Properties

Label 528.3.bf
Level $528$
Weight $3$
Character orbit 528.bf
Rep. character $\chi_{528}(145,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $96$
Newform subspaces $4$
Sturm bound $288$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 528.bf (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 4 \)
Sturm bound: \(288\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(528, [\chi])\).

Total New Old
Modular forms 816 96 720
Cusp forms 720 96 624
Eisenstein series 96 0 96

Trace form

\( 96 q - 72 q^{9} + 16 q^{11} + 32 q^{23} - 104 q^{25} - 24 q^{33} - 480 q^{35} - 144 q^{37} + 80 q^{41} + 144 q^{47} - 56 q^{49} + 208 q^{53} + 464 q^{55} - 256 q^{59} + 160 q^{67} + 320 q^{71} + 280 q^{73}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(528, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
528.3.bf.a 528.bf 11.d $16$ $14.387$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 132.3.l.a \(0\) \(0\) \(-4\) \(30\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{7}q^{3}+(-\beta _{1}+\beta _{3}-2\beta _{11}-2\beta _{12}+\cdots)q^{5}+\cdots\)
528.3.bf.b 528.bf 11.d $16$ $14.387$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 33.3.g.a \(0\) \(0\) \(-4\) \(30\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{10}q^{3}+(-\beta _{5}+\beta _{11}+\beta _{13})q^{5}+\cdots\)
528.3.bf.c 528.bf 11.d $16$ $14.387$ 16.0.\(\cdots\).7 None 66.3.f.a \(0\) \(0\) \(8\) \(-60\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{9}q^{3}+(1-\beta _{2}-\beta _{4}+\beta _{5}-\beta _{6}+\cdots)q^{5}+\cdots\)
528.3.bf.d 528.bf 11.d $48$ $14.387$ None 264.3.x.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{3}^{\mathrm{old}}(528, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(528, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(11, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 2}\)