Properties

Label 511.1.c.b
Level $511$
Weight $1$
Character orbit 511.c
Self dual yes
Analytic conductor $0.255$
Analytic rank $0$
Dimension $3$
Projective image $D_{7}$
CM discriminant -511
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [511,1,Mod(510,511)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("511.510"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(511, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 511 = 7 \cdot 73 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 511.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,0,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.255022221455\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.133432831.1
Artin image: $D_{14}$
Artin field: Galois closure of 14.0.124630242720721927.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1 - 1) q^{2} + ( - \beta_1 + 1) q^{4} + \beta_1 q^{5} - q^{7} + (\beta_1 - 1) q^{8} + q^{9} + ( - \beta_1 + 1) q^{10} - \beta_{2} q^{13} + (\beta_{2} - \beta_1 + 1) q^{14} + (\beta_{2} - \beta_1 + 1) q^{16}+ \cdots + ( - \beta_{2} + \beta_1 - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 2 q^{4} + q^{5} - 3 q^{7} - 2 q^{8} + 3 q^{9} + 2 q^{10} + q^{13} + q^{14} + q^{16} + q^{17} - q^{18} - 4 q^{20} - q^{23} + 2 q^{25} + 2 q^{26} - 2 q^{28} + q^{31} - 3 q^{32} - 5 q^{34}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/511\mathbb{Z}\right)^\times\).

\(n\) \(78\) \(220\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
510.1
−1.24698
1.80194
0.445042
−1.80194 0 2.24698 −1.24698 0 −1.00000 −2.24698 1.00000 2.24698
510.2 −0.445042 0 −0.801938 1.80194 0 −1.00000 0.801938 1.00000 −0.801938
510.3 1.24698 0 0.554958 0.445042 0 −1.00000 −0.554958 1.00000 0.554958
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
511.c odd 2 1 CM by \(\Q(\sqrt{-511}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 511.1.c.b yes 3
7.b odd 2 1 511.1.c.a 3
7.c even 3 2 3577.1.p.a 6
7.d odd 6 2 3577.1.p.b 6
73.b even 2 1 511.1.c.a 3
511.c odd 2 1 CM 511.1.c.b yes 3
511.n even 6 2 3577.1.p.b 6
511.p odd 6 2 3577.1.p.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
511.1.c.a 3 7.b odd 2 1
511.1.c.a 3 73.b even 2 1
511.1.c.b yes 3 1.a even 1 1 trivial
511.1.c.b yes 3 511.c odd 2 1 CM
3577.1.p.a 6 7.c even 3 2
3577.1.p.a 6 511.p odd 6 2
3577.1.p.b 6 7.d odd 6 2
3577.1.p.b 6 511.n even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - T_{5}^{2} - 2T_{5} + 1 \) acting on \(S_{1}^{\mathrm{new}}(511, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - T^{2} - 2T + 1 \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - T^{2} - 2T + 1 \) Copy content Toggle raw display
$17$ \( T^{3} - T^{2} - 2T + 1 \) Copy content Toggle raw display
$19$ \( T^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$29$ \( T^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - T^{2} - 2T + 1 \) Copy content Toggle raw display
$37$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$41$ \( T^{3} \) Copy content Toggle raw display
$43$ \( T^{3} \) Copy content Toggle raw display
$47$ \( T^{3} - T^{2} - 2T + 1 \) Copy content Toggle raw display
$53$ \( T^{3} \) Copy content Toggle raw display
$59$ \( T^{3} - T^{2} - 2T + 1 \) Copy content Toggle raw display
$61$ \( T^{3} \) Copy content Toggle raw display
$67$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$71$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$73$ \( (T + 1)^{3} \) Copy content Toggle raw display
$79$ \( T^{3} + T^{2} - 2T - 1 \) Copy content Toggle raw display
$83$ \( T^{3} - T^{2} - 2T + 1 \) Copy content Toggle raw display
$89$ \( T^{3} \) Copy content Toggle raw display
$97$ \( T^{3} \) Copy content Toggle raw display
show more
show less