Properties

Label 52.10.a
Level $52$
Weight $10$
Character orbit 52.a
Rep. character $\chi_{52}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $2$
Sturm bound $70$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 52.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(70\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(52))\).

Total New Old
Modular forms 66 9 57
Cusp forms 60 9 51
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(16\)\(0\)\(16\)\(14\)\(0\)\(14\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(17\)\(0\)\(17\)\(15\)\(0\)\(15\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(17\)\(5\)\(12\)\(16\)\(5\)\(11\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(16\)\(4\)\(12\)\(15\)\(4\)\(11\)\(1\)\(0\)\(1\)
Plus space\(+\)\(32\)\(4\)\(28\)\(29\)\(4\)\(25\)\(3\)\(0\)\(3\)
Minus space\(-\)\(34\)\(5\)\(29\)\(31\)\(5\)\(26\)\(3\)\(0\)\(3\)

Trace form

\( 9 q - 294 q^{3} - 226 q^{5} + 13568 q^{7} + 18995 q^{9} + 28600 q^{11} - 28561 q^{13} - 57080 q^{15} - 842628 q^{17} - 144252 q^{19} + 2415220 q^{21} - 363340 q^{23} + 6065533 q^{25} - 4130982 q^{27} + 582602 q^{29}+ \cdots + 1457101388 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(52))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13
52.10.a.a 52.a 1.a $4$ $26.782$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 52.10.a.a \(0\) \(-147\) \(-1947\) \(10251\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-37-\beta _{1})q^{3}+(-486+2\beta _{1}+\beta _{3})q^{5}+\cdots\)
52.10.a.b 52.a 1.a $5$ $26.782$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 52.10.a.b \(0\) \(-147\) \(1721\) \(3317\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-29+\beta _{1})q^{3}+(345+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(52))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(52)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)