Properties

Label 2-52-1.1-c9-0-5
Degree $2$
Conductor $52$
Sign $1$
Analytic cond. $26.7818$
Root an. cond. $5.17511$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 195.·3-s + 1.88e3·5-s + 6.68e3·7-s + 1.86e4·9-s + 3.38e4·11-s − 2.85e4·13-s + 3.69e5·15-s − 1.00e5·17-s − 5.28e5·19-s + 1.30e6·21-s − 6.35e5·23-s + 1.60e6·25-s − 2.07e5·27-s − 5.60e6·29-s + 4.13e6·31-s + 6.61e6·33-s + 1.26e7·35-s − 3.49e6·37-s − 5.58e6·39-s + 3.30e7·41-s + 3.58e7·43-s + 3.51e7·45-s + 2.81e7·47-s + 4.39e6·49-s − 1.96e7·51-s − 3.87e7·53-s + 6.38e7·55-s + ⋯
L(s)  = 1  + 1.39·3-s + 1.35·5-s + 1.05·7-s + 0.946·9-s + 0.696·11-s − 0.277·13-s + 1.88·15-s − 0.290·17-s − 0.929·19-s + 1.46·21-s − 0.473·23-s + 0.823·25-s − 0.0750·27-s − 1.47·29-s + 0.804·31-s + 0.971·33-s + 1.42·35-s − 0.306·37-s − 0.386·39-s + 1.82·41-s + 1.59·43-s + 1.27·45-s + 0.841·47-s + 0.108·49-s − 0.405·51-s − 0.674·53-s + 0.940·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52\)    =    \(2^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(26.7818\)
Root analytic conductor: \(5.17511\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 52,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(4.384635654\)
\(L(\frac12)\) \(\approx\) \(4.384635654\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 2.85e4T \)
good3 \( 1 - 195.T + 1.96e4T^{2} \)
5 \( 1 - 1.88e3T + 1.95e6T^{2} \)
7 \( 1 - 6.68e3T + 4.03e7T^{2} \)
11 \( 1 - 3.38e4T + 2.35e9T^{2} \)
17 \( 1 + 1.00e5T + 1.18e11T^{2} \)
19 \( 1 + 5.28e5T + 3.22e11T^{2} \)
23 \( 1 + 6.35e5T + 1.80e12T^{2} \)
29 \( 1 + 5.60e6T + 1.45e13T^{2} \)
31 \( 1 - 4.13e6T + 2.64e13T^{2} \)
37 \( 1 + 3.49e6T + 1.29e14T^{2} \)
41 \( 1 - 3.30e7T + 3.27e14T^{2} \)
43 \( 1 - 3.58e7T + 5.02e14T^{2} \)
47 \( 1 - 2.81e7T + 1.11e15T^{2} \)
53 \( 1 + 3.87e7T + 3.29e15T^{2} \)
59 \( 1 + 7.53e7T + 8.66e15T^{2} \)
61 \( 1 + 1.53e8T + 1.16e16T^{2} \)
67 \( 1 - 1.69e7T + 2.72e16T^{2} \)
71 \( 1 - 9.46e7T + 4.58e16T^{2} \)
73 \( 1 - 6.01e7T + 5.88e16T^{2} \)
79 \( 1 - 1.39e8T + 1.19e17T^{2} \)
83 \( 1 + 8.05e8T + 1.86e17T^{2} \)
89 \( 1 + 7.35e8T + 3.50e17T^{2} \)
97 \( 1 - 1.43e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.92961343047920195664895503625, −12.70384662222714747523200580061, −10.99159711819737739567422377710, −9.594107961645015270132896774882, −8.841379486262675485635644128634, −7.63437198009574195875679615040, −5.96015460149442630717308180222, −4.26045686128381588926083914422, −2.45417619904281807417056998116, −1.62138566348986792744643400426, 1.62138566348986792744643400426, 2.45417619904281807417056998116, 4.26045686128381588926083914422, 5.96015460149442630717308180222, 7.63437198009574195875679615040, 8.841379486262675485635644128634, 9.594107961645015270132896774882, 10.99159711819737739567422377710, 12.70384662222714747523200580061, 13.92961343047920195664895503625

Graph of the $Z$-function along the critical line