Properties

Label 2-511-511.510-c0-0-5
Degree $2$
Conductor $511$
Sign $1$
Analytic cond. $0.255022$
Root an. cond. $0.504997$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.24·2-s + 0.554·4-s + 0.445·5-s − 7-s − 0.554·8-s + 9-s + 0.554·10-s + 1.80·13-s − 1.24·14-s − 1.24·16-s − 1.24·17-s + 1.24·18-s + 0.246·20-s − 1.80·23-s − 0.801·25-s + 2.24·26-s − 0.554·28-s − 1.24·31-s − 0.999·32-s − 1.55·34-s − 0.445·35-s + 0.554·36-s − 0.445·37-s − 0.246·40-s + 0.445·45-s − 2.24·46-s + 1.80·47-s + ⋯
L(s)  = 1  + 1.24·2-s + 0.554·4-s + 0.445·5-s − 7-s − 0.554·8-s + 9-s + 0.554·10-s + 1.80·13-s − 1.24·14-s − 1.24·16-s − 1.24·17-s + 1.24·18-s + 0.246·20-s − 1.80·23-s − 0.801·25-s + 2.24·26-s − 0.554·28-s − 1.24·31-s − 0.999·32-s − 1.55·34-s − 0.445·35-s + 0.554·36-s − 0.445·37-s − 0.246·40-s + 0.445·45-s − 2.24·46-s + 1.80·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 511 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 511 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(511\)    =    \(7 \cdot 73\)
Sign: $1$
Analytic conductor: \(0.255022\)
Root analytic conductor: \(0.504997\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{511} (510, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 511,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.513936964\)
\(L(\frac12)\) \(\approx\) \(1.513936964\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
73 \( 1 + T \)
good2 \( 1 - 1.24T + T^{2} \)
3 \( 1 - T^{2} \)
5 \( 1 - 0.445T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - 1.80T + T^{2} \)
17 \( 1 + 1.24T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + 1.80T + T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 + 1.24T + T^{2} \)
37 \( 1 + 0.445T + T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 1.80T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - 1.80T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.24T + T^{2} \)
71 \( 1 + 0.445T + T^{2} \)
79 \( 1 - 1.24T + T^{2} \)
83 \( 1 + 1.24T + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.27844432157517089249710715628, −10.30094523872363655365864930350, −9.405071121813400764730642115080, −8.572194452010895270314546746972, −7.04276434257193076895792618328, −6.21566270010054295059896466528, −5.64574706609525860024357507646, −4.09889796273287446407773117432, −3.73833709041184025770710597953, −2.13566220646188944582769972128, 2.13566220646188944582769972128, 3.73833709041184025770710597953, 4.09889796273287446407773117432, 5.64574706609525860024357507646, 6.21566270010054295059896466528, 7.04276434257193076895792618328, 8.572194452010895270314546746972, 9.405071121813400764730642115080, 10.30094523872363655365864930350, 11.27844432157517089249710715628

Graph of the $Z$-function along the critical line