Properties

Label 726.3.d.e.241.2
Level $726$
Weight $3$
Character 726.241
Analytic conductor $19.782$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,3,Mod(241,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 726.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-32,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.7820671926\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.6879707136000000000000.7
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 15x^{12} - 56x^{10} + 209x^{8} - 56x^{6} + 15x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.2
Root \(0.492303 - 0.159959i\) of defining polynomial
Character \(\chi\) \(=\) 726.241
Dual form 726.3.d.e.241.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -1.73205 q^{3} -2.00000 q^{4} +0.353386 q^{5} +2.44949i q^{6} -0.790744i q^{7} +2.82843i q^{8} +3.00000 q^{9} -0.499764i q^{10} +3.46410 q^{12} -0.209228i q^{13} -1.11828 q^{14} -0.612083 q^{15} +4.00000 q^{16} -14.9696i q^{17} -4.24264i q^{18} -2.16953i q^{19} -0.706772 q^{20} +1.36961i q^{21} -24.1342 q^{23} -4.89898i q^{24} -24.8751 q^{25} -0.295893 q^{26} -5.19615 q^{27} +1.58149i q^{28} +17.8240i q^{29} +0.865616i q^{30} +33.8376 q^{31} -5.65685i q^{32} -21.1702 q^{34} -0.279438i q^{35} -6.00000 q^{36} -60.0856 q^{37} -3.06818 q^{38} +0.362394i q^{39} +0.999527i q^{40} +53.5564i q^{41} +1.93692 q^{42} +15.5727i q^{43} +1.06016 q^{45} +34.1309i q^{46} -61.1556 q^{47} -6.92820 q^{48} +48.3747 q^{49} +35.1787i q^{50} +25.9281i q^{51} +0.418456i q^{52} +58.9673 q^{53} +7.34847i q^{54} +2.23656 q^{56} +3.75774i q^{57} +25.2069 q^{58} -51.4857 q^{59} +1.22417 q^{60} +40.7522i q^{61} -47.8535i q^{62} -2.37223i q^{63} -8.00000 q^{64} -0.0739383i q^{65} -72.9302 q^{67} +29.9392i q^{68} +41.8016 q^{69} -0.395185 q^{70} -95.0520 q^{71} +8.48528i q^{72} +113.523i q^{73} +84.9738i q^{74} +43.0850 q^{75} +4.33906i q^{76} +0.512502 q^{78} +147.127i q^{79} +1.41354 q^{80} +9.00000 q^{81} +75.7401 q^{82} -19.8752i q^{83} -2.73922i q^{84} -5.29005i q^{85} +22.0232 q^{86} -30.8721i q^{87} -74.9710 q^{89} -1.49929i q^{90} -0.165446 q^{91} +48.2684 q^{92} -58.6084 q^{93} +86.4870i q^{94} -0.766683i q^{95} +9.79796i q^{96} +101.506 q^{97} -68.4122i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{4} + 8 q^{5} + 48 q^{9} + 48 q^{14} - 48 q^{15} + 64 q^{16} - 16 q^{20} - 8 q^{23} - 8 q^{25} + 128 q^{26} - 8 q^{31} - 64 q^{34} - 96 q^{36} + 96 q^{37} - 208 q^{38} - 144 q^{42} + 24 q^{45}+ \cdots + 184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) −1.73205 −0.577350
\(4\) −2.00000 −0.500000
\(5\) 0.353386 0.0706772 0.0353386 0.999375i \(-0.488749\pi\)
0.0353386 + 0.999375i \(0.488749\pi\)
\(6\) 2.44949i 0.408248i
\(7\) − 0.790744i − 0.112963i −0.998404 0.0564817i \(-0.982012\pi\)
0.998404 0.0564817i \(-0.0179883\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 3.00000 0.333333
\(10\) − 0.499764i − 0.0499764i
\(11\) 0 0
\(12\) 3.46410 0.288675
\(13\) − 0.209228i − 0.0160945i −0.999968 0.00804724i \(-0.997438\pi\)
0.999968 0.00804724i \(-0.00256154\pi\)
\(14\) −1.11828 −0.0798772
\(15\) −0.612083 −0.0408055
\(16\) 4.00000 0.250000
\(17\) − 14.9696i − 0.880565i −0.897859 0.440282i \(-0.854878\pi\)
0.897859 0.440282i \(-0.145122\pi\)
\(18\) − 4.24264i − 0.235702i
\(19\) − 2.16953i − 0.114186i −0.998369 0.0570930i \(-0.981817\pi\)
0.998369 0.0570930i \(-0.0181831\pi\)
\(20\) −0.706772 −0.0353386
\(21\) 1.36961i 0.0652194i
\(22\) 0 0
\(23\) −24.1342 −1.04931 −0.524656 0.851314i \(-0.675806\pi\)
−0.524656 + 0.851314i \(0.675806\pi\)
\(24\) − 4.89898i − 0.204124i
\(25\) −24.8751 −0.995005
\(26\) −0.295893 −0.0113805
\(27\) −5.19615 −0.192450
\(28\) 1.58149i 0.0564817i
\(29\) 17.8240i 0.614621i 0.951609 + 0.307310i \(0.0994290\pi\)
−0.951609 + 0.307310i \(0.900571\pi\)
\(30\) 0.865616i 0.0288539i
\(31\) 33.8376 1.09153 0.545767 0.837937i \(-0.316238\pi\)
0.545767 + 0.837937i \(0.316238\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −21.1702 −0.622653
\(35\) − 0.279438i − 0.00798394i
\(36\) −6.00000 −0.166667
\(37\) −60.0856 −1.62393 −0.811967 0.583703i \(-0.801603\pi\)
−0.811967 + 0.583703i \(0.801603\pi\)
\(38\) −3.06818 −0.0807416
\(39\) 0.362394i 0.00929215i
\(40\) 0.999527i 0.0249882i
\(41\) 53.5564i 1.30625i 0.757249 + 0.653126i \(0.226543\pi\)
−0.757249 + 0.653126i \(0.773457\pi\)
\(42\) 1.93692 0.0461171
\(43\) 15.5727i 0.362157i 0.983469 + 0.181078i \(0.0579588\pi\)
−0.983469 + 0.181078i \(0.942041\pi\)
\(44\) 0 0
\(45\) 1.06016 0.0235591
\(46\) 34.1309i 0.741976i
\(47\) −61.1556 −1.30118 −0.650591 0.759428i \(-0.725479\pi\)
−0.650591 + 0.759428i \(0.725479\pi\)
\(48\) −6.92820 −0.144338
\(49\) 48.3747 0.987239
\(50\) 35.1787i 0.703575i
\(51\) 25.9281i 0.508394i
\(52\) 0.418456i 0.00804724i
\(53\) 58.9673 1.11259 0.556295 0.830985i \(-0.312222\pi\)
0.556295 + 0.830985i \(0.312222\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 0 0
\(56\) 2.23656 0.0399386
\(57\) 3.75774i 0.0659253i
\(58\) 25.2069 0.434602
\(59\) −51.4857 −0.872639 −0.436320 0.899792i \(-0.643718\pi\)
−0.436320 + 0.899792i \(0.643718\pi\)
\(60\) 1.22417 0.0204028
\(61\) 40.7522i 0.668069i 0.942561 + 0.334034i \(0.108410\pi\)
−0.942561 + 0.334034i \(0.891590\pi\)
\(62\) − 47.8535i − 0.771831i
\(63\) − 2.37223i − 0.0376545i
\(64\) −8.00000 −0.125000
\(65\) − 0.0739383i − 0.00113751i
\(66\) 0 0
\(67\) −72.9302 −1.08851 −0.544255 0.838920i \(-0.683188\pi\)
−0.544255 + 0.838920i \(0.683188\pi\)
\(68\) 29.9392i 0.440282i
\(69\) 41.8016 0.605821
\(70\) −0.395185 −0.00564550
\(71\) −95.0520 −1.33876 −0.669380 0.742920i \(-0.733440\pi\)
−0.669380 + 0.742920i \(0.733440\pi\)
\(72\) 8.48528i 0.117851i
\(73\) 113.523i 1.55511i 0.628814 + 0.777555i \(0.283541\pi\)
−0.628814 + 0.777555i \(0.716459\pi\)
\(74\) 84.9738i 1.14829i
\(75\) 43.0850 0.574466
\(76\) 4.33906i 0.0570930i
\(77\) 0 0
\(78\) 0.512502 0.00657054
\(79\) 147.127i 1.86236i 0.364556 + 0.931182i \(0.381221\pi\)
−0.364556 + 0.931182i \(0.618779\pi\)
\(80\) 1.41354 0.0176693
\(81\) 9.00000 0.111111
\(82\) 75.7401 0.923660
\(83\) − 19.8752i − 0.239461i −0.992806 0.119730i \(-0.961797\pi\)
0.992806 0.119730i \(-0.0382030\pi\)
\(84\) − 2.73922i − 0.0326097i
\(85\) − 5.29005i − 0.0622359i
\(86\) 22.0232 0.256084
\(87\) − 30.8721i − 0.354851i
\(88\) 0 0
\(89\) −74.9710 −0.842371 −0.421185 0.906975i \(-0.638386\pi\)
−0.421185 + 0.906975i \(0.638386\pi\)
\(90\) − 1.49929i − 0.0166588i
\(91\) −0.165446 −0.00181809
\(92\) 48.2684 0.524656
\(93\) −58.6084 −0.630197
\(94\) 86.4870i 0.920075i
\(95\) − 0.766683i − 0.00807034i
\(96\) 9.79796i 0.102062i
\(97\) 101.506 1.04645 0.523227 0.852194i \(-0.324728\pi\)
0.523227 + 0.852194i \(0.324728\pi\)
\(98\) − 68.4122i − 0.698084i
\(99\) 0 0
\(100\) 49.7502 0.497502
\(101\) − 26.0855i − 0.258272i −0.991627 0.129136i \(-0.958780\pi\)
0.991627 0.129136i \(-0.0412204\pi\)
\(102\) 36.6679 0.359489
\(103\) −31.5362 −0.306177 −0.153088 0.988212i \(-0.548922\pi\)
−0.153088 + 0.988212i \(0.548922\pi\)
\(104\) 0.591787 0.00569026
\(105\) 0.484001i 0.00460953i
\(106\) − 83.3923i − 0.786720i
\(107\) 80.5378i 0.752690i 0.926480 + 0.376345i \(0.122819\pi\)
−0.926480 + 0.376345i \(0.877181\pi\)
\(108\) 10.3923 0.0962250
\(109\) − 32.1811i − 0.295239i −0.989044 0.147620i \(-0.952839\pi\)
0.989044 0.147620i \(-0.0471612\pi\)
\(110\) 0 0
\(111\) 104.071 0.937579
\(112\) − 3.16297i − 0.0282408i
\(113\) −29.2039 −0.258441 −0.129221 0.991616i \(-0.541248\pi\)
−0.129221 + 0.991616i \(0.541248\pi\)
\(114\) 5.31425 0.0466162
\(115\) −8.52869 −0.0741625
\(116\) − 35.6480i − 0.307310i
\(117\) − 0.627684i − 0.00536482i
\(118\) 72.8118i 0.617049i
\(119\) −11.8371 −0.0994716
\(120\) − 1.73123i − 0.0144269i
\(121\) 0 0
\(122\) 57.6323 0.472396
\(123\) − 92.7623i − 0.754165i
\(124\) −67.6751 −0.545767
\(125\) −17.6252 −0.141001
\(126\) −3.35484 −0.0266257
\(127\) 149.052i 1.17364i 0.809719 + 0.586818i \(0.199620\pi\)
−0.809719 + 0.586818i \(0.800380\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) − 26.9728i − 0.209091i
\(130\) −0.104565 −0.000804343 0
\(131\) − 165.965i − 1.26691i −0.773780 0.633454i \(-0.781636\pi\)
0.773780 0.633454i \(-0.218364\pi\)
\(132\) 0 0
\(133\) −1.71554 −0.0128988
\(134\) 103.139i 0.769693i
\(135\) −1.83625 −0.0136018
\(136\) 42.3404 0.311327
\(137\) −146.868 −1.07203 −0.536014 0.844209i \(-0.680070\pi\)
−0.536014 + 0.844209i \(0.680070\pi\)
\(138\) − 59.1164i − 0.428380i
\(139\) 213.774i 1.53795i 0.639281 + 0.768973i \(0.279232\pi\)
−0.639281 + 0.768973i \(0.720768\pi\)
\(140\) 0.558876i 0.00399197i
\(141\) 105.925 0.751238
\(142\) 134.424i 0.946646i
\(143\) 0 0
\(144\) 12.0000 0.0833333
\(145\) 6.29876i 0.0434397i
\(146\) 160.546 1.09963
\(147\) −83.7875 −0.569983
\(148\) 120.171 0.811967
\(149\) − 231.242i − 1.55196i −0.630757 0.775981i \(-0.717255\pi\)
0.630757 0.775981i \(-0.282745\pi\)
\(150\) − 60.9313i − 0.406209i
\(151\) − 266.405i − 1.76427i −0.470992 0.882137i \(-0.656104\pi\)
0.470992 0.882137i \(-0.343896\pi\)
\(152\) 6.13636 0.0403708
\(153\) − 44.9088i − 0.293522i
\(154\) 0 0
\(155\) 11.9577 0.0771466
\(156\) − 0.724788i − 0.00464607i
\(157\) −104.278 −0.664193 −0.332097 0.943245i \(-0.607756\pi\)
−0.332097 + 0.943245i \(0.607756\pi\)
\(158\) 208.069 1.31689
\(159\) −102.134 −0.642354
\(160\) − 1.99905i − 0.0124941i
\(161\) 19.0839i 0.118534i
\(162\) − 12.7279i − 0.0785674i
\(163\) −279.668 −1.71575 −0.857877 0.513855i \(-0.828217\pi\)
−0.857877 + 0.513855i \(0.828217\pi\)
\(164\) − 107.113i − 0.653126i
\(165\) 0 0
\(166\) −28.1078 −0.169324
\(167\) − 256.946i − 1.53860i −0.638889 0.769299i \(-0.720606\pi\)
0.638889 0.769299i \(-0.279394\pi\)
\(168\) −3.87384 −0.0230586
\(169\) 168.956 0.999741
\(170\) −7.48126 −0.0440074
\(171\) − 6.50860i − 0.0380620i
\(172\) − 31.1455i − 0.181078i
\(173\) − 110.189i − 0.636929i −0.947935 0.318464i \(-0.896833\pi\)
0.947935 0.318464i \(-0.103167\pi\)
\(174\) −43.6597 −0.250918
\(175\) 19.6698i 0.112399i
\(176\) 0 0
\(177\) 89.1759 0.503819
\(178\) 106.025i 0.595646i
\(179\) 27.1267 0.151546 0.0757729 0.997125i \(-0.475858\pi\)
0.0757729 + 0.997125i \(0.475858\pi\)
\(180\) −2.12032 −0.0117795
\(181\) 259.571 1.43410 0.717048 0.697024i \(-0.245493\pi\)
0.717048 + 0.697024i \(0.245493\pi\)
\(182\) 0.233976i 0.00128558i
\(183\) − 70.5849i − 0.385710i
\(184\) − 68.2618i − 0.370988i
\(185\) −21.2334 −0.114775
\(186\) 82.8847i 0.445617i
\(187\) 0 0
\(188\) 122.311 0.650591
\(189\) 4.10882i 0.0217398i
\(190\) −1.08425 −0.00570660
\(191\) −124.782 −0.653310 −0.326655 0.945144i \(-0.605922\pi\)
−0.326655 + 0.945144i \(0.605922\pi\)
\(192\) 13.8564 0.0721688
\(193\) 41.9892i 0.217560i 0.994066 + 0.108780i \(0.0346945\pi\)
−0.994066 + 0.108780i \(0.965306\pi\)
\(194\) − 143.551i − 0.739954i
\(195\) 0.128065i 0 0.000656743i
\(196\) −96.7494 −0.493620
\(197\) 274.338i 1.39258i 0.717760 + 0.696290i \(0.245167\pi\)
−0.717760 + 0.696290i \(0.754833\pi\)
\(198\) 0 0
\(199\) −150.979 −0.758690 −0.379345 0.925255i \(-0.623851\pi\)
−0.379345 + 0.925255i \(0.623851\pi\)
\(200\) − 70.3575i − 0.351787i
\(201\) 126.319 0.628452
\(202\) −36.8904 −0.182626
\(203\) 14.0942 0.0694296
\(204\) − 51.8562i − 0.254197i
\(205\) 18.9261i 0.0923223i
\(206\) 44.5989i 0.216500i
\(207\) −72.4025 −0.349771
\(208\) − 0.836913i − 0.00402362i
\(209\) 0 0
\(210\) 0.684480 0.00325943
\(211\) 18.6837i 0.0885486i 0.999019 + 0.0442743i \(0.0140976\pi\)
−0.999019 + 0.0442743i \(0.985902\pi\)
\(212\) −117.935 −0.556295
\(213\) 164.635 0.772933
\(214\) 113.898 0.532232
\(215\) 5.50319i 0.0255963i
\(216\) − 14.6969i − 0.0680414i
\(217\) − 26.7568i − 0.123303i
\(218\) −45.5109 −0.208766
\(219\) − 196.628i − 0.897844i
\(220\) 0 0
\(221\) −3.13206 −0.0141722
\(222\) − 147.179i − 0.662968i
\(223\) −94.2808 −0.422784 −0.211392 0.977401i \(-0.567800\pi\)
−0.211392 + 0.977401i \(0.567800\pi\)
\(224\) −4.47312 −0.0199693
\(225\) −74.6254 −0.331668
\(226\) 41.3005i 0.182746i
\(227\) − 289.791i − 1.27661i −0.769782 0.638306i \(-0.779635\pi\)
0.769782 0.638306i \(-0.220365\pi\)
\(228\) − 7.51548i − 0.0329626i
\(229\) −228.228 −0.996631 −0.498315 0.866996i \(-0.666048\pi\)
−0.498315 + 0.866996i \(0.666048\pi\)
\(230\) 12.0614i 0.0524408i
\(231\) 0 0
\(232\) −50.4139 −0.217301
\(233\) − 298.827i − 1.28252i −0.767324 0.641260i \(-0.778412\pi\)
0.767324 0.641260i \(-0.221588\pi\)
\(234\) −0.887680 −0.00379350
\(235\) −21.6115 −0.0919640
\(236\) 102.971 0.436320
\(237\) − 254.831i − 1.07524i
\(238\) 16.7402i 0.0703370i
\(239\) − 245.929i − 1.02899i −0.857492 0.514496i \(-0.827979\pi\)
0.857492 0.514496i \(-0.172021\pi\)
\(240\) −2.44833 −0.0102014
\(241\) 373.418i 1.54945i 0.632297 + 0.774726i \(0.282112\pi\)
−0.632297 + 0.774726i \(0.717888\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) − 81.5044i − 0.334034i
\(245\) 17.0950 0.0697753
\(246\) −131.186 −0.533275
\(247\) −0.453927 −0.00183776
\(248\) 95.7071i 0.385916i
\(249\) 34.4249i 0.138253i
\(250\) 24.9258i 0.0997031i
\(251\) −359.422 −1.43196 −0.715980 0.698121i \(-0.754020\pi\)
−0.715980 + 0.698121i \(0.754020\pi\)
\(252\) 4.74446i 0.0188272i
\(253\) 0 0
\(254\) 210.791 0.829886
\(255\) 9.16264i 0.0359319i
\(256\) 16.0000 0.0625000
\(257\) −35.7842 −0.139238 −0.0696191 0.997574i \(-0.522178\pi\)
−0.0696191 + 0.997574i \(0.522178\pi\)
\(258\) −38.1453 −0.147850
\(259\) 47.5123i 0.183445i
\(260\) 0.147877i 0 0.000568756i
\(261\) 53.4720i 0.204874i
\(262\) −234.710 −0.895840
\(263\) 364.668i 1.38657i 0.720663 + 0.693286i \(0.243838\pi\)
−0.720663 + 0.693286i \(0.756162\pi\)
\(264\) 0 0
\(265\) 20.8382 0.0786348
\(266\) 2.42615i 0.00912085i
\(267\) 129.854 0.486343
\(268\) 145.860 0.544255
\(269\) −13.3769 −0.0497283 −0.0248641 0.999691i \(-0.507915\pi\)
−0.0248641 + 0.999691i \(0.507915\pi\)
\(270\) 2.59685i 0.00961795i
\(271\) − 70.8425i − 0.261411i −0.991421 0.130706i \(-0.958276\pi\)
0.991421 0.130706i \(-0.0417243\pi\)
\(272\) − 59.8784i − 0.220141i
\(273\) 0.286561 0.00104967
\(274\) 207.702i 0.758038i
\(275\) 0 0
\(276\) −83.6033 −0.302910
\(277\) 79.3467i 0.286450i 0.989690 + 0.143225i \(0.0457473\pi\)
−0.989690 + 0.143225i \(0.954253\pi\)
\(278\) 302.323 1.08749
\(279\) 101.513 0.363845
\(280\) 0.790370 0.00282275
\(281\) − 343.092i − 1.22097i −0.792029 0.610484i \(-0.790975\pi\)
0.792029 0.610484i \(-0.209025\pi\)
\(282\) − 149.800i − 0.531205i
\(283\) − 119.679i − 0.422895i −0.977389 0.211447i \(-0.932182\pi\)
0.977389 0.211447i \(-0.0678177\pi\)
\(284\) 190.104 0.669380
\(285\) 1.32793i 0.00465942i
\(286\) 0 0
\(287\) 42.3493 0.147559
\(288\) − 16.9706i − 0.0589256i
\(289\) 64.9111 0.224606
\(290\) 8.90779 0.0307165
\(291\) −175.813 −0.604170
\(292\) − 227.046i − 0.777555i
\(293\) − 11.5161i − 0.0393042i −0.999807 0.0196521i \(-0.993744\pi\)
0.999807 0.0196521i \(-0.00625585\pi\)
\(294\) 118.493i 0.403039i
\(295\) −18.1943 −0.0616757
\(296\) − 169.948i − 0.574147i
\(297\) 0 0
\(298\) −327.026 −1.09740
\(299\) 5.04955i 0.0168881i
\(300\) −86.1699 −0.287233
\(301\) 12.3141 0.0409105
\(302\) −376.754 −1.24753
\(303\) 45.1814i 0.149113i
\(304\) − 8.67813i − 0.0285465i
\(305\) 14.4013i 0.0472172i
\(306\) −63.5106 −0.207551
\(307\) − 196.858i − 0.641231i −0.947210 0.320615i \(-0.896110\pi\)
0.947210 0.320615i \(-0.103890\pi\)
\(308\) 0 0
\(309\) 54.6223 0.176771
\(310\) − 16.9108i − 0.0545509i
\(311\) 270.416 0.869504 0.434752 0.900550i \(-0.356836\pi\)
0.434752 + 0.900550i \(0.356836\pi\)
\(312\) −1.02500 −0.00328527
\(313\) 344.610 1.10099 0.550495 0.834839i \(-0.314439\pi\)
0.550495 + 0.834839i \(0.314439\pi\)
\(314\) 147.472i 0.469656i
\(315\) − 0.838314i − 0.00266131i
\(316\) − 294.253i − 0.931182i
\(317\) 65.5714 0.206850 0.103425 0.994637i \(-0.467020\pi\)
0.103425 + 0.994637i \(0.467020\pi\)
\(318\) 144.440i 0.454213i
\(319\) 0 0
\(320\) −2.82709 −0.00883465
\(321\) − 139.496i − 0.434566i
\(322\) 26.9888 0.0838161
\(323\) −32.4770 −0.100548
\(324\) −18.0000 −0.0555556
\(325\) 5.20458i 0.0160141i
\(326\) 395.510i 1.21322i
\(327\) 55.7393i 0.170457i
\(328\) −151.480 −0.461830
\(329\) 48.3584i 0.146986i
\(330\) 0 0
\(331\) 105.818 0.319693 0.159847 0.987142i \(-0.448900\pi\)
0.159847 + 0.987142i \(0.448900\pi\)
\(332\) 39.7505i 0.119730i
\(333\) −180.257 −0.541311
\(334\) −363.376 −1.08795
\(335\) −25.7725 −0.0769329
\(336\) 5.47843i 0.0163049i
\(337\) − 225.621i − 0.669498i −0.942307 0.334749i \(-0.891348\pi\)
0.942307 0.334749i \(-0.108652\pi\)
\(338\) − 238.940i − 0.706924i
\(339\) 50.5826 0.149211
\(340\) 10.5801i 0.0311179i
\(341\) 0 0
\(342\) −9.20455 −0.0269139
\(343\) − 76.9984i − 0.224485i
\(344\) −44.0464 −0.128042
\(345\) 14.7721 0.0428177
\(346\) −155.830 −0.450377
\(347\) 135.569i 0.390687i 0.980735 + 0.195344i \(0.0625822\pi\)
−0.980735 + 0.195344i \(0.937418\pi\)
\(348\) 61.7441i 0.177426i
\(349\) 500.154i 1.43311i 0.697533 + 0.716553i \(0.254281\pi\)
−0.697533 + 0.716553i \(0.745719\pi\)
\(350\) 27.8174 0.0794782
\(351\) 1.08718i 0.00309738i
\(352\) 0 0
\(353\) 320.592 0.908192 0.454096 0.890953i \(-0.349962\pi\)
0.454096 + 0.890953i \(0.349962\pi\)
\(354\) − 126.114i − 0.356253i
\(355\) −33.5900 −0.0946199
\(356\) 149.942 0.421185
\(357\) 20.5025 0.0574299
\(358\) − 38.3630i − 0.107159i
\(359\) − 113.433i − 0.315971i −0.987441 0.157985i \(-0.949500\pi\)
0.987441 0.157985i \(-0.0504999\pi\)
\(360\) 2.99858i 0.00832939i
\(361\) 356.293 0.986962
\(362\) − 367.089i − 1.01406i
\(363\) 0 0
\(364\) 0.330892 0.000909043 0
\(365\) 40.1175i 0.109911i
\(366\) −99.8221 −0.272738
\(367\) 89.5681 0.244055 0.122027 0.992527i \(-0.461060\pi\)
0.122027 + 0.992527i \(0.461060\pi\)
\(368\) −96.5367 −0.262328
\(369\) 160.669i 0.435418i
\(370\) 30.0286i 0.0811583i
\(371\) − 46.6280i − 0.125682i
\(372\) 117.217 0.315099
\(373\) − 275.552i − 0.738744i −0.929282 0.369372i \(-0.879573\pi\)
0.929282 0.369372i \(-0.120427\pi\)
\(374\) 0 0
\(375\) 30.5277 0.0814072
\(376\) − 172.974i − 0.460037i
\(377\) 3.72928 0.00989200
\(378\) 5.81075 0.0153724
\(379\) −175.545 −0.463179 −0.231590 0.972814i \(-0.574393\pi\)
−0.231590 + 0.972814i \(0.574393\pi\)
\(380\) 1.53337i 0.00403517i
\(381\) − 258.165i − 0.677599i
\(382\) 176.469i 0.461960i
\(383\) −51.1788 −0.133626 −0.0668131 0.997766i \(-0.521283\pi\)
−0.0668131 + 0.997766i \(0.521283\pi\)
\(384\) − 19.5959i − 0.0510310i
\(385\) 0 0
\(386\) 59.3817 0.153838
\(387\) 46.7182i 0.120719i
\(388\) −203.012 −0.523227
\(389\) −22.9064 −0.0588854 −0.0294427 0.999566i \(-0.509373\pi\)
−0.0294427 + 0.999566i \(0.509373\pi\)
\(390\) 0.181111 0.000464388 0
\(391\) 361.279i 0.923987i
\(392\) 136.824i 0.349042i
\(393\) 287.460i 0.731450i
\(394\) 387.973 0.984703
\(395\) 51.9925i 0.131627i
\(396\) 0 0
\(397\) 131.054 0.330112 0.165056 0.986284i \(-0.447220\pi\)
0.165056 + 0.986284i \(0.447220\pi\)
\(398\) 213.517i 0.536475i
\(399\) 2.97141 0.00744714
\(400\) −99.5005 −0.248751
\(401\) 775.849 1.93479 0.967393 0.253279i \(-0.0815090\pi\)
0.967393 + 0.253279i \(0.0815090\pi\)
\(402\) − 178.642i − 0.444382i
\(403\) − 7.07977i − 0.0175677i
\(404\) 52.1710i 0.129136i
\(405\) 3.18048 0.00785303
\(406\) − 19.9322i − 0.0490942i
\(407\) 0 0
\(408\) −73.3358 −0.179745
\(409\) 747.379i 1.82733i 0.406464 + 0.913667i \(0.366762\pi\)
−0.406464 + 0.913667i \(0.633238\pi\)
\(410\) 26.7655 0.0652817
\(411\) 254.382 0.618935
\(412\) 63.0724 0.153088
\(413\) 40.7120i 0.0985763i
\(414\) 102.393i 0.247325i
\(415\) − 7.02364i − 0.0169244i
\(416\) −1.18357 −0.00284513
\(417\) − 370.268i − 0.887934i
\(418\) 0 0
\(419\) −408.427 −0.974765 −0.487383 0.873189i \(-0.662048\pi\)
−0.487383 + 0.873189i \(0.662048\pi\)
\(420\) − 0.968001i − 0.00230476i
\(421\) 104.511 0.248245 0.124123 0.992267i \(-0.460388\pi\)
0.124123 + 0.992267i \(0.460388\pi\)
\(422\) 26.4228 0.0626133
\(423\) −183.467 −0.433727
\(424\) 166.785i 0.393360i
\(425\) 372.371i 0.876166i
\(426\) − 232.829i − 0.546546i
\(427\) 32.2245 0.0754673
\(428\) − 161.076i − 0.376345i
\(429\) 0 0
\(430\) 7.78269 0.0180993
\(431\) 289.063i 0.670680i 0.942097 + 0.335340i \(0.108851\pi\)
−0.942097 + 0.335340i \(0.891149\pi\)
\(432\) −20.7846 −0.0481125
\(433\) 550.999 1.27252 0.636258 0.771476i \(-0.280481\pi\)
0.636258 + 0.771476i \(0.280481\pi\)
\(434\) −37.8399 −0.0871886
\(435\) − 10.9098i − 0.0250799i
\(436\) 64.3622i 0.147620i
\(437\) 52.3599i 0.119817i
\(438\) −278.074 −0.634871
\(439\) − 576.891i − 1.31410i −0.753846 0.657051i \(-0.771804\pi\)
0.753846 0.657051i \(-0.228196\pi\)
\(440\) 0 0
\(441\) 145.124 0.329080
\(442\) 4.42940i 0.0100213i
\(443\) −178.241 −0.402349 −0.201175 0.979555i \(-0.564476\pi\)
−0.201175 + 0.979555i \(0.564476\pi\)
\(444\) −208.142 −0.468789
\(445\) −26.4937 −0.0595364
\(446\) 133.333i 0.298953i
\(447\) 400.523i 0.896025i
\(448\) 6.32595i 0.0141204i
\(449\) 622.710 1.38688 0.693441 0.720513i \(-0.256094\pi\)
0.693441 + 0.720513i \(0.256094\pi\)
\(450\) 105.536i 0.234525i
\(451\) 0 0
\(452\) 58.4078 0.129221
\(453\) 461.428i 1.01860i
\(454\) −409.827 −0.902702
\(455\) −0.0584663 −0.000128497 0
\(456\) −10.6285 −0.0233081
\(457\) − 787.808i − 1.72387i −0.507021 0.861934i \(-0.669253\pi\)
0.507021 0.861934i \(-0.330747\pi\)
\(458\) 322.764i 0.704725i
\(459\) 77.7843i 0.169465i
\(460\) 17.0574 0.0370812
\(461\) 377.985i 0.819924i 0.912103 + 0.409962i \(0.134458\pi\)
−0.912103 + 0.409962i \(0.865542\pi\)
\(462\) 0 0
\(463\) −49.3159 −0.106514 −0.0532569 0.998581i \(-0.516960\pi\)
−0.0532569 + 0.998581i \(0.516960\pi\)
\(464\) 71.2960i 0.153655i
\(465\) −20.7114 −0.0445406
\(466\) −422.605 −0.906878
\(467\) −117.187 −0.250936 −0.125468 0.992098i \(-0.540043\pi\)
−0.125468 + 0.992098i \(0.540043\pi\)
\(468\) 1.25537i 0.00268241i
\(469\) 57.6691i 0.122962i
\(470\) 30.5633i 0.0650283i
\(471\) 180.615 0.383472
\(472\) − 145.624i − 0.308525i
\(473\) 0 0
\(474\) −360.385 −0.760307
\(475\) 53.9674i 0.113616i
\(476\) 23.6742 0.0497358
\(477\) 176.902 0.370863
\(478\) −347.797 −0.727608
\(479\) 920.732i 1.92220i 0.276209 + 0.961098i \(0.410922\pi\)
−0.276209 + 0.961098i \(0.589078\pi\)
\(480\) 3.46246i 0.00721347i
\(481\) 12.5716i 0.0261364i
\(482\) 528.093 1.09563
\(483\) − 33.0544i − 0.0684355i
\(484\) 0 0
\(485\) 35.8708 0.0739604
\(486\) 22.0454i 0.0453609i
\(487\) 388.108 0.796936 0.398468 0.917182i \(-0.369542\pi\)
0.398468 + 0.917182i \(0.369542\pi\)
\(488\) −115.265 −0.236198
\(489\) 484.399 0.990591
\(490\) − 24.1759i − 0.0493386i
\(491\) − 364.974i − 0.743328i −0.928367 0.371664i \(-0.878787\pi\)
0.928367 0.371664i \(-0.121213\pi\)
\(492\) 185.525i 0.377083i
\(493\) 266.818 0.541213
\(494\) 0.641950i 0.00129949i
\(495\) 0 0
\(496\) 135.350 0.272884
\(497\) 75.1617i 0.151231i
\(498\) 48.6842 0.0977595
\(499\) −245.125 −0.491232 −0.245616 0.969367i \(-0.578990\pi\)
−0.245616 + 0.969367i \(0.578990\pi\)
\(500\) 35.2504 0.0705007
\(501\) 445.043i 0.888310i
\(502\) 508.299i 1.01255i
\(503\) 294.256i 0.585002i 0.956265 + 0.292501i \(0.0944875\pi\)
−0.956265 + 0.292501i \(0.905513\pi\)
\(504\) 6.70968 0.0133129
\(505\) − 9.21825i − 0.0182540i
\(506\) 0 0
\(507\) −292.641 −0.577201
\(508\) − 298.103i − 0.586818i
\(509\) −855.189 −1.68013 −0.840067 0.542482i \(-0.817485\pi\)
−0.840067 + 0.542482i \(0.817485\pi\)
\(510\) 12.9579 0.0254077
\(511\) 89.7677 0.175671
\(512\) − 22.6274i − 0.0441942i
\(513\) 11.2732i 0.0219751i
\(514\) 50.6065i 0.0984563i
\(515\) −11.1445 −0.0216397
\(516\) 53.9456i 0.104546i
\(517\) 0 0
\(518\) 67.1925 0.129715
\(519\) 190.852i 0.367731i
\(520\) 0.209129 0.000402172 0
\(521\) −607.086 −1.16523 −0.582617 0.812747i \(-0.697971\pi\)
−0.582617 + 0.812747i \(0.697971\pi\)
\(522\) 75.6208 0.144867
\(523\) 674.935i 1.29051i 0.763969 + 0.645253i \(0.223248\pi\)
−0.763969 + 0.645253i \(0.776752\pi\)
\(524\) 331.930i 0.633454i
\(525\) − 34.0692i − 0.0648936i
\(526\) 515.719 0.980454
\(527\) − 506.535i − 0.961166i
\(528\) 0 0
\(529\) 53.4586 0.101056
\(530\) − 29.4697i − 0.0556032i
\(531\) −154.457 −0.290880
\(532\) 3.43109 0.00644941
\(533\) 11.2055 0.0210234
\(534\) − 183.641i − 0.343896i
\(535\) 28.4609i 0.0531980i
\(536\) − 206.278i − 0.384846i
\(537\) −46.9848 −0.0874950
\(538\) 18.9178i 0.0351632i
\(539\) 0 0
\(540\) 3.67250 0.00680092
\(541\) 233.688i 0.431956i 0.976398 + 0.215978i \(0.0692940\pi\)
−0.976398 + 0.215978i \(0.930706\pi\)
\(542\) −100.186 −0.184846
\(543\) −449.591 −0.827976
\(544\) −84.6808 −0.155663
\(545\) − 11.3724i − 0.0208667i
\(546\) − 0.405258i 0 0.000742230i
\(547\) 953.254i 1.74269i 0.490667 + 0.871347i \(0.336753\pi\)
−0.490667 + 0.871347i \(0.663247\pi\)
\(548\) 293.735 0.536014
\(549\) 122.257i 0.222690i
\(550\) 0 0
\(551\) 38.6697 0.0701810
\(552\) 118.233i 0.214190i
\(553\) 116.339 0.210379
\(554\) 112.213 0.202551
\(555\) 36.7773 0.0662655
\(556\) − 427.549i − 0.768973i
\(557\) − 450.083i − 0.808049i −0.914748 0.404025i \(-0.867611\pi\)
0.914748 0.404025i \(-0.132389\pi\)
\(558\) − 143.561i − 0.257277i
\(559\) 3.25826 0.00582873
\(560\) − 1.11775i − 0.00199598i
\(561\) 0 0
\(562\) −485.205 −0.863354
\(563\) − 312.343i − 0.554783i −0.960757 0.277391i \(-0.910530\pi\)
0.960757 0.277391i \(-0.0894698\pi\)
\(564\) −211.849 −0.375619
\(565\) −10.3202 −0.0182659
\(566\) −169.252 −0.299032
\(567\) − 7.11669i − 0.0125515i
\(568\) − 268.848i − 0.473323i
\(569\) 564.562i 0.992200i 0.868265 + 0.496100i \(0.165235\pi\)
−0.868265 + 0.496100i \(0.834765\pi\)
\(570\) 1.87798 0.00329470
\(571\) − 224.552i − 0.393260i −0.980478 0.196630i \(-0.937000\pi\)
0.980478 0.196630i \(-0.0629998\pi\)
\(572\) 0 0
\(573\) 216.129 0.377189
\(574\) − 59.8910i − 0.104340i
\(575\) 600.341 1.04407
\(576\) −24.0000 −0.0416667
\(577\) −1055.36 −1.82905 −0.914524 0.404532i \(-0.867434\pi\)
−0.914524 + 0.404532i \(0.867434\pi\)
\(578\) − 91.7981i − 0.158820i
\(579\) − 72.7274i − 0.125609i
\(580\) − 12.5975i − 0.0217198i
\(581\) −15.7162 −0.0270503
\(582\) 248.638i 0.427213i
\(583\) 0 0
\(584\) −321.092 −0.549815
\(585\) − 0.221815i 0 0.000379171i
\(586\) −16.2862 −0.0277922
\(587\) −79.4137 −0.135287 −0.0676437 0.997710i \(-0.521548\pi\)
−0.0676437 + 0.997710i \(0.521548\pi\)
\(588\) 167.575 0.284991
\(589\) − 73.4117i − 0.124638i
\(590\) 25.7307i 0.0436113i
\(591\) − 475.168i − 0.804007i
\(592\) −240.342 −0.405984
\(593\) 709.519i 1.19649i 0.801313 + 0.598245i \(0.204135\pi\)
−0.801313 + 0.598245i \(0.795865\pi\)
\(594\) 0 0
\(595\) −4.18307 −0.00703037
\(596\) 462.484i 0.775981i
\(597\) 261.504 0.438030
\(598\) 7.14114 0.0119417
\(599\) 698.251 1.16569 0.582847 0.812582i \(-0.301939\pi\)
0.582847 + 0.812582i \(0.301939\pi\)
\(600\) 121.863i 0.203104i
\(601\) − 223.491i − 0.371865i −0.982562 0.185933i \(-0.940469\pi\)
0.982562 0.185933i \(-0.0595306\pi\)
\(602\) − 17.4147i − 0.0289281i
\(603\) −218.791 −0.362837
\(604\) 532.811i 0.882137i
\(605\) 0 0
\(606\) 63.8961 0.105439
\(607\) − 953.367i − 1.57062i −0.619102 0.785310i \(-0.712503\pi\)
0.619102 0.785310i \(-0.287497\pi\)
\(608\) −12.2727 −0.0201854
\(609\) −24.4119 −0.0400852
\(610\) 20.3665 0.0333876
\(611\) 12.7955i 0.0209418i
\(612\) 89.8176i 0.146761i
\(613\) − 27.8874i − 0.0454934i −0.999741 0.0227467i \(-0.992759\pi\)
0.999741 0.0227467i \(-0.00724112\pi\)
\(614\) −278.399 −0.453418
\(615\) − 32.7809i − 0.0533023i
\(616\) 0 0
\(617\) −997.165 −1.61615 −0.808075 0.589079i \(-0.799491\pi\)
−0.808075 + 0.589079i \(0.799491\pi\)
\(618\) − 77.2476i − 0.124996i
\(619\) −23.2638 −0.0375829 −0.0187915 0.999823i \(-0.505982\pi\)
−0.0187915 + 0.999823i \(0.505982\pi\)
\(620\) −23.9154 −0.0385733
\(621\) 125.405 0.201940
\(622\) − 382.426i − 0.614832i
\(623\) 59.2828i 0.0951571i
\(624\) 1.44958i 0.00232304i
\(625\) 615.649 0.985039
\(626\) − 487.352i − 0.778517i
\(627\) 0 0
\(628\) 208.557 0.332097
\(629\) 899.457i 1.42998i
\(630\) −1.18555 −0.00188183
\(631\) −523.766 −0.830058 −0.415029 0.909808i \(-0.636229\pi\)
−0.415029 + 0.909808i \(0.636229\pi\)
\(632\) −416.137 −0.658445
\(633\) − 32.3612i − 0.0511235i
\(634\) − 92.7320i − 0.146265i
\(635\) 52.6728i 0.0829493i
\(636\) 204.269 0.321177
\(637\) − 10.1214i − 0.0158891i
\(638\) 0 0
\(639\) −285.156 −0.446253
\(640\) 3.99811i 0.00624704i
\(641\) −67.4115 −0.105166 −0.0525831 0.998617i \(-0.516745\pi\)
−0.0525831 + 0.998617i \(0.516745\pi\)
\(642\) −197.277 −0.307284
\(643\) −806.459 −1.25421 −0.627106 0.778934i \(-0.715761\pi\)
−0.627106 + 0.778934i \(0.715761\pi\)
\(644\) − 38.1679i − 0.0592669i
\(645\) − 9.53181i − 0.0147780i
\(646\) 45.9295i 0.0710982i
\(647\) −970.912 −1.50064 −0.750319 0.661076i \(-0.770100\pi\)
−0.750319 + 0.661076i \(0.770100\pi\)
\(648\) 25.4558i 0.0392837i
\(649\) 0 0
\(650\) 7.36038 0.0113237
\(651\) 46.3442i 0.0711892i
\(652\) 559.336 0.857877
\(653\) 28.0428 0.0429445 0.0214723 0.999769i \(-0.493165\pi\)
0.0214723 + 0.999769i \(0.493165\pi\)
\(654\) 78.8272 0.120531
\(655\) − 58.6497i − 0.0895416i
\(656\) 214.225i 0.326563i
\(657\) 340.569i 0.518370i
\(658\) 68.3891 0.103935
\(659\) 570.449i 0.865628i 0.901483 + 0.432814i \(0.142479\pi\)
−0.901483 + 0.432814i \(0.857521\pi\)
\(660\) 0 0
\(661\) 854.772 1.29315 0.646575 0.762851i \(-0.276201\pi\)
0.646575 + 0.762851i \(0.276201\pi\)
\(662\) − 149.650i − 0.226057i
\(663\) 5.42489 0.00818234
\(664\) 56.2157 0.0846622
\(665\) −0.606249 −0.000911653 0
\(666\) 254.921i 0.382765i
\(667\) − 430.168i − 0.644929i
\(668\) 513.892i 0.769299i
\(669\) 163.299 0.244094
\(670\) 36.4478i 0.0543998i
\(671\) 0 0
\(672\) 7.74767 0.0115293
\(673\) − 353.405i − 0.525119i −0.964916 0.262560i \(-0.915433\pi\)
0.964916 0.262560i \(-0.0845667\pi\)
\(674\) −319.076 −0.473407
\(675\) 129.255 0.191489
\(676\) −337.912 −0.499870
\(677\) − 1242.34i − 1.83506i −0.397665 0.917531i \(-0.630179\pi\)
0.397665 0.917531i \(-0.369821\pi\)
\(678\) − 71.5346i − 0.105508i
\(679\) − 80.2652i − 0.118211i
\(680\) 14.9625 0.0220037
\(681\) 501.933i 0.737053i
\(682\) 0 0
\(683\) −818.617 −1.19856 −0.599281 0.800539i \(-0.704547\pi\)
−0.599281 + 0.800539i \(0.704547\pi\)
\(684\) 13.0172i 0.0190310i
\(685\) −51.9010 −0.0757679
\(686\) −108.892 −0.158735
\(687\) 395.303 0.575405
\(688\) 62.2910i 0.0905392i
\(689\) − 12.3376i − 0.0179066i
\(690\) − 20.8909i − 0.0302767i
\(691\) 273.464 0.395751 0.197875 0.980227i \(-0.436596\pi\)
0.197875 + 0.980227i \(0.436596\pi\)
\(692\) 220.377i 0.318464i
\(693\) 0 0
\(694\) 191.723 0.276258
\(695\) 75.5450i 0.108698i
\(696\) 87.3194 0.125459
\(697\) 801.717 1.15024
\(698\) 707.324 1.01336
\(699\) 517.584i 0.740463i
\(700\) − 39.3397i − 0.0561995i
\(701\) − 507.111i − 0.723411i −0.932292 0.361706i \(-0.882195\pi\)
0.932292 0.361706i \(-0.117805\pi\)
\(702\) 1.53751 0.00219018
\(703\) 130.358i 0.185430i
\(704\) 0 0
\(705\) 37.4323 0.0530954
\(706\) − 453.385i − 0.642189i
\(707\) −20.6269 −0.0291753
\(708\) −178.352 −0.251909
\(709\) 578.587 0.816060 0.408030 0.912968i \(-0.366216\pi\)
0.408030 + 0.912968i \(0.366216\pi\)
\(710\) 47.5035i 0.0669063i
\(711\) 441.380i 0.620788i
\(712\) − 212.050i − 0.297823i
\(713\) −816.642 −1.14536
\(714\) − 28.9949i − 0.0406091i
\(715\) 0 0
\(716\) −54.2534 −0.0757729
\(717\) 425.962i 0.594089i
\(718\) −160.419 −0.223425
\(719\) 39.2537 0.0545948 0.0272974 0.999627i \(-0.491310\pi\)
0.0272974 + 0.999627i \(0.491310\pi\)
\(720\) 4.24063 0.00588977
\(721\) 24.9371i 0.0345868i
\(722\) − 503.875i − 0.697887i
\(723\) − 646.779i − 0.894577i
\(724\) −519.143 −0.717048
\(725\) − 443.374i − 0.611550i
\(726\) 0 0
\(727\) 918.828 1.26386 0.631932 0.775024i \(-0.282262\pi\)
0.631932 + 0.775024i \(0.282262\pi\)
\(728\) − 0.467951i 0 0.000642790i
\(729\) 27.0000 0.0370370
\(730\) 56.7347 0.0777188
\(731\) 233.118 0.318903
\(732\) 141.170i 0.192855i
\(733\) − 738.905i − 1.00806i −0.863687 0.504028i \(-0.831851\pi\)
0.863687 0.504028i \(-0.168149\pi\)
\(734\) − 126.668i − 0.172573i
\(735\) −29.6093 −0.0402848
\(736\) 136.524i 0.185494i
\(737\) 0 0
\(738\) 227.220 0.307887
\(739\) − 1137.91i − 1.53979i −0.638168 0.769897i \(-0.720308\pi\)
0.638168 0.769897i \(-0.279692\pi\)
\(740\) 42.4668 0.0573876
\(741\) 0.786225 0.00106103
\(742\) −65.9420 −0.0888706
\(743\) 188.316i 0.253454i 0.991938 + 0.126727i \(0.0404472\pi\)
−0.991938 + 0.126727i \(0.959553\pi\)
\(744\) − 165.769i − 0.222808i
\(745\) − 81.7178i − 0.109688i
\(746\) −389.689 −0.522371
\(747\) − 59.6257i − 0.0798203i
\(748\) 0 0
\(749\) 63.6848 0.0850264
\(750\) − 43.1727i − 0.0575636i
\(751\) 605.397 0.806122 0.403061 0.915173i \(-0.367946\pi\)
0.403061 + 0.915173i \(0.367946\pi\)
\(752\) −244.622 −0.325296
\(753\) 622.537 0.826742
\(754\) − 5.27400i − 0.00699470i
\(755\) − 94.1440i − 0.124694i
\(756\) − 8.21765i − 0.0108699i
\(757\) −388.614 −0.513361 −0.256680 0.966496i \(-0.582629\pi\)
−0.256680 + 0.966496i \(0.582629\pi\)
\(758\) 248.258i 0.327517i
\(759\) 0 0
\(760\) 2.16851 0.00285330
\(761\) − 699.156i − 0.918734i −0.888247 0.459367i \(-0.848076\pi\)
0.888247 0.459367i \(-0.151924\pi\)
\(762\) −365.101 −0.479135
\(763\) −25.4470 −0.0333512
\(764\) 249.564 0.326655
\(765\) − 15.8702i − 0.0207453i
\(766\) 72.3778i 0.0944880i
\(767\) 10.7723i 0.0140447i
\(768\) −27.7128 −0.0360844
\(769\) 337.074i 0.438328i 0.975688 + 0.219164i \(0.0703330\pi\)
−0.975688 + 0.219164i \(0.929667\pi\)
\(770\) 0 0
\(771\) 61.9801 0.0803892
\(772\) − 83.9783i − 0.108780i
\(773\) −795.193 −1.02871 −0.514355 0.857577i \(-0.671969\pi\)
−0.514355 + 0.857577i \(0.671969\pi\)
\(774\) 66.0696 0.0853612
\(775\) −841.713 −1.08608
\(776\) 287.102i 0.369977i
\(777\) − 82.2937i − 0.105912i
\(778\) 32.3946i 0.0416383i
\(779\) 116.192 0.149156
\(780\) − 0.256130i 0 0.000328372i
\(781\) 0 0
\(782\) 510.926 0.653358
\(783\) − 92.6162i − 0.118284i
\(784\) 193.499 0.246810
\(785\) −36.8505 −0.0469433
\(786\) 406.530 0.517213
\(787\) − 535.000i − 0.679796i −0.940462 0.339898i \(-0.889607\pi\)
0.940462 0.339898i \(-0.110393\pi\)
\(788\) − 548.677i − 0.696290i
\(789\) − 631.624i − 0.800537i
\(790\) 73.5286 0.0930741
\(791\) 23.0928i 0.0291944i
\(792\) 0 0
\(793\) 8.52651 0.0107522
\(794\) − 185.339i − 0.233424i
\(795\) −36.0929 −0.0453998
\(796\) 301.959 0.379345
\(797\) −711.043 −0.892149 −0.446074 0.894996i \(-0.647178\pi\)
−0.446074 + 0.894996i \(0.647178\pi\)
\(798\) − 4.20221i − 0.00526592i
\(799\) 915.474i 1.14578i
\(800\) 140.715i 0.175894i
\(801\) −224.913 −0.280790
\(802\) − 1097.22i − 1.36810i
\(803\) 0 0
\(804\) −252.638 −0.314226
\(805\) 6.74400i 0.00837764i
\(806\) −10.0123 −0.0124222
\(807\) 23.1695 0.0287106
\(808\) 73.7809 0.0913130
\(809\) − 107.587i − 0.132987i −0.997787 0.0664937i \(-0.978819\pi\)
0.997787 0.0664937i \(-0.0211812\pi\)
\(810\) − 4.49787i − 0.00555293i
\(811\) − 1256.75i − 1.54963i −0.632189 0.774814i \(-0.717844\pi\)
0.632189 0.774814i \(-0.282156\pi\)
\(812\) −28.1884 −0.0347148
\(813\) 122.703i 0.150926i
\(814\) 0 0
\(815\) −98.8308 −0.121265
\(816\) 103.712i 0.127099i
\(817\) 33.7856 0.0413532
\(818\) 1056.95 1.29212
\(819\) −0.496337 −0.000606029 0
\(820\) − 37.8522i − 0.0461612i
\(821\) 1034.51i 1.26006i 0.776572 + 0.630028i \(0.216957\pi\)
−0.776572 + 0.630028i \(0.783043\pi\)
\(822\) − 359.751i − 0.437653i
\(823\) −535.829 −0.651067 −0.325534 0.945530i \(-0.605544\pi\)
−0.325534 + 0.945530i \(0.605544\pi\)
\(824\) − 89.1979i − 0.108250i
\(825\) 0 0
\(826\) 57.5755 0.0697039
\(827\) − 137.866i − 0.166706i −0.996520 0.0833532i \(-0.973437\pi\)
0.996520 0.0833532i \(-0.0265630\pi\)
\(828\) 144.805 0.174885
\(829\) −9.58047 −0.0115567 −0.00577833 0.999983i \(-0.501839\pi\)
−0.00577833 + 0.999983i \(0.501839\pi\)
\(830\) −9.93292 −0.0119674
\(831\) − 137.432i − 0.165382i
\(832\) 1.67383i 0.00201181i
\(833\) − 724.150i − 0.869328i
\(834\) −523.638 −0.627864
\(835\) − 90.8011i − 0.108744i
\(836\) 0 0
\(837\) −175.825 −0.210066
\(838\) 577.602i 0.689263i
\(839\) −480.651 −0.572886 −0.286443 0.958097i \(-0.592473\pi\)
−0.286443 + 0.958097i \(0.592473\pi\)
\(840\) −1.36896 −0.00162971
\(841\) 523.305 0.622241
\(842\) − 147.801i − 0.175536i
\(843\) 594.253i 0.704926i
\(844\) − 37.3675i − 0.0442743i
\(845\) 59.7068 0.0706589
\(846\) 259.461i 0.306692i
\(847\) 0 0
\(848\) 235.869 0.278148
\(849\) 207.291i 0.244158i
\(850\) 526.612 0.619543
\(851\) 1450.12 1.70401
\(852\) −329.270 −0.386467
\(853\) − 1518.02i − 1.77962i −0.456328 0.889812i \(-0.650835\pi\)
0.456328 0.889812i \(-0.349165\pi\)
\(854\) − 45.5724i − 0.0533634i
\(855\) − 2.30005i − 0.00269011i
\(856\) −227.795 −0.266116
\(857\) − 229.336i − 0.267603i −0.991008 0.133802i \(-0.957282\pi\)
0.991008 0.133802i \(-0.0427185\pi\)
\(858\) 0 0
\(859\) −308.792 −0.359478 −0.179739 0.983714i \(-0.557525\pi\)
−0.179739 + 0.983714i \(0.557525\pi\)
\(860\) − 11.0064i − 0.0127981i
\(861\) −73.3512 −0.0851930
\(862\) 408.797 0.474242
\(863\) 517.131 0.599225 0.299613 0.954061i \(-0.403143\pi\)
0.299613 + 0.954061i \(0.403143\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) − 38.9391i − 0.0450164i
\(866\) − 779.231i − 0.899805i
\(867\) −112.429 −0.129676
\(868\) 53.5137i 0.0616517i
\(869\) 0 0
\(870\) −15.4287 −0.0177342
\(871\) 15.2590i 0.0175190i
\(872\) 91.0219 0.104383
\(873\) 304.518 0.348818
\(874\) 74.0481 0.0847232
\(875\) 13.9370i 0.0159280i
\(876\) 393.256i 0.448922i
\(877\) 252.227i 0.287602i 0.989607 + 0.143801i \(0.0459325\pi\)
−0.989607 + 0.143801i \(0.954067\pi\)
\(878\) −815.847 −0.929210
\(879\) 19.9465i 0.0226923i
\(880\) 0 0
\(881\) 830.794 0.943012 0.471506 0.881863i \(-0.343711\pi\)
0.471506 + 0.881863i \(0.343711\pi\)
\(882\) − 205.237i − 0.232695i
\(883\) 537.950 0.609229 0.304615 0.952476i \(-0.401472\pi\)
0.304615 + 0.952476i \(0.401472\pi\)
\(884\) 6.26412 0.00708611
\(885\) 31.5135 0.0356085
\(886\) 252.071i 0.284504i
\(887\) − 1430.06i − 1.61224i −0.591753 0.806120i \(-0.701564\pi\)
0.591753 0.806120i \(-0.298436\pi\)
\(888\) 294.358i 0.331484i
\(889\) 117.862 0.132578
\(890\) 37.4678i 0.0420986i
\(891\) 0 0
\(892\) 188.562 0.211392
\(893\) 132.679i 0.148577i
\(894\) 566.425 0.633585
\(895\) 9.58620 0.0107108
\(896\) 8.94624 0.00998465
\(897\) − 8.74608i − 0.00975036i
\(898\) − 880.645i − 0.980674i
\(899\) 603.121i 0.670879i
\(900\) 149.251 0.165834
\(901\) − 882.717i − 0.979708i
\(902\) 0 0
\(903\) −21.3286 −0.0236197
\(904\) − 82.6010i − 0.0913728i
\(905\) 91.7289 0.101358
\(906\) 652.558 0.720262
\(907\) −1352.76 −1.49147 −0.745734 0.666244i \(-0.767901\pi\)
−0.745734 + 0.666244i \(0.767901\pi\)
\(908\) 579.582i 0.638306i
\(909\) − 78.2565i − 0.0860907i
\(910\) 0.0826838i 0 9.08613e-5i
\(911\) −854.208 −0.937660 −0.468830 0.883288i \(-0.655324\pi\)
−0.468830 + 0.883288i \(0.655324\pi\)
\(912\) 15.0310i 0.0164813i
\(913\) 0 0
\(914\) −1114.13 −1.21896
\(915\) − 24.9437i − 0.0272609i
\(916\) 456.457 0.498315
\(917\) −131.236 −0.143114
\(918\) 110.004 0.119830
\(919\) − 330.219i − 0.359324i −0.983728 0.179662i \(-0.942500\pi\)
0.983728 0.179662i \(-0.0575004\pi\)
\(920\) − 24.1228i − 0.0262204i
\(921\) 340.968i 0.370215i
\(922\) 534.551 0.579774
\(923\) 19.8875i 0.0215466i
\(924\) 0 0
\(925\) 1494.64 1.61582
\(926\) 69.7432i 0.0753166i
\(927\) −94.6086 −0.102059
\(928\) 100.828 0.108651
\(929\) −114.412 −0.123156 −0.0615778 0.998102i \(-0.519613\pi\)
−0.0615778 + 0.998102i \(0.519613\pi\)
\(930\) 29.2903i 0.0314950i
\(931\) − 104.951i − 0.112729i
\(932\) 597.654i 0.641260i
\(933\) −468.374 −0.502008
\(934\) 165.728i 0.177439i
\(935\) 0 0
\(936\) 1.77536 0.00189675
\(937\) − 1619.74i − 1.72864i −0.502938 0.864322i \(-0.667748\pi\)
0.502938 0.864322i \(-0.332252\pi\)
\(938\) 81.5564 0.0869471
\(939\) −596.881 −0.635656
\(940\) 43.2231 0.0459820
\(941\) 759.245i 0.806849i 0.915013 + 0.403424i \(0.132180\pi\)
−0.915013 + 0.403424i \(0.867820\pi\)
\(942\) − 255.429i − 0.271156i
\(943\) − 1292.54i − 1.37067i
\(944\) −205.943 −0.218160
\(945\) 1.45200i 0.00153651i
\(946\) 0 0
\(947\) 1855.32 1.95915 0.979575 0.201079i \(-0.0644447\pi\)
0.979575 + 0.201079i \(0.0644447\pi\)
\(948\) 509.662i 0.537618i
\(949\) 23.7522 0.0250287
\(950\) 76.3214 0.0803383
\(951\) −113.573 −0.119425
\(952\) − 33.4804i − 0.0351685i
\(953\) 1624.78i 1.70492i 0.522796 + 0.852458i \(0.324889\pi\)
−0.522796 + 0.852458i \(0.675111\pi\)
\(954\) − 250.177i − 0.262240i
\(955\) −44.0963 −0.0461742
\(956\) 491.859i 0.514496i
\(957\) 0 0
\(958\) 1302.11 1.35920
\(959\) 116.135i 0.121100i
\(960\) 4.89666 0.00510069
\(961\) 183.980 0.191447
\(962\) 17.7789 0.0184812
\(963\) 241.613i 0.250897i
\(964\) − 746.836i − 0.774726i
\(965\) 14.8384i 0.0153766i
\(966\) −46.7459 −0.0483912
\(967\) − 325.104i − 0.336199i −0.985770 0.168099i \(-0.946237\pi\)
0.985770 0.168099i \(-0.0537629\pi\)
\(968\) 0 0
\(969\) 56.2519 0.0580515
\(970\) − 50.7290i − 0.0522979i
\(971\) 280.767 0.289152 0.144576 0.989494i \(-0.453818\pi\)
0.144576 + 0.989494i \(0.453818\pi\)
\(972\) 31.1769 0.0320750
\(973\) 169.041 0.173732
\(974\) − 548.867i − 0.563519i
\(975\) − 9.01459i − 0.00924573i
\(976\) 163.009i 0.167017i
\(977\) 1609.79 1.64769 0.823843 0.566818i \(-0.191826\pi\)
0.823843 + 0.566818i \(0.191826\pi\)
\(978\) − 685.044i − 0.700454i
\(979\) 0 0
\(980\) −34.1899 −0.0348877
\(981\) − 96.5433i − 0.0984131i
\(982\) −516.151 −0.525612
\(983\) −374.382 −0.380856 −0.190428 0.981701i \(-0.560988\pi\)
−0.190428 + 0.981701i \(0.560988\pi\)
\(984\) 262.371 0.266638
\(985\) 96.9474i 0.0984238i
\(986\) − 377.338i − 0.382696i
\(987\) − 83.7591i − 0.0848624i
\(988\) 0.907854 0.000918881 0
\(989\) − 375.836i − 0.380016i
\(990\) 0 0
\(991\) −943.875 −0.952447 −0.476223 0.879324i \(-0.657995\pi\)
−0.476223 + 0.879324i \(0.657995\pi\)
\(992\) − 191.414i − 0.192958i
\(993\) −183.283 −0.184575
\(994\) 106.295 0.106936
\(995\) −53.3540 −0.0536221
\(996\) − 68.8499i − 0.0691264i
\(997\) − 681.654i − 0.683705i −0.939754 0.341853i \(-0.888946\pi\)
0.939754 0.341853i \(-0.111054\pi\)
\(998\) 346.659i 0.347353i
\(999\) 312.214 0.312526
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.3.d.e.241.2 16
3.2 odd 2 2178.3.d.m.1693.12 16
11.4 even 5 66.3.f.a.61.4 yes 16
11.8 odd 10 66.3.f.a.13.4 16
11.10 odd 2 inner 726.3.d.e.241.10 16
33.8 even 10 198.3.j.b.145.2 16
33.26 odd 10 198.3.j.b.127.2 16
33.32 even 2 2178.3.d.m.1693.4 16
44.15 odd 10 528.3.bf.c.193.1 16
44.19 even 10 528.3.bf.c.145.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.3.f.a.13.4 16 11.8 odd 10
66.3.f.a.61.4 yes 16 11.4 even 5
198.3.j.b.127.2 16 33.26 odd 10
198.3.j.b.145.2 16 33.8 even 10
528.3.bf.c.145.1 16 44.19 even 10
528.3.bf.c.193.1 16 44.15 odd 10
726.3.d.e.241.2 16 1.1 even 1 trivial
726.3.d.e.241.10 16 11.10 odd 2 inner
2178.3.d.m.1693.4 16 33.32 even 2
2178.3.d.m.1693.12 16 3.2 odd 2