Properties

Label 52.10.a.b
Level $52$
Weight $10$
Character orbit 52.a
Self dual yes
Analytic conductor $26.782$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [52,10,Mod(1,52)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(52, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("52.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 52.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7818634805\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 5049x^{3} - 87027x^{2} + 2867800x + 48215700 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 29) q^{3} + (\beta_{2} + \beta_1 + 345) q^{5} + ( - 3 \beta_{4} - \beta_{3} + \cdots + 674) q^{7} + (3 \beta_{4} + 4 \beta_{3} + \cdots - 631) q^{9} + (14 \beta_{4} - 9 \beta_{3} + \cdots + 1408) q^{11}+ \cdots + ( - 198303 \beta_{4} + 176599 \beta_{3} + \cdots + 60327659) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 147 q^{3} + 1721 q^{5} + 3317 q^{7} - 3204 q^{9} + 6562 q^{11} - 142805 q^{13} + 80283 q^{15} - 146493 q^{17} + 110250 q^{19} + 2250015 q^{21} + 1675652 q^{23} + 6048610 q^{25} + 4937895 q^{27} + 7019714 q^{29}+ \cdots + 302611248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 5049x^{3} - 87027x^{2} + 2867800x + 48215700 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 113\nu^{4} - 3558\nu^{3} - 405502\nu^{2} + 2053669\nu + 113831770 ) / 59735 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -87\nu^{4} + 7497\nu^{3} + 307443\nu^{2} - 20196261\nu - 337166700 ) / 119470 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -168\nu^{4} + 2118\nu^{3} + 785247\nu^{2} + 4578036\nu - 363924080 ) / 59735 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{4} + 4\beta_{3} + 6\beta_{2} + 80\beta _1 + 18212 ) / 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{4} + 230\beta_{3} + 93\beta_{2} + 11818\beta _1 + 501976 ) / 9 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 10860\beta_{4} + 21596\beta_{3} + 29217\beta_{2} + 604669\beta _1 + 72038815 ) / 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−49.9322
−33.0384
−15.8217
24.5519
75.2404
0 −179.797 0 2632.50 0 −5669.07 0 12643.9 0
1.2 0 −129.115 0 −1993.22 0 −7554.87 0 −3012.30 0
1.3 0 −77.4651 0 313.346 0 12252.5 0 −13682.2 0
1.4 0 43.6557 0 −1118.78 0 −2400.89 0 −17777.2 0
1.5 0 195.721 0 1887.16 0 6689.32 0 18623.8 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 52.10.a.b 5
4.b odd 2 1 208.10.a.i 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.10.a.b 5 1.a even 1 1 trivial
208.10.a.i 5 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} + 147T_{3}^{4} - 36801T_{3}^{3} - 6185619T_{3}^{2} - 27656640T_{3} + 15365376000 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(52))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + \cdots + 15365376000 \) Copy content Toggle raw display
$5$ \( T^{5} + \cdots - 34\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots + 84\!\cdots\!44 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots - 10\!\cdots\!84 \) Copy content Toggle raw display
$13$ \( (T + 28561)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 23\!\cdots\!32 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 46\!\cdots\!20 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 27\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 20\!\cdots\!40 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 65\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 10\!\cdots\!72 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 63\!\cdots\!68 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 32\!\cdots\!48 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 58\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 12\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 91\!\cdots\!20 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 38\!\cdots\!32 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 57\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 97\!\cdots\!80 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 25\!\cdots\!76 \) Copy content Toggle raw display
show more
show less