Defining parameters
Level: | \( N \) | \(=\) | \( 528 = 2^{4} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 528.bf (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(15\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(528, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 816 | 96 | 720 |
Cusp forms | 720 | 96 | 624 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(528, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
528.3.bf.a | $16$ | $14.387$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(-4\) | \(30\) | \(q+\beta _{7}q^{3}+(-\beta _{1}+\beta _{3}-2\beta _{11}-2\beta _{12}+\cdots)q^{5}+\cdots\) |
528.3.bf.b | $16$ | $14.387$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(-4\) | \(30\) | \(q-\beta _{10}q^{3}+(-\beta _{5}+\beta _{11}+\beta _{13})q^{5}+\cdots\) |
528.3.bf.c | $16$ | $14.387$ | 16.0.\(\cdots\).7 | None | \(0\) | \(0\) | \(8\) | \(-60\) | \(q-\beta _{9}q^{3}+(1-\beta _{2}-\beta _{4}+\beta _{5}-\beta _{6}+\cdots)q^{5}+\cdots\) |
528.3.bf.d | $48$ | $14.387$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(528, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(528, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 2}\)