693.4 16 3.2 odd 2
2178.3.d.m.1693.12 16 33.32 even 2