Properties

Label 2-52-1.1-c9-0-2
Degree $2$
Conductor $52$
Sign $1$
Analytic cond. $26.7818$
Root an. cond. $5.17511$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 43.6·3-s − 1.11e3·5-s − 2.40e3·7-s − 1.77e4·9-s + 8.94e4·11-s − 2.85e4·13-s − 4.88e4·15-s + 6.92e3·17-s + 9.53e5·19-s − 1.04e5·21-s − 2.19e5·23-s − 7.01e5·25-s − 1.63e6·27-s + 3.05e6·29-s + 7.36e6·31-s + 3.90e6·33-s + 2.68e6·35-s + 2.13e7·37-s − 1.24e6·39-s − 2.82e7·41-s + 3.92e7·43-s + 1.98e7·45-s + 6.24e7·47-s − 3.45e7·49-s + 3.02e5·51-s + 2.98e7·53-s − 1.00e8·55-s + ⋯
L(s)  = 1  + 0.311·3-s − 0.800·5-s − 0.377·7-s − 0.903·9-s + 1.84·11-s − 0.277·13-s − 0.249·15-s + 0.0201·17-s + 1.67·19-s − 0.117·21-s − 0.163·23-s − 0.359·25-s − 0.592·27-s + 0.802·29-s + 1.43·31-s + 0.573·33-s + 0.302·35-s + 1.87·37-s − 0.0863·39-s − 1.55·41-s + 1.75·43-s + 0.723·45-s + 1.86·47-s − 0.857·49-s + 0.00625·51-s + 0.518·53-s − 1.47·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52\)    =    \(2^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(26.7818\)
Root analytic conductor: \(5.17511\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 52,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.806744608\)
\(L(\frac12)\) \(\approx\) \(1.806744608\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 2.85e4T \)
good3 \( 1 - 43.6T + 1.96e4T^{2} \)
5 \( 1 + 1.11e3T + 1.95e6T^{2} \)
7 \( 1 + 2.40e3T + 4.03e7T^{2} \)
11 \( 1 - 8.94e4T + 2.35e9T^{2} \)
17 \( 1 - 6.92e3T + 1.18e11T^{2} \)
19 \( 1 - 9.53e5T + 3.22e11T^{2} \)
23 \( 1 + 2.19e5T + 1.80e12T^{2} \)
29 \( 1 - 3.05e6T + 1.45e13T^{2} \)
31 \( 1 - 7.36e6T + 2.64e13T^{2} \)
37 \( 1 - 2.13e7T + 1.29e14T^{2} \)
41 \( 1 + 2.82e7T + 3.27e14T^{2} \)
43 \( 1 - 3.92e7T + 5.02e14T^{2} \)
47 \( 1 - 6.24e7T + 1.11e15T^{2} \)
53 \( 1 - 2.98e7T + 3.29e15T^{2} \)
59 \( 1 - 4.75e7T + 8.66e15T^{2} \)
61 \( 1 - 6.17e7T + 1.16e16T^{2} \)
67 \( 1 + 2.57e8T + 2.72e16T^{2} \)
71 \( 1 + 1.59e8T + 4.58e16T^{2} \)
73 \( 1 + 2.29e8T + 5.88e16T^{2} \)
79 \( 1 + 3.23e8T + 1.19e17T^{2} \)
83 \( 1 - 2.81e8T + 1.86e17T^{2} \)
89 \( 1 + 8.03e8T + 3.50e17T^{2} \)
97 \( 1 + 6.00e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.74930981573966667589958849106, −11.97093541535978727954117574960, −11.59624657489365734096518653663, −9.755401311924265746386569589838, −8.715006145296885801659986421143, −7.43769235501524633905343579264, −6.04991810302448144253546824460, −4.18012431776579134468606081144, −2.97308341239007804086345646705, −0.877728196482817077474045738327, 0.877728196482817077474045738327, 2.97308341239007804086345646705, 4.18012431776579134468606081144, 6.04991810302448144253546824460, 7.43769235501524633905343579264, 8.715006145296885801659986421143, 9.755401311924265746386569589838, 11.59624657489365734096518653663, 11.97093541535978727954117574960, 13.74930981573966667589958849106

Graph of the $Z$-function along the critical line