Properties

Label 3577.1.p.b
Level $3577$
Weight $1$
Character orbit 3577.p
Analytic conductor $1.785$
Analytic rank $0$
Dimension $6$
Projective image $D_{7}$
CM discriminant -511
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3577,1,Mod(656,3577)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3577.656"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3577, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3577 = 7^{2} \cdot 73 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3577.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,1,0,-2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.78515555019\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 511)
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.133432831.1
Artin image: $C_3\times D_7$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{21} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1) q^{2} + ( - \beta_{4} - \beta_1) q^{4} + (\beta_{5} + \beta_{4} + \beta_{3} + \cdots + \beta_1) q^{5} + (\beta_{3} - \beta_{2}) q^{8} - \beta_{5} q^{9} + (\beta_{4} + \beta_1) q^{10}+ \cdots + ( - \beta_{5} - \beta_1 + 1) q^{94}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 2 q^{4} + q^{5} - 4 q^{8} - 3 q^{9} + 2 q^{10} - 2 q^{13} - q^{16} + q^{17} + q^{18} + 8 q^{20} + q^{23} - 2 q^{25} + 2 q^{26} + q^{31} + 3 q^{32} + 10 q^{34} + 4 q^{36} + q^{37} + 4 q^{40}+ \cdots + 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 3\nu^{4} - 9\nu^{3} + 5\nu^{2} - 2\nu + 6 ) / 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{5} + 9\nu^{4} - 14\nu^{3} + 15\nu^{2} - 6\nu + 18 ) / 13 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -4\nu^{5} - \nu^{4} - 10\nu^{3} - 6\nu^{2} - 34\nu - 2 ) / 13 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -6\nu^{5} + 5\nu^{4} - 15\nu^{3} - 9\nu^{2} - 25\nu + 10 ) / 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} - 3\beta_{4} - 4\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{4} - 4\beta_{3} + 9\beta_{2} - 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3577\mathbb{Z}\right)^\times\).

\(n\) \(589\) \(3286\)
\(\chi(n)\) \(-1\) \(\beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
656.1
−0.623490 1.07992i
0.222521 + 0.385418i
0.900969 + 1.56052i
−0.623490 + 1.07992i
0.222521 0.385418i
0.900969 1.56052i
−0.623490 + 1.07992i 0 −0.277479 0.480608i 0.222521 0.385418i 0 0 −0.554958 −0.500000 + 0.866025i 0.277479 + 0.480608i
656.2 0.222521 0.385418i 0 0.400969 + 0.694498i 0.900969 1.56052i 0 0 0.801938 −0.500000 + 0.866025i −0.400969 0.694498i
656.3 0.900969 1.56052i 0 −1.12349 1.94594i −0.623490 + 1.07992i 0 0 −2.24698 −0.500000 + 0.866025i 1.12349 + 1.94594i
2481.1 −0.623490 1.07992i 0 −0.277479 + 0.480608i 0.222521 + 0.385418i 0 0 −0.554958 −0.500000 0.866025i 0.277479 0.480608i
2481.2 0.222521 + 0.385418i 0 0.400969 0.694498i 0.900969 + 1.56052i 0 0 0.801938 −0.500000 0.866025i −0.400969 + 0.694498i
2481.3 0.900969 + 1.56052i 0 −1.12349 + 1.94594i −0.623490 1.07992i 0 0 −2.24698 −0.500000 0.866025i 1.12349 1.94594i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 656.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
511.c odd 2 1 CM by \(\Q(\sqrt{-511}) \)
7.c even 3 1 inner
511.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3577.1.p.b 6
7.b odd 2 1 3577.1.p.a 6
7.c even 3 1 511.1.c.a 3
7.c even 3 1 inner 3577.1.p.b 6
7.d odd 6 1 511.1.c.b yes 3
7.d odd 6 1 3577.1.p.a 6
73.b even 2 1 3577.1.p.a 6
511.c odd 2 1 CM 3577.1.p.b 6
511.n even 6 1 511.1.c.b yes 3
511.n even 6 1 3577.1.p.a 6
511.p odd 6 1 511.1.c.a 3
511.p odd 6 1 inner 3577.1.p.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
511.1.c.a 3 7.c even 3 1
511.1.c.a 3 511.p odd 6 1
511.1.c.b yes 3 7.d odd 6 1
511.1.c.b yes 3 511.n even 6 1
3577.1.p.a 6 7.b odd 2 1
3577.1.p.a 6 7.d odd 6 1
3577.1.p.a 6 73.b even 2 1
3577.1.p.a 6 511.n even 6 1
3577.1.p.b 6 1.a even 1 1 trivial
3577.1.p.b 6 7.c even 3 1 inner
3577.1.p.b 6 511.c odd 2 1 CM
3577.1.p.b 6 511.p odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - T_{5}^{5} + 3T_{5}^{4} + 5T_{5}^{2} - 2T_{5} + 1 \) acting on \(S_{1}^{\mathrm{new}}(3577, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( (T^{3} + T^{2} - 2 T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} \) Copy content Toggle raw display
$47$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{6} \) Copy content Toggle raw display
$67$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( (T^{3} + T^{2} - 2 T - 1)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$79$ \( T^{6} - T^{5} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( (T^{3} + T^{2} - 2 T - 1)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less