Defining parameters
Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 52.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(70\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(52))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 9 | 57 |
Cusp forms | 60 | 9 | 51 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(16\) | \(0\) | \(16\) | \(14\) | \(0\) | \(14\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(17\) | \(0\) | \(17\) | \(15\) | \(0\) | \(15\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(17\) | \(5\) | \(12\) | \(16\) | \(5\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(16\) | \(4\) | \(12\) | \(15\) | \(4\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(32\) | \(4\) | \(28\) | \(29\) | \(4\) | \(25\) | \(3\) | \(0\) | \(3\) | ||||
Minus space | \(-\) | \(34\) | \(5\) | \(29\) | \(31\) | \(5\) | \(26\) | \(3\) | \(0\) | \(3\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(52))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 13 | |||||||
52.10.a.a | $4$ | $26.782$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(0\) | \(-147\) | \(-1947\) | \(10251\) | $-$ | $-$ | \(q+(-37-\beta _{1})q^{3}+(-486+2\beta _{1}+\beta _{3})q^{5}+\cdots\) | |
52.10.a.b | $5$ | $26.782$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(0\) | \(-147\) | \(1721\) | \(3317\) | $-$ | $+$ | \(q+(-29+\beta _{1})q^{3}+(345+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(52))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(52)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)