Defining parameters
| Level: | \( N \) | \(=\) | \( 511 = 7 \cdot 73 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 511.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 511 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(49\) | ||
| Trace bound: | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(511, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 8 | 8 | 0 |
| Cusp forms | 6 | 6 | 0 |
| Eisenstein series | 2 | 2 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 6 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(511, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 511.1.c.a | $3$ | $0.255$ | \(\Q(\zeta_{14})^+\) | $D_{7}$ | \(\Q(\sqrt{-511}) \) | None | \(-1\) | \(0\) | \(-1\) | \(3\) | \(q+(-1+\beta _{1}-\beta _{2})q^{2}+(1-\beta _{1})q^{4}+\cdots\) |
| 511.1.c.b | $3$ | $0.255$ | \(\Q(\zeta_{14})^+\) | $D_{7}$ | \(\Q(\sqrt{-511}) \) | None | \(-1\) | \(0\) | \(1\) | \(-3\) | \(q+(-1+\beta _{1}-\beta _{2})q^{2}+(1-\beta _{1})q^{4}+\cdots\) |