Properties

Label 511.1
Level 511
Weight 1
Dimension 6
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 21312
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 511 = 7 \cdot 73 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(21312\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(511))\).

Total New Old
Modular forms 438 360 78
Cusp forms 6 6 0
Eisenstein series 432 354 78

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6 q - 2 q^{2} + 4 q^{4} - 4 q^{8} + 6 q^{9} + 2 q^{16} - 2 q^{18} - 2 q^{23} + 4 q^{25} - 6 q^{32} - 2 q^{35} + 4 q^{36} - 2 q^{37} - 4 q^{46} + 6 q^{49} - 6 q^{50} - 4 q^{65} - 2 q^{67} - 4 q^{70} - 2 q^{71}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(511))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
511.1.b \(\chi_{511}(293, \cdot)\) None 0 1
511.1.c \(\chi_{511}(510, \cdot)\) 511.1.c.a 3 1
511.1.c.b 3
511.1.j \(\chi_{511}(27, \cdot)\) None 0 2
511.1.k \(\chi_{511}(447, \cdot)\) None 0 2
511.1.l \(\chi_{511}(300, \cdot)\) None 0 2
511.1.o \(\chi_{511}(283, \cdot)\) None 0 2
511.1.p \(\chi_{511}(145, \cdot)\) None 0 2
511.1.q \(\chi_{511}(220, \cdot)\) None 0 2
511.1.r \(\chi_{511}(138, \cdot)\) None 0 2
511.1.u \(\chi_{511}(82, \cdot)\) None 0 2
511.1.v \(\chi_{511}(227, \cdot)\) None 0 2
511.1.w \(\chi_{511}(22, \cdot)\) None 0 4
511.1.bc \(\chi_{511}(24, \cdot)\) None 0 4
511.1.bd \(\chi_{511}(173, \cdot)\) None 0 4
511.1.bg \(\chi_{511}(76, \cdot)\) None 0 4
511.1.bh \(\chi_{511}(3, \cdot)\) None 0 4
511.1.bj \(\chi_{511}(255, \cdot)\) None 0 6
511.1.bk \(\chi_{511}(75, \cdot)\) None 0 6
511.1.bn \(\chi_{511}(55, \cdot)\) None 0 6
511.1.bo \(\chi_{511}(164, \cdot)\) None 0 6
511.1.bp \(\chi_{511}(110, \cdot)\) None 0 6
511.1.bq \(\chi_{511}(41, \cdot)\) None 0 6
511.1.bt \(\chi_{511}(43, \cdot)\) None 0 8
511.1.bv \(\chi_{511}(30, \cdot)\) None 0 8
511.1.bw \(\chi_{511}(51, \cdot)\) None 0 8
511.1.bz \(\chi_{511}(116, \cdot)\) None 0 8
511.1.cb \(\chi_{511}(6, \cdot)\) None 0 12
511.1.cc \(\chi_{511}(12, \cdot)\) None 0 12
511.1.cf \(\chi_{511}(19, \cdot)\) None 0 12
511.1.cg \(\chi_{511}(11, \cdot)\) None 0 24
511.1.cj \(\chi_{511}(39, \cdot)\) None 0 24
511.1.cl \(\chi_{511}(15, \cdot)\) None 0 24