gp: [N,k,chi] = [490,6,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [1,4,11]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 − 11 T_{3} - 11 T 3 − 1 1
T3 - 11
acting on S 6 n e w ( Γ 0 ( 490 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(490)) S 6 n e w ( Γ 0 ( 4 9 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T − 4 T - 4 T − 4
T - 4
3 3 3
T − 11 T - 11 T − 1 1
T - 11
5 5 5
T − 25 T - 25 T − 2 5
T - 25
7 7 7
T T T
T
11 11 1 1
T + 267 T + 267 T + 2 6 7
T + 267
13 13 1 3
T − 1087 T - 1087 T − 1 0 8 7
T - 1087
17 17 1 7
T − 513 T - 513 T − 5 1 3
T - 513
19 19 1 9
T − 802 T - 802 T − 8 0 2
T - 802
23 23 2 3
T + 1290 T + 1290 T + 1 2 9 0
T + 1290
29 29 2 9
T − 1779 T - 1779 T − 1 7 7 9
T - 1779
31 31 3 1
T − 2584 T - 2584 T − 2 5 8 4
T - 2584
37 37 3 7
T − 13862 T - 13862 T − 1 3 8 6 2
T - 13862
41 41 4 1
T − 11904 T - 11904 T − 1 1 9 0 4
T - 11904
43 43 4 3
T + 598 T + 598 T + 5 9 8
T + 598
47 47 4 7
T − 17019 T - 17019 T − 1 7 0 1 9
T - 17019
53 53 5 3
T − 27852 T - 27852 T − 2 7 8 5 2
T - 27852
59 59 5 9
T + 30912 T + 30912 T + 3 0 9 1 2
T + 30912
61 61 6 1
T − 1780 T - 1780 T − 1 7 8 0
T - 1780
67 67 6 7
T − 25052 T - 25052 T − 2 5 0 5 2
T - 25052
71 71 7 1
T + 51984 T + 51984 T + 5 1 9 8 4
T + 51984
73 73 7 3
T + 47690 T + 47690 T + 4 7 6 9 0
T + 47690
79 79 7 9
T + 102121 T + 102121 T + 1 0 2 1 2 1
T + 102121
83 83 8 3
T − 83676 T - 83676 T − 8 3 6 7 6
T - 83676
89 89 8 9
T − 32400 T - 32400 T − 3 2 4 0 0
T - 32400
97 97 9 7
T − 148645 T - 148645 T − 1 4 8 6 4 5
T - 148645
show more
show less