Properties

Label 2-52-1.1-c9-0-0
Degree $2$
Conductor $52$
Sign $1$
Analytic cond. $26.7818$
Root an. cond. $5.17511$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 129.·3-s − 1.99e3·5-s − 7.55e3·7-s − 3.01e3·9-s − 5.33e4·11-s − 2.85e4·13-s + 2.57e5·15-s − 6.80e4·17-s − 7.55e5·19-s + 9.75e5·21-s + 1.43e5·23-s + 2.01e6·25-s + 2.93e6·27-s − 3.05e6·29-s + 4.57e6·31-s + 6.89e6·33-s + 1.50e7·35-s − 1.06e7·37-s + 3.68e6·39-s + 2.61e7·41-s − 4.45e6·43-s + 6.00e6·45-s − 3.57e7·47-s + 1.67e7·49-s + 8.78e6·51-s + 2.60e7·53-s + 1.06e8·55-s + ⋯
L(s)  = 1  − 0.920·3-s − 1.42·5-s − 1.18·7-s − 0.153·9-s − 1.09·11-s − 0.277·13-s + 1.31·15-s − 0.197·17-s − 1.32·19-s + 1.09·21-s + 0.106·23-s + 1.03·25-s + 1.06·27-s − 0.801·29-s + 0.890·31-s + 1.01·33-s + 1.69·35-s − 0.935·37-s + 0.255·39-s + 1.44·41-s − 0.198·43-s + 0.218·45-s − 1.06·47-s + 0.414·49-s + 0.181·51-s + 0.453·53-s + 1.56·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52\)    =    \(2^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(26.7818\)
Root analytic conductor: \(5.17511\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 52,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.07122773176\)
\(L(\frac12)\) \(\approx\) \(0.07122773176\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 2.85e4T \)
good3 \( 1 + 129.T + 1.96e4T^{2} \)
5 \( 1 + 1.99e3T + 1.95e6T^{2} \)
7 \( 1 + 7.55e3T + 4.03e7T^{2} \)
11 \( 1 + 5.33e4T + 2.35e9T^{2} \)
17 \( 1 + 6.80e4T + 1.18e11T^{2} \)
19 \( 1 + 7.55e5T + 3.22e11T^{2} \)
23 \( 1 - 1.43e5T + 1.80e12T^{2} \)
29 \( 1 + 3.05e6T + 1.45e13T^{2} \)
31 \( 1 - 4.57e6T + 2.64e13T^{2} \)
37 \( 1 + 1.06e7T + 1.29e14T^{2} \)
41 \( 1 - 2.61e7T + 3.27e14T^{2} \)
43 \( 1 + 4.45e6T + 5.02e14T^{2} \)
47 \( 1 + 3.57e7T + 1.11e15T^{2} \)
53 \( 1 - 2.60e7T + 3.29e15T^{2} \)
59 \( 1 + 3.91e7T + 8.66e15T^{2} \)
61 \( 1 - 6.51e7T + 1.16e16T^{2} \)
67 \( 1 + 3.10e8T + 2.72e16T^{2} \)
71 \( 1 + 3.72e8T + 4.58e16T^{2} \)
73 \( 1 + 3.54e8T + 5.88e16T^{2} \)
79 \( 1 + 3.50e8T + 1.19e17T^{2} \)
83 \( 1 + 1.80e8T + 1.86e17T^{2} \)
89 \( 1 - 1.95e8T + 3.50e17T^{2} \)
97 \( 1 + 1.03e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10435568388759944158980700363, −12.27989472793451858579840483810, −11.25009371758764514707804140361, −10.28124620064336657844186976550, −8.557811670559285306962274922618, −7.24565508534606980568359928027, −5.98341810902870586456085878662, −4.46901827149790984256529610453, −2.97971168813986961905058956854, −0.16707591072205895864363588926, 0.16707591072205895864363588926, 2.97971168813986961905058956854, 4.46901827149790984256529610453, 5.98341810902870586456085878662, 7.24565508534606980568359928027, 8.557811670559285306962274922618, 10.28124620064336657844186976550, 11.25009371758764514707804140361, 12.27989472793451858579840483810, 13.10435568388759944158980700363

Graph of the $Z$-function along the critical line