Properties

Label 52.10.a.b.1.5
Level $52$
Weight $10$
Character 52.1
Self dual yes
Analytic conductor $26.782$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [52,10,Mod(1,52)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(52, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("52.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 52.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.7818634805\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 5049x^{3} - 87027x^{2} + 2867800x + 48215700 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(75.2404\) of defining polynomial
Character \(\chi\) \(=\) 52.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+195.721 q^{3} +1887.16 q^{5} +6689.32 q^{7} +18623.8 q^{9} +33813.8 q^{11} -28561.0 q^{13} +369357. q^{15} -100152. q^{17} -528083. q^{19} +1.30924e6 q^{21} -635662. q^{23} +1.60825e6 q^{25} -207311. q^{27} -5.60786e6 q^{29} +4.13899e6 q^{31} +6.61807e6 q^{33} +1.26238e7 q^{35} -3.49585e6 q^{37} -5.58999e6 q^{39} +3.30438e7 q^{41} +3.58060e7 q^{43} +3.51461e7 q^{45} +2.81522e7 q^{47} +4.39336e6 q^{49} -1.96019e7 q^{51} -3.87720e7 q^{53} +6.38120e7 q^{55} -1.03357e8 q^{57} -7.53492e7 q^{59} -1.53785e8 q^{61} +1.24580e8 q^{63} -5.38992e7 q^{65} +1.69378e7 q^{67} -1.24413e8 q^{69} +9.46824e7 q^{71} +6.01966e7 q^{73} +3.14768e8 q^{75} +2.26191e8 q^{77} +1.39281e8 q^{79} -4.07147e8 q^{81} -8.05240e8 q^{83} -1.89003e8 q^{85} -1.09758e9 q^{87} -7.35041e8 q^{89} -1.91054e8 q^{91} +8.10089e8 q^{93} -9.96577e8 q^{95} +1.43090e9 q^{97} +6.29740e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 147 q^{3} + 1721 q^{5} + 3317 q^{7} - 3204 q^{9} + 6562 q^{11} - 142805 q^{13} + 80283 q^{15} - 146493 q^{17} + 110250 q^{19} + 2250015 q^{21} + 1675652 q^{23} + 6048610 q^{25} + 4937895 q^{27} + 7019714 q^{29}+ \cdots + 302611248 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 195.721 1.39506 0.697529 0.716557i \(-0.254283\pi\)
0.697529 + 0.716557i \(0.254283\pi\)
\(4\) 0 0
\(5\) 1887.16 1.35034 0.675171 0.737661i \(-0.264070\pi\)
0.675171 + 0.737661i \(0.264070\pi\)
\(6\) 0 0
\(7\) 6689.32 1.05303 0.526515 0.850166i \(-0.323498\pi\)
0.526515 + 0.850166i \(0.323498\pi\)
\(8\) 0 0
\(9\) 18623.8 0.946186
\(10\) 0 0
\(11\) 33813.8 0.696348 0.348174 0.937430i \(-0.386802\pi\)
0.348174 + 0.937430i \(0.386802\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) 369357. 1.88380
\(16\) 0 0
\(17\) −100152. −0.290831 −0.145416 0.989371i \(-0.546452\pi\)
−0.145416 + 0.989371i \(0.546452\pi\)
\(18\) 0 0
\(19\) −528083. −0.929632 −0.464816 0.885407i \(-0.653880\pi\)
−0.464816 + 0.885407i \(0.653880\pi\)
\(20\) 0 0
\(21\) 1.30924e6 1.46904
\(22\) 0 0
\(23\) −635662. −0.473643 −0.236822 0.971553i \(-0.576106\pi\)
−0.236822 + 0.971553i \(0.576106\pi\)
\(24\) 0 0
\(25\) 1.60825e6 0.823423
\(26\) 0 0
\(27\) −207311. −0.0750732
\(28\) 0 0
\(29\) −5.60786e6 −1.47233 −0.736167 0.676800i \(-0.763366\pi\)
−0.736167 + 0.676800i \(0.763366\pi\)
\(30\) 0 0
\(31\) 4.13899e6 0.804947 0.402473 0.915432i \(-0.368151\pi\)
0.402473 + 0.915432i \(0.368151\pi\)
\(32\) 0 0
\(33\) 6.61807e6 0.971446
\(34\) 0 0
\(35\) 1.26238e7 1.42195
\(36\) 0 0
\(37\) −3.49585e6 −0.306651 −0.153326 0.988176i \(-0.548998\pi\)
−0.153326 + 0.988176i \(0.548998\pi\)
\(38\) 0 0
\(39\) −5.58999e6 −0.386919
\(40\) 0 0
\(41\) 3.30438e7 1.82626 0.913130 0.407669i \(-0.133658\pi\)
0.913130 + 0.407669i \(0.133658\pi\)
\(42\) 0 0
\(43\) 3.58060e7 1.59716 0.798579 0.601890i \(-0.205585\pi\)
0.798579 + 0.601890i \(0.205585\pi\)
\(44\) 0 0
\(45\) 3.51461e7 1.27767
\(46\) 0 0
\(47\) 2.81522e7 0.841534 0.420767 0.907169i \(-0.361761\pi\)
0.420767 + 0.907169i \(0.361761\pi\)
\(48\) 0 0
\(49\) 4.39336e6 0.108872
\(50\) 0 0
\(51\) −1.96019e7 −0.405726
\(52\) 0 0
\(53\) −3.87720e7 −0.674959 −0.337479 0.941333i \(-0.609574\pi\)
−0.337479 + 0.941333i \(0.609574\pi\)
\(54\) 0 0
\(55\) 6.38120e7 0.940308
\(56\) 0 0
\(57\) −1.03357e8 −1.29689
\(58\) 0 0
\(59\) −7.53492e7 −0.809551 −0.404776 0.914416i \(-0.632650\pi\)
−0.404776 + 0.914416i \(0.632650\pi\)
\(60\) 0 0
\(61\) −1.53785e8 −1.42210 −0.711048 0.703143i \(-0.751779\pi\)
−0.711048 + 0.703143i \(0.751779\pi\)
\(62\) 0 0
\(63\) 1.24580e8 0.996362
\(64\) 0 0
\(65\) −5.38992e7 −0.374517
\(66\) 0 0
\(67\) 1.69378e7 0.102688 0.0513440 0.998681i \(-0.483650\pi\)
0.0513440 + 0.998681i \(0.483650\pi\)
\(68\) 0 0
\(69\) −1.24413e8 −0.660759
\(70\) 0 0
\(71\) 9.46824e7 0.442188 0.221094 0.975253i \(-0.429037\pi\)
0.221094 + 0.975253i \(0.429037\pi\)
\(72\) 0 0
\(73\) 6.01966e7 0.248095 0.124048 0.992276i \(-0.460412\pi\)
0.124048 + 0.992276i \(0.460412\pi\)
\(74\) 0 0
\(75\) 3.14768e8 1.14872
\(76\) 0 0
\(77\) 2.26191e8 0.733275
\(78\) 0 0
\(79\) 1.39281e8 0.402319 0.201159 0.979559i \(-0.435529\pi\)
0.201159 + 0.979559i \(0.435529\pi\)
\(80\) 0 0
\(81\) −4.07147e8 −1.05092
\(82\) 0 0
\(83\) −8.05240e8 −1.86240 −0.931202 0.364504i \(-0.881238\pi\)
−0.931202 + 0.364504i \(0.881238\pi\)
\(84\) 0 0
\(85\) −1.89003e8 −0.392721
\(86\) 0 0
\(87\) −1.09758e9 −2.05399
\(88\) 0 0
\(89\) −7.35041e8 −1.24181 −0.620907 0.783884i \(-0.713236\pi\)
−0.620907 + 0.783884i \(0.713236\pi\)
\(90\) 0 0
\(91\) −1.91054e8 −0.292058
\(92\) 0 0
\(93\) 8.10089e8 1.12295
\(94\) 0 0
\(95\) −9.96577e8 −1.25532
\(96\) 0 0
\(97\) 1.43090e9 1.64111 0.820555 0.571567i \(-0.193664\pi\)
0.820555 + 0.571567i \(0.193664\pi\)
\(98\) 0 0
\(99\) 6.29740e8 0.658875
\(100\) 0 0
\(101\) −4.00832e8 −0.383280 −0.191640 0.981465i \(-0.561381\pi\)
−0.191640 + 0.981465i \(0.561381\pi\)
\(102\) 0 0
\(103\) −1.95959e9 −1.71553 −0.857764 0.514044i \(-0.828147\pi\)
−0.857764 + 0.514044i \(0.828147\pi\)
\(104\) 0 0
\(105\) 2.47075e9 1.98370
\(106\) 0 0
\(107\) −8.19599e8 −0.604469 −0.302235 0.953234i \(-0.597733\pi\)
−0.302235 + 0.953234i \(0.597733\pi\)
\(108\) 0 0
\(109\) 2.47004e9 1.67604 0.838021 0.545639i \(-0.183713\pi\)
0.838021 + 0.545639i \(0.183713\pi\)
\(110\) 0 0
\(111\) −6.84211e8 −0.427796
\(112\) 0 0
\(113\) 2.62429e9 1.51412 0.757058 0.653348i \(-0.226636\pi\)
0.757058 + 0.653348i \(0.226636\pi\)
\(114\) 0 0
\(115\) −1.19960e9 −0.639580
\(116\) 0 0
\(117\) −5.31914e8 −0.262425
\(118\) 0 0
\(119\) −6.69950e8 −0.306254
\(120\) 0 0
\(121\) −1.21458e9 −0.515099
\(122\) 0 0
\(123\) 6.46737e9 2.54774
\(124\) 0 0
\(125\) −6.50840e8 −0.238440
\(126\) 0 0
\(127\) 2.46880e9 0.842111 0.421056 0.907035i \(-0.361660\pi\)
0.421056 + 0.907035i \(0.361660\pi\)
\(128\) 0 0
\(129\) 7.00800e9 2.22813
\(130\) 0 0
\(131\) 3.58925e9 1.06484 0.532418 0.846481i \(-0.321283\pi\)
0.532418 + 0.846481i \(0.321283\pi\)
\(132\) 0 0
\(133\) −3.53251e9 −0.978930
\(134\) 0 0
\(135\) −3.91228e8 −0.101374
\(136\) 0 0
\(137\) −2.85083e9 −0.691399 −0.345699 0.938345i \(-0.612358\pi\)
−0.345699 + 0.938345i \(0.612358\pi\)
\(138\) 0 0
\(139\) −6.65459e9 −1.51201 −0.756005 0.654565i \(-0.772852\pi\)
−0.756005 + 0.654565i \(0.772852\pi\)
\(140\) 0 0
\(141\) 5.50998e9 1.17399
\(142\) 0 0
\(143\) −9.65755e8 −0.193132
\(144\) 0 0
\(145\) −1.05829e10 −1.98815
\(146\) 0 0
\(147\) 8.59873e8 0.151882
\(148\) 0 0
\(149\) 3.53264e9 0.587166 0.293583 0.955934i \(-0.405152\pi\)
0.293583 + 0.955934i \(0.405152\pi\)
\(150\) 0 0
\(151\) −8.49892e9 −1.33036 −0.665178 0.746685i \(-0.731644\pi\)
−0.665178 + 0.746685i \(0.731644\pi\)
\(152\) 0 0
\(153\) −1.86521e9 −0.275180
\(154\) 0 0
\(155\) 7.81094e9 1.08695
\(156\) 0 0
\(157\) 4.16789e9 0.547479 0.273739 0.961804i \(-0.411739\pi\)
0.273739 + 0.961804i \(0.411739\pi\)
\(158\) 0 0
\(159\) −7.58851e9 −0.941607
\(160\) 0 0
\(161\) −4.25215e9 −0.498760
\(162\) 0 0
\(163\) −6.39222e9 −0.709263 −0.354632 0.935006i \(-0.615394\pi\)
−0.354632 + 0.935006i \(0.615394\pi\)
\(164\) 0 0
\(165\) 1.24894e10 1.31178
\(166\) 0 0
\(167\) −1.68883e10 −1.68020 −0.840100 0.542432i \(-0.817504\pi\)
−0.840100 + 0.542432i \(0.817504\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −9.83491e9 −0.879605
\(172\) 0 0
\(173\) 1.22379e10 1.03872 0.519361 0.854555i \(-0.326170\pi\)
0.519361 + 0.854555i \(0.326170\pi\)
\(174\) 0 0
\(175\) 1.07581e10 0.867088
\(176\) 0 0
\(177\) −1.47474e10 −1.12937
\(178\) 0 0
\(179\) 1.83860e10 1.33859 0.669295 0.742996i \(-0.266596\pi\)
0.669295 + 0.742996i \(0.266596\pi\)
\(180\) 0 0
\(181\) 1.76860e10 1.22483 0.612414 0.790537i \(-0.290198\pi\)
0.612414 + 0.790537i \(0.290198\pi\)
\(182\) 0 0
\(183\) −3.00989e10 −1.98391
\(184\) 0 0
\(185\) −6.59722e9 −0.414084
\(186\) 0 0
\(187\) −3.38653e9 −0.202520
\(188\) 0 0
\(189\) −1.38677e9 −0.0790543
\(190\) 0 0
\(191\) 2.54411e10 1.38320 0.691602 0.722279i \(-0.256905\pi\)
0.691602 + 0.722279i \(0.256905\pi\)
\(192\) 0 0
\(193\) −3.17582e10 −1.64759 −0.823793 0.566891i \(-0.808146\pi\)
−0.823793 + 0.566891i \(0.808146\pi\)
\(194\) 0 0
\(195\) −1.05492e10 −0.522473
\(196\) 0 0
\(197\) −1.56437e10 −0.740015 −0.370008 0.929029i \(-0.620645\pi\)
−0.370008 + 0.929029i \(0.620645\pi\)
\(198\) 0 0
\(199\) −1.45182e10 −0.656258 −0.328129 0.944633i \(-0.606418\pi\)
−0.328129 + 0.944633i \(0.606418\pi\)
\(200\) 0 0
\(201\) 3.31508e9 0.143256
\(202\) 0 0
\(203\) −3.75127e10 −1.55041
\(204\) 0 0
\(205\) 6.23589e10 2.46607
\(206\) 0 0
\(207\) −1.18384e10 −0.448155
\(208\) 0 0
\(209\) −1.78565e10 −0.647348
\(210\) 0 0
\(211\) −3.70320e10 −1.28619 −0.643097 0.765785i \(-0.722351\pi\)
−0.643097 + 0.765785i \(0.722351\pi\)
\(212\) 0 0
\(213\) 1.85314e10 0.616877
\(214\) 0 0
\(215\) 6.75717e10 2.15671
\(216\) 0 0
\(217\) 2.76870e10 0.847633
\(218\) 0 0
\(219\) 1.17817e10 0.346108
\(220\) 0 0
\(221\) 2.86045e9 0.0806620
\(222\) 0 0
\(223\) 5.40531e9 0.146369 0.0731844 0.997318i \(-0.476684\pi\)
0.0731844 + 0.997318i \(0.476684\pi\)
\(224\) 0 0
\(225\) 2.99516e10 0.779111
\(226\) 0 0
\(227\) −4.90433e9 −0.122592 −0.0612962 0.998120i \(-0.519523\pi\)
−0.0612962 + 0.998120i \(0.519523\pi\)
\(228\) 0 0
\(229\) 6.58728e10 1.58287 0.791437 0.611251i \(-0.209333\pi\)
0.791437 + 0.611251i \(0.209333\pi\)
\(230\) 0 0
\(231\) 4.42704e10 1.02296
\(232\) 0 0
\(233\) 3.31701e10 0.737302 0.368651 0.929568i \(-0.379820\pi\)
0.368651 + 0.929568i \(0.379820\pi\)
\(234\) 0 0
\(235\) 5.31276e10 1.13636
\(236\) 0 0
\(237\) 2.72603e10 0.561258
\(238\) 0 0
\(239\) −3.32294e9 −0.0658767 −0.0329383 0.999457i \(-0.510486\pi\)
−0.0329383 + 0.999457i \(0.510486\pi\)
\(240\) 0 0
\(241\) 3.39919e10 0.649081 0.324540 0.945872i \(-0.394790\pi\)
0.324540 + 0.945872i \(0.394790\pi\)
\(242\) 0 0
\(243\) −7.56068e10 −1.39102
\(244\) 0 0
\(245\) 8.29097e9 0.147014
\(246\) 0 0
\(247\) 1.50826e10 0.257833
\(248\) 0 0
\(249\) −1.57602e11 −2.59816
\(250\) 0 0
\(251\) 2.40320e10 0.382172 0.191086 0.981573i \(-0.438799\pi\)
0.191086 + 0.981573i \(0.438799\pi\)
\(252\) 0 0
\(253\) −2.14941e10 −0.329821
\(254\) 0 0
\(255\) −3.69920e10 −0.547869
\(256\) 0 0
\(257\) 8.49875e10 1.21522 0.607612 0.794234i \(-0.292128\pi\)
0.607612 + 0.794234i \(0.292128\pi\)
\(258\) 0 0
\(259\) −2.33848e10 −0.322913
\(260\) 0 0
\(261\) −1.04440e11 −1.39310
\(262\) 0 0
\(263\) 2.72793e10 0.351586 0.175793 0.984427i \(-0.443751\pi\)
0.175793 + 0.984427i \(0.443751\pi\)
\(264\) 0 0
\(265\) −7.31690e10 −0.911425
\(266\) 0 0
\(267\) −1.43863e11 −1.73240
\(268\) 0 0
\(269\) 1.45306e9 0.0169200 0.00845998 0.999964i \(-0.497307\pi\)
0.00845998 + 0.999964i \(0.497307\pi\)
\(270\) 0 0
\(271\) −3.35590e10 −0.377961 −0.188981 0.981981i \(-0.560518\pi\)
−0.188981 + 0.981981i \(0.560518\pi\)
\(272\) 0 0
\(273\) −3.73932e10 −0.407438
\(274\) 0 0
\(275\) 5.43809e10 0.573389
\(276\) 0 0
\(277\) 2.51248e10 0.256415 0.128208 0.991747i \(-0.459078\pi\)
0.128208 + 0.991747i \(0.459078\pi\)
\(278\) 0 0
\(279\) 7.70837e10 0.761629
\(280\) 0 0
\(281\) 1.10842e11 1.06054 0.530268 0.847830i \(-0.322091\pi\)
0.530268 + 0.847830i \(0.322091\pi\)
\(282\) 0 0
\(283\) −1.74705e11 −1.61907 −0.809536 0.587070i \(-0.800281\pi\)
−0.809536 + 0.587070i \(0.800281\pi\)
\(284\) 0 0
\(285\) −1.95051e11 −1.75124
\(286\) 0 0
\(287\) 2.21040e11 1.92311
\(288\) 0 0
\(289\) −1.08557e11 −0.915417
\(290\) 0 0
\(291\) 2.80058e11 2.28944
\(292\) 0 0
\(293\) −3.76354e10 −0.298327 −0.149163 0.988813i \(-0.547658\pi\)
−0.149163 + 0.988813i \(0.547658\pi\)
\(294\) 0 0
\(295\) −1.42196e11 −1.09317
\(296\) 0 0
\(297\) −7.00996e9 −0.0522771
\(298\) 0 0
\(299\) 1.81551e10 0.131365
\(300\) 0 0
\(301\) 2.39518e11 1.68186
\(302\) 0 0
\(303\) −7.84513e10 −0.534698
\(304\) 0 0
\(305\) −2.90216e11 −1.92032
\(306\) 0 0
\(307\) −1.16535e11 −0.748747 −0.374373 0.927278i \(-0.622142\pi\)
−0.374373 + 0.927278i \(0.622142\pi\)
\(308\) 0 0
\(309\) −3.83533e11 −2.39326
\(310\) 0 0
\(311\) 1.86355e11 1.12958 0.564792 0.825233i \(-0.308956\pi\)
0.564792 + 0.825233i \(0.308956\pi\)
\(312\) 0 0
\(313\) −1.00540e11 −0.592093 −0.296046 0.955174i \(-0.595668\pi\)
−0.296046 + 0.955174i \(0.595668\pi\)
\(314\) 0 0
\(315\) 2.35103e11 1.34543
\(316\) 0 0
\(317\) 2.01223e11 1.11921 0.559605 0.828760i \(-0.310953\pi\)
0.559605 + 0.828760i \(0.310953\pi\)
\(318\) 0 0
\(319\) −1.89623e11 −1.02526
\(320\) 0 0
\(321\) −1.60413e11 −0.843270
\(322\) 0 0
\(323\) 5.28887e10 0.270366
\(324\) 0 0
\(325\) −4.59331e10 −0.228376
\(326\) 0 0
\(327\) 4.83439e11 2.33817
\(328\) 0 0
\(329\) 1.88319e11 0.886160
\(330\) 0 0
\(331\) −2.42987e11 −1.11265 −0.556323 0.830966i \(-0.687788\pi\)
−0.556323 + 0.830966i \(0.687788\pi\)
\(332\) 0 0
\(333\) −6.51059e10 −0.290149
\(334\) 0 0
\(335\) 3.19643e10 0.138664
\(336\) 0 0
\(337\) −2.02728e10 −0.0856207 −0.0428103 0.999083i \(-0.513631\pi\)
−0.0428103 + 0.999083i \(0.513631\pi\)
\(338\) 0 0
\(339\) 5.13629e11 2.11228
\(340\) 0 0
\(341\) 1.39955e11 0.560523
\(342\) 0 0
\(343\) −2.40550e11 −0.938385
\(344\) 0 0
\(345\) −2.34786e11 −0.892251
\(346\) 0 0
\(347\) −6.94989e10 −0.257333 −0.128667 0.991688i \(-0.541070\pi\)
−0.128667 + 0.991688i \(0.541070\pi\)
\(348\) 0 0
\(349\) 1.76281e10 0.0636048 0.0318024 0.999494i \(-0.489875\pi\)
0.0318024 + 0.999494i \(0.489875\pi\)
\(350\) 0 0
\(351\) 5.92100e9 0.0208216
\(352\) 0 0
\(353\) −1.65313e10 −0.0566659 −0.0283330 0.999599i \(-0.509020\pi\)
−0.0283330 + 0.999599i \(0.509020\pi\)
\(354\) 0 0
\(355\) 1.78681e11 0.597104
\(356\) 0 0
\(357\) −1.31123e11 −0.427242
\(358\) 0 0
\(359\) 4.90587e11 1.55880 0.779401 0.626525i \(-0.215523\pi\)
0.779401 + 0.626525i \(0.215523\pi\)
\(360\) 0 0
\(361\) −4.38160e10 −0.135785
\(362\) 0 0
\(363\) −2.37718e11 −0.718593
\(364\) 0 0
\(365\) 1.13601e11 0.335014
\(366\) 0 0
\(367\) 4.06208e11 1.16883 0.584414 0.811455i \(-0.301324\pi\)
0.584414 + 0.811455i \(0.301324\pi\)
\(368\) 0 0
\(369\) 6.15401e11 1.72798
\(370\) 0 0
\(371\) −2.59359e11 −0.710752
\(372\) 0 0
\(373\) −6.00800e11 −1.60709 −0.803545 0.595244i \(-0.797056\pi\)
−0.803545 + 0.595244i \(0.797056\pi\)
\(374\) 0 0
\(375\) −1.27383e11 −0.332637
\(376\) 0 0
\(377\) 1.60166e11 0.408352
\(378\) 0 0
\(379\) 1.72621e11 0.429752 0.214876 0.976641i \(-0.431065\pi\)
0.214876 + 0.976641i \(0.431065\pi\)
\(380\) 0 0
\(381\) 4.83197e11 1.17479
\(382\) 0 0
\(383\) −4.57405e11 −1.08619 −0.543096 0.839671i \(-0.682748\pi\)
−0.543096 + 0.839671i \(0.682748\pi\)
\(384\) 0 0
\(385\) 4.26859e11 0.990172
\(386\) 0 0
\(387\) 6.66844e11 1.51121
\(388\) 0 0
\(389\) 2.60035e10 0.0575782 0.0287891 0.999586i \(-0.490835\pi\)
0.0287891 + 0.999586i \(0.490835\pi\)
\(390\) 0 0
\(391\) 6.36630e10 0.137750
\(392\) 0 0
\(393\) 7.02493e11 1.48551
\(394\) 0 0
\(395\) 2.62846e11 0.543268
\(396\) 0 0
\(397\) 2.03597e11 0.411353 0.205677 0.978620i \(-0.434060\pi\)
0.205677 + 0.978620i \(0.434060\pi\)
\(398\) 0 0
\(399\) −6.91388e11 −1.36566
\(400\) 0 0
\(401\) 6.40571e11 1.23714 0.618569 0.785731i \(-0.287713\pi\)
0.618569 + 0.785731i \(0.287713\pi\)
\(402\) 0 0
\(403\) −1.18214e11 −0.223252
\(404\) 0 0
\(405\) −7.68352e11 −1.41910
\(406\) 0 0
\(407\) −1.18208e11 −0.213536
\(408\) 0 0
\(409\) −6.75615e11 −1.19384 −0.596918 0.802303i \(-0.703608\pi\)
−0.596918 + 0.802303i \(0.703608\pi\)
\(410\) 0 0
\(411\) −5.57967e11 −0.964541
\(412\) 0 0
\(413\) −5.04035e11 −0.852482
\(414\) 0 0
\(415\) −1.51962e12 −2.51488
\(416\) 0 0
\(417\) −1.30244e12 −2.10934
\(418\) 0 0
\(419\) −7.61552e11 −1.20708 −0.603540 0.797333i \(-0.706244\pi\)
−0.603540 + 0.797333i \(0.706244\pi\)
\(420\) 0 0
\(421\) 7.10331e11 1.10202 0.551012 0.834497i \(-0.314242\pi\)
0.551012 + 0.834497i \(0.314242\pi\)
\(422\) 0 0
\(423\) 5.24300e11 0.796248
\(424\) 0 0
\(425\) −1.61070e11 −0.239477
\(426\) 0 0
\(427\) −1.02872e12 −1.49751
\(428\) 0 0
\(429\) −1.89019e11 −0.269431
\(430\) 0 0
\(431\) 3.13989e11 0.438296 0.219148 0.975692i \(-0.429672\pi\)
0.219148 + 0.975692i \(0.429672\pi\)
\(432\) 0 0
\(433\) 1.20439e12 1.64653 0.823267 0.567655i \(-0.192149\pi\)
0.823267 + 0.567655i \(0.192149\pi\)
\(434\) 0 0
\(435\) −2.07130e12 −2.77359
\(436\) 0 0
\(437\) 3.35682e11 0.440314
\(438\) 0 0
\(439\) 1.45395e12 1.86836 0.934179 0.356804i \(-0.116134\pi\)
0.934179 + 0.356804i \(0.116134\pi\)
\(440\) 0 0
\(441\) 8.18210e10 0.103013
\(442\) 0 0
\(443\) 2.03318e11 0.250819 0.125409 0.992105i \(-0.459976\pi\)
0.125409 + 0.992105i \(0.459976\pi\)
\(444\) 0 0
\(445\) −1.38714e12 −1.67687
\(446\) 0 0
\(447\) 6.91412e11 0.819130
\(448\) 0 0
\(449\) 8.26254e11 0.959411 0.479706 0.877429i \(-0.340743\pi\)
0.479706 + 0.877429i \(0.340743\pi\)
\(450\) 0 0
\(451\) 1.11734e12 1.27171
\(452\) 0 0
\(453\) −1.66342e12 −1.85592
\(454\) 0 0
\(455\) −3.60549e11 −0.394378
\(456\) 0 0
\(457\) −1.40840e12 −1.51044 −0.755218 0.655474i \(-0.772469\pi\)
−0.755218 + 0.655474i \(0.772469\pi\)
\(458\) 0 0
\(459\) 2.07626e10 0.0218336
\(460\) 0 0
\(461\) 9.68042e11 0.998252 0.499126 0.866530i \(-0.333655\pi\)
0.499126 + 0.866530i \(0.333655\pi\)
\(462\) 0 0
\(463\) 3.09545e11 0.313047 0.156523 0.987674i \(-0.449971\pi\)
0.156523 + 0.987674i \(0.449971\pi\)
\(464\) 0 0
\(465\) 1.52877e12 1.51636
\(466\) 0 0
\(467\) 8.91404e11 0.867259 0.433629 0.901091i \(-0.357233\pi\)
0.433629 + 0.901091i \(0.357233\pi\)
\(468\) 0 0
\(469\) 1.13302e11 0.108134
\(470\) 0 0
\(471\) 8.15743e11 0.763765
\(472\) 0 0
\(473\) 1.21074e12 1.11218
\(474\) 0 0
\(475\) −8.49288e11 −0.765480
\(476\) 0 0
\(477\) −7.22082e11 −0.638637
\(478\) 0 0
\(479\) −1.95587e11 −0.169758 −0.0848789 0.996391i \(-0.527050\pi\)
−0.0848789 + 0.996391i \(0.527050\pi\)
\(480\) 0 0
\(481\) 9.98449e10 0.0850497
\(482\) 0 0
\(483\) −8.32235e11 −0.695799
\(484\) 0 0
\(485\) 2.70035e12 2.21606
\(486\) 0 0
\(487\) −9.30929e11 −0.749957 −0.374978 0.927034i \(-0.622350\pi\)
−0.374978 + 0.927034i \(0.622350\pi\)
\(488\) 0 0
\(489\) −1.25109e12 −0.989463
\(490\) 0 0
\(491\) 1.91366e12 1.48593 0.742964 0.669331i \(-0.233419\pi\)
0.742964 + 0.669331i \(0.233419\pi\)
\(492\) 0 0
\(493\) 5.61640e11 0.428200
\(494\) 0 0
\(495\) 1.18842e12 0.889707
\(496\) 0 0
\(497\) 6.33361e11 0.465637
\(498\) 0 0
\(499\) −1.72803e11 −0.124767 −0.0623834 0.998052i \(-0.519870\pi\)
−0.0623834 + 0.998052i \(0.519870\pi\)
\(500\) 0 0
\(501\) −3.30539e12 −2.34398
\(502\) 0 0
\(503\) −6.24705e11 −0.435130 −0.217565 0.976046i \(-0.569811\pi\)
−0.217565 + 0.976046i \(0.569811\pi\)
\(504\) 0 0
\(505\) −7.56434e11 −0.517559
\(506\) 0 0
\(507\) 1.59656e11 0.107312
\(508\) 0 0
\(509\) 6.05040e11 0.399534 0.199767 0.979843i \(-0.435981\pi\)
0.199767 + 0.979843i \(0.435981\pi\)
\(510\) 0 0
\(511\) 4.02674e11 0.261252
\(512\) 0 0
\(513\) 1.09477e11 0.0697904
\(514\) 0 0
\(515\) −3.69806e12 −2.31655
\(516\) 0 0
\(517\) 9.51931e11 0.586001
\(518\) 0 0
\(519\) 2.39521e12 1.44908
\(520\) 0 0
\(521\) 4.85788e11 0.288853 0.144427 0.989516i \(-0.453866\pi\)
0.144427 + 0.989516i \(0.453866\pi\)
\(522\) 0 0
\(523\) 7.82169e11 0.457133 0.228567 0.973528i \(-0.426596\pi\)
0.228567 + 0.973528i \(0.426596\pi\)
\(524\) 0 0
\(525\) 2.10558e12 1.20964
\(526\) 0 0
\(527\) −4.14530e11 −0.234103
\(528\) 0 0
\(529\) −1.39709e12 −0.775662
\(530\) 0 0
\(531\) −1.40329e12 −0.765986
\(532\) 0 0
\(533\) −9.43764e11 −0.506513
\(534\) 0 0
\(535\) −1.54671e12 −0.816240
\(536\) 0 0
\(537\) 3.59852e12 1.86741
\(538\) 0 0
\(539\) 1.48556e11 0.0758125
\(540\) 0 0
\(541\) 1.26847e12 0.636637 0.318319 0.947984i \(-0.396882\pi\)
0.318319 + 0.947984i \(0.396882\pi\)
\(542\) 0 0
\(543\) 3.46152e12 1.70871
\(544\) 0 0
\(545\) 4.66136e12 2.26323
\(546\) 0 0
\(547\) 5.05021e11 0.241194 0.120597 0.992702i \(-0.461519\pi\)
0.120597 + 0.992702i \(0.461519\pi\)
\(548\) 0 0
\(549\) −2.86405e12 −1.34557
\(550\) 0 0
\(551\) 2.96142e12 1.36873
\(552\) 0 0
\(553\) 9.31695e11 0.423654
\(554\) 0 0
\(555\) −1.29122e12 −0.577671
\(556\) 0 0
\(557\) −1.12861e12 −0.496816 −0.248408 0.968655i \(-0.579907\pi\)
−0.248408 + 0.968655i \(0.579907\pi\)
\(558\) 0 0
\(559\) −1.02266e12 −0.442972
\(560\) 0 0
\(561\) −6.62815e11 −0.282527
\(562\) 0 0
\(563\) −3.06092e12 −1.28400 −0.641998 0.766706i \(-0.721894\pi\)
−0.641998 + 0.766706i \(0.721894\pi\)
\(564\) 0 0
\(565\) 4.95246e12 2.04457
\(566\) 0 0
\(567\) −2.72354e12 −1.10665
\(568\) 0 0
\(569\) −8.86327e11 −0.354478 −0.177239 0.984168i \(-0.556717\pi\)
−0.177239 + 0.984168i \(0.556717\pi\)
\(570\) 0 0
\(571\) −2.03959e12 −0.802935 −0.401467 0.915873i \(-0.631500\pi\)
−0.401467 + 0.915873i \(0.631500\pi\)
\(572\) 0 0
\(573\) 4.97937e12 1.92965
\(574\) 0 0
\(575\) −1.02230e12 −0.390008
\(576\) 0 0
\(577\) 3.66489e12 1.37648 0.688239 0.725484i \(-0.258384\pi\)
0.688239 + 0.725484i \(0.258384\pi\)
\(578\) 0 0
\(579\) −6.21575e12 −2.29848
\(580\) 0 0
\(581\) −5.38650e12 −1.96117
\(582\) 0 0
\(583\) −1.31103e12 −0.470006
\(584\) 0 0
\(585\) −1.00381e12 −0.354363
\(586\) 0 0
\(587\) −4.50691e12 −1.56678 −0.783389 0.621532i \(-0.786511\pi\)
−0.783389 + 0.621532i \(0.786511\pi\)
\(588\) 0 0
\(589\) −2.18573e12 −0.748304
\(590\) 0 0
\(591\) −3.06180e12 −1.03236
\(592\) 0 0
\(593\) 3.44539e12 1.14418 0.572088 0.820192i \(-0.306134\pi\)
0.572088 + 0.820192i \(0.306134\pi\)
\(594\) 0 0
\(595\) −1.26430e12 −0.413547
\(596\) 0 0
\(597\) −2.84153e12 −0.915519
\(598\) 0 0
\(599\) 4.48065e12 1.42207 0.711033 0.703158i \(-0.248227\pi\)
0.711033 + 0.703158i \(0.248227\pi\)
\(600\) 0 0
\(601\) −3.56039e12 −1.11317 −0.556587 0.830790i \(-0.687889\pi\)
−0.556587 + 0.830790i \(0.687889\pi\)
\(602\) 0 0
\(603\) 3.15446e11 0.0971620
\(604\) 0 0
\(605\) −2.29210e12 −0.695560
\(606\) 0 0
\(607\) 5.31638e12 1.58952 0.794762 0.606921i \(-0.207596\pi\)
0.794762 + 0.606921i \(0.207596\pi\)
\(608\) 0 0
\(609\) −7.34204e12 −2.16291
\(610\) 0 0
\(611\) −8.04054e11 −0.233399
\(612\) 0 0
\(613\) 5.37069e12 1.53624 0.768118 0.640308i \(-0.221193\pi\)
0.768118 + 0.640308i \(0.221193\pi\)
\(614\) 0 0
\(615\) 1.22050e13 3.44032
\(616\) 0 0
\(617\) −4.42993e12 −1.23059 −0.615296 0.788296i \(-0.710963\pi\)
−0.615296 + 0.788296i \(0.710963\pi\)
\(618\) 0 0
\(619\) −2.94637e12 −0.806639 −0.403319 0.915059i \(-0.632144\pi\)
−0.403319 + 0.915059i \(0.632144\pi\)
\(620\) 0 0
\(621\) 1.31780e11 0.0355579
\(622\) 0 0
\(623\) −4.91692e12 −1.30767
\(624\) 0 0
\(625\) −4.36935e12 −1.14540
\(626\) 0 0
\(627\) −3.49489e12 −0.903087
\(628\) 0 0
\(629\) 3.50117e11 0.0891837
\(630\) 0 0
\(631\) −3.02633e11 −0.0759949 −0.0379974 0.999278i \(-0.512098\pi\)
−0.0379974 + 0.999278i \(0.512098\pi\)
\(632\) 0 0
\(633\) −7.24795e12 −1.79431
\(634\) 0 0
\(635\) 4.65902e12 1.13714
\(636\) 0 0
\(637\) −1.25479e11 −0.0301955
\(638\) 0 0
\(639\) 1.76334e12 0.418392
\(640\) 0 0
\(641\) −6.55797e12 −1.53429 −0.767146 0.641472i \(-0.778324\pi\)
−0.767146 + 0.641472i \(0.778324\pi\)
\(642\) 0 0
\(643\) 1.94130e12 0.447862 0.223931 0.974605i \(-0.428111\pi\)
0.223931 + 0.974605i \(0.428111\pi\)
\(644\) 0 0
\(645\) 1.32252e13 3.00873
\(646\) 0 0
\(647\) 5.24666e12 1.17710 0.588550 0.808461i \(-0.299699\pi\)
0.588550 + 0.808461i \(0.299699\pi\)
\(648\) 0 0
\(649\) −2.54784e12 −0.563730
\(650\) 0 0
\(651\) 5.41894e12 1.18250
\(652\) 0 0
\(653\) 4.70789e12 1.01325 0.506626 0.862166i \(-0.330893\pi\)
0.506626 + 0.862166i \(0.330893\pi\)
\(654\) 0 0
\(655\) 6.77349e12 1.43789
\(656\) 0 0
\(657\) 1.12109e12 0.234745
\(658\) 0 0
\(659\) −7.26742e12 −1.50105 −0.750527 0.660840i \(-0.770200\pi\)
−0.750527 + 0.660840i \(0.770200\pi\)
\(660\) 0 0
\(661\) −5.03101e12 −1.02506 −0.512530 0.858670i \(-0.671292\pi\)
−0.512530 + 0.858670i \(0.671292\pi\)
\(662\) 0 0
\(663\) 5.59851e11 0.112528
\(664\) 0 0
\(665\) −6.66642e12 −1.32189
\(666\) 0 0
\(667\) 3.56470e12 0.697360
\(668\) 0 0
\(669\) 1.05793e12 0.204193
\(670\) 0 0
\(671\) −5.20004e12 −0.990275
\(672\) 0 0
\(673\) 6.34252e12 1.19177 0.595887 0.803068i \(-0.296800\pi\)
0.595887 + 0.803068i \(0.296800\pi\)
\(674\) 0 0
\(675\) −3.33407e11 −0.0618169
\(676\) 0 0
\(677\) −4.08727e12 −0.747798 −0.373899 0.927469i \(-0.621979\pi\)
−0.373899 + 0.927469i \(0.621979\pi\)
\(678\) 0 0
\(679\) 9.57177e12 1.72814
\(680\) 0 0
\(681\) −9.59881e11 −0.171023
\(682\) 0 0
\(683\) 8.27796e12 1.45556 0.727780 0.685811i \(-0.240552\pi\)
0.727780 + 0.685811i \(0.240552\pi\)
\(684\) 0 0
\(685\) −5.37997e12 −0.933624
\(686\) 0 0
\(687\) 1.28927e13 2.20820
\(688\) 0 0
\(689\) 1.10737e12 0.187200
\(690\) 0 0
\(691\) 7.37742e12 1.23099 0.615493 0.788142i \(-0.288957\pi\)
0.615493 + 0.788142i \(0.288957\pi\)
\(692\) 0 0
\(693\) 4.21253e12 0.693815
\(694\) 0 0
\(695\) −1.25583e13 −2.04173
\(696\) 0 0
\(697\) −3.30941e12 −0.531133
\(698\) 0 0
\(699\) 6.49210e12 1.02858
\(700\) 0 0
\(701\) 9.00916e12 1.40914 0.704568 0.709636i \(-0.251141\pi\)
0.704568 + 0.709636i \(0.251141\pi\)
\(702\) 0 0
\(703\) 1.84610e12 0.285073
\(704\) 0 0
\(705\) 1.03982e13 1.58528
\(706\) 0 0
\(707\) −2.68129e12 −0.403605
\(708\) 0 0
\(709\) −5.99607e12 −0.891167 −0.445583 0.895240i \(-0.647004\pi\)
−0.445583 + 0.895240i \(0.647004\pi\)
\(710\) 0 0
\(711\) 2.59394e12 0.380668
\(712\) 0 0
\(713\) −2.63100e12 −0.381257
\(714\) 0 0
\(715\) −1.82253e12 −0.260795
\(716\) 0 0
\(717\) −6.50369e11 −0.0919018
\(718\) 0 0
\(719\) −1.87453e12 −0.261585 −0.130792 0.991410i \(-0.541752\pi\)
−0.130792 + 0.991410i \(0.541752\pi\)
\(720\) 0 0
\(721\) −1.31083e13 −1.80650
\(722\) 0 0
\(723\) 6.65293e12 0.905505
\(724\) 0 0
\(725\) −9.01882e12 −1.21235
\(726\) 0 0
\(727\) −8.58334e12 −1.13960 −0.569799 0.821784i \(-0.692979\pi\)
−0.569799 + 0.821784i \(0.692979\pi\)
\(728\) 0 0
\(729\) −6.78398e12 −0.889633
\(730\) 0 0
\(731\) −3.58606e12 −0.464503
\(732\) 0 0
\(733\) 8.69180e12 1.11209 0.556047 0.831151i \(-0.312317\pi\)
0.556047 + 0.831151i \(0.312317\pi\)
\(734\) 0 0
\(735\) 1.62272e12 0.205093
\(736\) 0 0
\(737\) 5.72730e11 0.0715066
\(738\) 0 0
\(739\) −6.47515e12 −0.798638 −0.399319 0.916812i \(-0.630753\pi\)
−0.399319 + 0.916812i \(0.630753\pi\)
\(740\) 0 0
\(741\) 2.95198e12 0.359693
\(742\) 0 0
\(743\) 1.01411e13 1.22078 0.610389 0.792102i \(-0.291013\pi\)
0.610389 + 0.792102i \(0.291013\pi\)
\(744\) 0 0
\(745\) 6.66665e12 0.792874
\(746\) 0 0
\(747\) −1.49966e13 −1.76218
\(748\) 0 0
\(749\) −5.48256e12 −0.636524
\(750\) 0 0
\(751\) −1.31246e13 −1.50558 −0.752792 0.658258i \(-0.771294\pi\)
−0.752792 + 0.658258i \(0.771294\pi\)
\(752\) 0 0
\(753\) 4.70358e12 0.533152
\(754\) 0 0
\(755\) −1.60388e13 −1.79643
\(756\) 0 0
\(757\) 7.46928e12 0.826699 0.413349 0.910573i \(-0.364359\pi\)
0.413349 + 0.910573i \(0.364359\pi\)
\(758\) 0 0
\(759\) −4.20686e12 −0.460119
\(760\) 0 0
\(761\) 2.20992e12 0.238861 0.119431 0.992843i \(-0.461893\pi\)
0.119431 + 0.992843i \(0.461893\pi\)
\(762\) 0 0
\(763\) 1.65229e13 1.76492
\(764\) 0 0
\(765\) −3.51996e12 −0.371587
\(766\) 0 0
\(767\) 2.15205e12 0.224529
\(768\) 0 0
\(769\) 1.32928e13 1.37072 0.685359 0.728205i \(-0.259645\pi\)
0.685359 + 0.728205i \(0.259645\pi\)
\(770\) 0 0
\(771\) 1.66339e13 1.69531
\(772\) 0 0
\(773\) −8.23975e12 −0.830054 −0.415027 0.909809i \(-0.636228\pi\)
−0.415027 + 0.909809i \(0.636228\pi\)
\(774\) 0 0
\(775\) 6.65652e12 0.662811
\(776\) 0 0
\(777\) −4.57691e12 −0.450482
\(778\) 0 0
\(779\) −1.74499e13 −1.69775
\(780\) 0 0
\(781\) 3.20157e12 0.307917
\(782\) 0 0
\(783\) 1.16257e12 0.110533
\(784\) 0 0
\(785\) 7.86547e12 0.739283
\(786\) 0 0
\(787\) 7.95024e11 0.0738744 0.0369372 0.999318i \(-0.488240\pi\)
0.0369372 + 0.999318i \(0.488240\pi\)
\(788\) 0 0
\(789\) 5.33913e12 0.490483
\(790\) 0 0
\(791\) 1.75547e13 1.59441
\(792\) 0 0
\(793\) 4.39225e12 0.394419
\(794\) 0 0
\(795\) −1.43207e13 −1.27149
\(796\) 0 0
\(797\) −4.62851e12 −0.406330 −0.203165 0.979145i \(-0.565123\pi\)
−0.203165 + 0.979145i \(0.565123\pi\)
\(798\) 0 0
\(799\) −2.81950e12 −0.244744
\(800\) 0 0
\(801\) −1.36892e13 −1.17499
\(802\) 0 0
\(803\) 2.03547e12 0.172761
\(804\) 0 0
\(805\) −8.02448e12 −0.673497
\(806\) 0 0
\(807\) 2.84395e11 0.0236043
\(808\) 0 0
\(809\) −5.61069e12 −0.460519 −0.230260 0.973129i \(-0.573958\pi\)
−0.230260 + 0.973129i \(0.573958\pi\)
\(810\) 0 0
\(811\) −2.20994e12 −0.179385 −0.0896926 0.995969i \(-0.528588\pi\)
−0.0896926 + 0.995969i \(0.528588\pi\)
\(812\) 0 0
\(813\) −6.56821e12 −0.527278
\(814\) 0 0
\(815\) −1.20631e13 −0.957748
\(816\) 0 0
\(817\) −1.89086e13 −1.48477
\(818\) 0 0
\(819\) −3.55814e12 −0.276341
\(820\) 0 0
\(821\) −1.24618e13 −0.957275 −0.478637 0.878013i \(-0.658869\pi\)
−0.478637 + 0.878013i \(0.658869\pi\)
\(822\) 0 0
\(823\) 1.06275e11 0.00807476 0.00403738 0.999992i \(-0.498715\pi\)
0.00403738 + 0.999992i \(0.498715\pi\)
\(824\) 0 0
\(825\) 1.06435e13 0.799911
\(826\) 0 0
\(827\) −4.78634e11 −0.0355819 −0.0177909 0.999842i \(-0.505663\pi\)
−0.0177909 + 0.999842i \(0.505663\pi\)
\(828\) 0 0
\(829\) −2.31568e13 −1.70288 −0.851439 0.524454i \(-0.824270\pi\)
−0.851439 + 0.524454i \(0.824270\pi\)
\(830\) 0 0
\(831\) 4.91746e12 0.357714
\(832\) 0 0
\(833\) −4.40005e11 −0.0316632
\(834\) 0 0
\(835\) −3.18708e13 −2.26884
\(836\) 0 0
\(837\) −8.58058e11 −0.0604299
\(838\) 0 0
\(839\) −3.71923e12 −0.259134 −0.129567 0.991571i \(-0.541359\pi\)
−0.129567 + 0.991571i \(0.541359\pi\)
\(840\) 0 0
\(841\) 1.69409e13 1.16776
\(842\) 0 0
\(843\) 2.16941e13 1.47951
\(844\) 0 0
\(845\) 1.53941e12 0.103872
\(846\) 0 0
\(847\) −8.12469e12 −0.542415
\(848\) 0 0
\(849\) −3.41935e13 −2.25870
\(850\) 0 0
\(851\) 2.22218e12 0.145243
\(852\) 0 0
\(853\) 1.32172e13 0.854806 0.427403 0.904061i \(-0.359429\pi\)
0.427403 + 0.904061i \(0.359429\pi\)
\(854\) 0 0
\(855\) −1.85600e13 −1.18777
\(856\) 0 0
\(857\) 2.92197e13 1.85039 0.925194 0.379495i \(-0.123902\pi\)
0.925194 + 0.379495i \(0.123902\pi\)
\(858\) 0 0
\(859\) 2.32836e13 1.45909 0.729544 0.683934i \(-0.239732\pi\)
0.729544 + 0.683934i \(0.239732\pi\)
\(860\) 0 0
\(861\) 4.32623e13 2.68284
\(862\) 0 0
\(863\) −5.15139e12 −0.316137 −0.158069 0.987428i \(-0.550527\pi\)
−0.158069 + 0.987428i \(0.550527\pi\)
\(864\) 0 0
\(865\) 2.30949e13 1.40263
\(866\) 0 0
\(867\) −2.12470e13 −1.27706
\(868\) 0 0
\(869\) 4.70962e12 0.280154
\(870\) 0 0
\(871\) −4.83760e11 −0.0284805
\(872\) 0 0
\(873\) 2.66489e13 1.55280
\(874\) 0 0
\(875\) −4.35367e12 −0.251084
\(876\) 0 0
\(877\) 1.72783e13 0.986284 0.493142 0.869949i \(-0.335848\pi\)
0.493142 + 0.869949i \(0.335848\pi\)
\(878\) 0 0
\(879\) −7.36605e12 −0.416183
\(880\) 0 0
\(881\) 2.34967e13 1.31406 0.657029 0.753865i \(-0.271813\pi\)
0.657029 + 0.753865i \(0.271813\pi\)
\(882\) 0 0
\(883\) −2.13677e12 −0.118286 −0.0591432 0.998250i \(-0.518837\pi\)
−0.0591432 + 0.998250i \(0.518837\pi\)
\(884\) 0 0
\(885\) −2.78308e13 −1.52504
\(886\) 0 0
\(887\) 1.78709e13 0.969373 0.484686 0.874688i \(-0.338934\pi\)
0.484686 + 0.874688i \(0.338934\pi\)
\(888\) 0 0
\(889\) 1.65146e13 0.886768
\(890\) 0 0
\(891\) −1.37672e13 −0.731805
\(892\) 0 0
\(893\) −1.48667e13 −0.782316
\(894\) 0 0
\(895\) 3.46973e13 1.80755
\(896\) 0 0
\(897\) 3.55335e12 0.183262
\(898\) 0 0
\(899\) −2.32109e13 −1.18515
\(900\) 0 0
\(901\) 3.88311e12 0.196299
\(902\) 0 0
\(903\) 4.68787e13 2.34629
\(904\) 0 0
\(905\) 3.33763e13 1.65394
\(906\) 0 0
\(907\) 1.05287e13 0.516587 0.258294 0.966066i \(-0.416840\pi\)
0.258294 + 0.966066i \(0.416840\pi\)
\(908\) 0 0
\(909\) −7.46501e12 −0.362654
\(910\) 0 0
\(911\) 3.65775e13 1.75947 0.879734 0.475466i \(-0.157720\pi\)
0.879734 + 0.475466i \(0.157720\pi\)
\(912\) 0 0
\(913\) −2.72282e13 −1.29688
\(914\) 0 0
\(915\) −5.68015e13 −2.67895
\(916\) 0 0
\(917\) 2.40096e13 1.12130
\(918\) 0 0
\(919\) 2.88133e13 1.33252 0.666258 0.745721i \(-0.267895\pi\)
0.666258 + 0.745721i \(0.267895\pi\)
\(920\) 0 0
\(921\) −2.28084e13 −1.04455
\(922\) 0 0
\(923\) −2.70422e12 −0.122641
\(924\) 0 0
\(925\) −5.62218e12 −0.252503
\(926\) 0 0
\(927\) −3.64950e13 −1.62321
\(928\) 0 0
\(929\) 2.06330e13 0.908849 0.454425 0.890785i \(-0.349845\pi\)
0.454425 + 0.890785i \(0.349845\pi\)
\(930\) 0 0
\(931\) −2.32006e12 −0.101210
\(932\) 0 0
\(933\) 3.64735e13 1.57583
\(934\) 0 0
\(935\) −6.39092e12 −0.273471
\(936\) 0 0
\(937\) 2.84504e13 1.20576 0.602879 0.797832i \(-0.294020\pi\)
0.602879 + 0.797832i \(0.294020\pi\)
\(938\) 0 0
\(939\) −1.96778e13 −0.826003
\(940\) 0 0
\(941\) −4.21717e13 −1.75335 −0.876674 0.481084i \(-0.840243\pi\)
−0.876674 + 0.481084i \(0.840243\pi\)
\(942\) 0 0
\(943\) −2.10047e13 −0.864995
\(944\) 0 0
\(945\) −2.61705e12 −0.106750
\(946\) 0 0
\(947\) −1.10763e13 −0.447529 −0.223765 0.974643i \(-0.571835\pi\)
−0.223765 + 0.974643i \(0.571835\pi\)
\(948\) 0 0
\(949\) −1.71927e12 −0.0688093
\(950\) 0 0
\(951\) 3.93836e13 1.56136
\(952\) 0 0
\(953\) −1.68223e13 −0.660642 −0.330321 0.943869i \(-0.607157\pi\)
−0.330321 + 0.943869i \(0.607157\pi\)
\(954\) 0 0
\(955\) 4.80115e13 1.86780
\(956\) 0 0
\(957\) −3.71132e13 −1.43029
\(958\) 0 0
\(959\) −1.90701e13 −0.728063
\(960\) 0 0
\(961\) −9.30836e12 −0.352061
\(962\) 0 0
\(963\) −1.52640e13 −0.571941
\(964\) 0 0
\(965\) −5.99328e13 −2.22480
\(966\) 0 0
\(967\) 3.22369e12 0.118559 0.0592795 0.998241i \(-0.481120\pi\)
0.0592795 + 0.998241i \(0.481120\pi\)
\(968\) 0 0
\(969\) 1.03514e13 0.377176
\(970\) 0 0
\(971\) 3.63067e13 1.31069 0.655346 0.755329i \(-0.272523\pi\)
0.655346 + 0.755329i \(0.272523\pi\)
\(972\) 0 0
\(973\) −4.45147e13 −1.59219
\(974\) 0 0
\(975\) −8.99009e12 −0.318598
\(976\) 0 0
\(977\) 2.12642e13 0.746662 0.373331 0.927698i \(-0.378216\pi\)
0.373331 + 0.927698i \(0.378216\pi\)
\(978\) 0 0
\(979\) −2.48545e13 −0.864735
\(980\) 0 0
\(981\) 4.60015e13 1.58585
\(982\) 0 0
\(983\) 1.06078e13 0.362354 0.181177 0.983451i \(-0.442009\pi\)
0.181177 + 0.983451i \(0.442009\pi\)
\(984\) 0 0
\(985\) −2.95221e13 −0.999274
\(986\) 0 0
\(987\) 3.68580e13 1.23624
\(988\) 0 0
\(989\) −2.27605e13 −0.756483
\(990\) 0 0
\(991\) −4.09012e13 −1.34711 −0.673557 0.739135i \(-0.735234\pi\)
−0.673557 + 0.739135i \(0.735234\pi\)
\(992\) 0 0
\(993\) −4.75577e13 −1.55220
\(994\) 0 0
\(995\) −2.73982e13 −0.886173
\(996\) 0 0
\(997\) 3.47353e13 1.11338 0.556689 0.830721i \(-0.312072\pi\)
0.556689 + 0.830721i \(0.312072\pi\)
\(998\) 0 0
\(999\) 7.24726e11 0.0230213
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 52.10.a.b.1.5 5
4.3 odd 2 208.10.a.i.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.10.a.b.1.5 5 1.1 even 1 trivial
208.10.a.i.1.1 5 4.3 odd 2