Properties

Label 490.6.a.l.1.1
Level $490$
Weight $6$
Character 490.1
Self dual yes
Analytic conductor $78.588$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,6,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 490.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +11.0000 q^{3} +16.0000 q^{4} +25.0000 q^{5} +44.0000 q^{6} +64.0000 q^{8} -122.000 q^{9} +100.000 q^{10} -267.000 q^{11} +176.000 q^{12} +1087.00 q^{13} +275.000 q^{15} +256.000 q^{16} +513.000 q^{17} -488.000 q^{18} +802.000 q^{19} +400.000 q^{20} -1068.00 q^{22} -1290.00 q^{23} +704.000 q^{24} +625.000 q^{25} +4348.00 q^{26} -4015.00 q^{27} +1779.00 q^{29} +1100.00 q^{30} +2584.00 q^{31} +1024.00 q^{32} -2937.00 q^{33} +2052.00 q^{34} -1952.00 q^{36} +13862.0 q^{37} +3208.00 q^{38} +11957.0 q^{39} +1600.00 q^{40} +11904.0 q^{41} -598.000 q^{43} -4272.00 q^{44} -3050.00 q^{45} -5160.00 q^{46} +17019.0 q^{47} +2816.00 q^{48} +2500.00 q^{50} +5643.00 q^{51} +17392.0 q^{52} +27852.0 q^{53} -16060.0 q^{54} -6675.00 q^{55} +8822.00 q^{57} +7116.00 q^{58} -30912.0 q^{59} +4400.00 q^{60} +1780.00 q^{61} +10336.0 q^{62} +4096.00 q^{64} +27175.0 q^{65} -11748.0 q^{66} +25052.0 q^{67} +8208.00 q^{68} -14190.0 q^{69} -51984.0 q^{71} -7808.00 q^{72} -47690.0 q^{73} +55448.0 q^{74} +6875.00 q^{75} +12832.0 q^{76} +47828.0 q^{78} -102121. q^{79} +6400.00 q^{80} -14519.0 q^{81} +47616.0 q^{82} +83676.0 q^{83} +12825.0 q^{85} -2392.00 q^{86} +19569.0 q^{87} -17088.0 q^{88} +32400.0 q^{89} -12200.0 q^{90} -20640.0 q^{92} +28424.0 q^{93} +68076.0 q^{94} +20050.0 q^{95} +11264.0 q^{96} +148645. q^{97} +32574.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 11.0000 0.705650 0.352825 0.935689i \(-0.385221\pi\)
0.352825 + 0.935689i \(0.385221\pi\)
\(4\) 16.0000 0.500000
\(5\) 25.0000 0.447214
\(6\) 44.0000 0.498970
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) −122.000 −0.502058
\(10\) 100.000 0.316228
\(11\) −267.000 −0.665318 −0.332659 0.943047i \(-0.607946\pi\)
−0.332659 + 0.943047i \(0.607946\pi\)
\(12\) 176.000 0.352825
\(13\) 1087.00 1.78390 0.891951 0.452131i \(-0.149336\pi\)
0.891951 + 0.452131i \(0.149336\pi\)
\(14\) 0 0
\(15\) 275.000 0.315576
\(16\) 256.000 0.250000
\(17\) 513.000 0.430522 0.215261 0.976557i \(-0.430940\pi\)
0.215261 + 0.976557i \(0.430940\pi\)
\(18\) −488.000 −0.355008
\(19\) 802.000 0.509672 0.254836 0.966984i \(-0.417979\pi\)
0.254836 + 0.966984i \(0.417979\pi\)
\(20\) 400.000 0.223607
\(21\) 0 0
\(22\) −1068.00 −0.470451
\(23\) −1290.00 −0.508476 −0.254238 0.967142i \(-0.581825\pi\)
−0.254238 + 0.967142i \(0.581825\pi\)
\(24\) 704.000 0.249485
\(25\) 625.000 0.200000
\(26\) 4348.00 1.26141
\(27\) −4015.00 −1.05993
\(28\) 0 0
\(29\) 1779.00 0.392809 0.196404 0.980523i \(-0.437074\pi\)
0.196404 + 0.980523i \(0.437074\pi\)
\(30\) 1100.00 0.223146
\(31\) 2584.00 0.482935 0.241467 0.970409i \(-0.422371\pi\)
0.241467 + 0.970409i \(0.422371\pi\)
\(32\) 1024.00 0.176777
\(33\) −2937.00 −0.469482
\(34\) 2052.00 0.304425
\(35\) 0 0
\(36\) −1952.00 −0.251029
\(37\) 13862.0 1.66464 0.832322 0.554292i \(-0.187011\pi\)
0.832322 + 0.554292i \(0.187011\pi\)
\(38\) 3208.00 0.360392
\(39\) 11957.0 1.25881
\(40\) 1600.00 0.158114
\(41\) 11904.0 1.10594 0.552972 0.833200i \(-0.313494\pi\)
0.552972 + 0.833200i \(0.313494\pi\)
\(42\) 0 0
\(43\) −598.000 −0.0493208 −0.0246604 0.999696i \(-0.507850\pi\)
−0.0246604 + 0.999696i \(0.507850\pi\)
\(44\) −4272.00 −0.332659
\(45\) −3050.00 −0.224527
\(46\) −5160.00 −0.359547
\(47\) 17019.0 1.12380 0.561900 0.827205i \(-0.310070\pi\)
0.561900 + 0.827205i \(0.310070\pi\)
\(48\) 2816.00 0.176413
\(49\) 0 0
\(50\) 2500.00 0.141421
\(51\) 5643.00 0.303798
\(52\) 17392.0 0.891951
\(53\) 27852.0 1.36197 0.680984 0.732299i \(-0.261552\pi\)
0.680984 + 0.732299i \(0.261552\pi\)
\(54\) −16060.0 −0.749482
\(55\) −6675.00 −0.297539
\(56\) 0 0
\(57\) 8822.00 0.359650
\(58\) 7116.00 0.277758
\(59\) −30912.0 −1.15610 −0.578052 0.816000i \(-0.696187\pi\)
−0.578052 + 0.816000i \(0.696187\pi\)
\(60\) 4400.00 0.157788
\(61\) 1780.00 0.0612485 0.0306242 0.999531i \(-0.490250\pi\)
0.0306242 + 0.999531i \(0.490250\pi\)
\(62\) 10336.0 0.341486
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 27175.0 0.797786
\(66\) −11748.0 −0.331974
\(67\) 25052.0 0.681797 0.340899 0.940100i \(-0.389269\pi\)
0.340899 + 0.940100i \(0.389269\pi\)
\(68\) 8208.00 0.215261
\(69\) −14190.0 −0.358806
\(70\) 0 0
\(71\) −51984.0 −1.22384 −0.611919 0.790921i \(-0.709602\pi\)
−0.611919 + 0.790921i \(0.709602\pi\)
\(72\) −7808.00 −0.177504
\(73\) −47690.0 −1.04742 −0.523709 0.851897i \(-0.675452\pi\)
−0.523709 + 0.851897i \(0.675452\pi\)
\(74\) 55448.0 1.17708
\(75\) 6875.00 0.141130
\(76\) 12832.0 0.254836
\(77\) 0 0
\(78\) 47828.0 0.890114
\(79\) −102121. −1.84097 −0.920486 0.390775i \(-0.872207\pi\)
−0.920486 + 0.390775i \(0.872207\pi\)
\(80\) 6400.00 0.111803
\(81\) −14519.0 −0.245881
\(82\) 47616.0 0.782021
\(83\) 83676.0 1.33323 0.666616 0.745401i \(-0.267742\pi\)
0.666616 + 0.745401i \(0.267742\pi\)
\(84\) 0 0
\(85\) 12825.0 0.192535
\(86\) −2392.00 −0.0348751
\(87\) 19569.0 0.277185
\(88\) −17088.0 −0.235226
\(89\) 32400.0 0.433581 0.216790 0.976218i \(-0.430441\pi\)
0.216790 + 0.976218i \(0.430441\pi\)
\(90\) −12200.0 −0.158765
\(91\) 0 0
\(92\) −20640.0 −0.254238
\(93\) 28424.0 0.340783
\(94\) 68076.0 0.794647
\(95\) 20050.0 0.227932
\(96\) 11264.0 0.124743
\(97\) 148645. 1.60406 0.802031 0.597283i \(-0.203753\pi\)
0.802031 + 0.597283i \(0.203753\pi\)
\(98\) 0 0
\(99\) 32574.0 0.334028
\(100\) 10000.0 0.100000
\(101\) 41310.0 0.402951 0.201475 0.979494i \(-0.435426\pi\)
0.201475 + 0.979494i \(0.435426\pi\)
\(102\) 22572.0 0.214817
\(103\) −108785. −1.01036 −0.505180 0.863014i \(-0.668574\pi\)
−0.505180 + 0.863014i \(0.668574\pi\)
\(104\) 69568.0 0.630705
\(105\) 0 0
\(106\) 111408. 0.963056
\(107\) −106098. −0.895876 −0.447938 0.894065i \(-0.647841\pi\)
−0.447938 + 0.894065i \(0.647841\pi\)
\(108\) −64240.0 −0.529964
\(109\) −124111. −1.00056 −0.500281 0.865863i \(-0.666770\pi\)
−0.500281 + 0.865863i \(0.666770\pi\)
\(110\) −26700.0 −0.210392
\(111\) 152482. 1.17466
\(112\) 0 0
\(113\) 192834. 1.42065 0.710326 0.703873i \(-0.248548\pi\)
0.710326 + 0.703873i \(0.248548\pi\)
\(114\) 35288.0 0.254311
\(115\) −32250.0 −0.227397
\(116\) 28464.0 0.196404
\(117\) −132614. −0.895622
\(118\) −123648. −0.817489
\(119\) 0 0
\(120\) 17600.0 0.111573
\(121\) −89762.0 −0.557351
\(122\) 7120.00 0.0433092
\(123\) 130944. 0.780410
\(124\) 41344.0 0.241467
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 99248.0 0.546025 0.273012 0.962010i \(-0.411980\pi\)
0.273012 + 0.962010i \(0.411980\pi\)
\(128\) 16384.0 0.0883883
\(129\) −6578.00 −0.0348032
\(130\) 108700. 0.564120
\(131\) 276810. 1.40930 0.704650 0.709555i \(-0.251104\pi\)
0.704650 + 0.709555i \(0.251104\pi\)
\(132\) −46992.0 −0.234741
\(133\) 0 0
\(134\) 100208. 0.482104
\(135\) −100375. −0.474014
\(136\) 32832.0 0.152212
\(137\) 237744. 1.08220 0.541101 0.840958i \(-0.318008\pi\)
0.541101 + 0.840958i \(0.318008\pi\)
\(138\) −56760.0 −0.253714
\(139\) −160478. −0.704496 −0.352248 0.935907i \(-0.614583\pi\)
−0.352248 + 0.935907i \(0.614583\pi\)
\(140\) 0 0
\(141\) 187209. 0.793011
\(142\) −207936. −0.865384
\(143\) −290229. −1.18686
\(144\) −31232.0 −0.125514
\(145\) 44475.0 0.175669
\(146\) −190760. −0.740637
\(147\) 0 0
\(148\) 221792. 0.832322
\(149\) −99678.0 −0.367819 −0.183909 0.982943i \(-0.558875\pi\)
−0.183909 + 0.982943i \(0.558875\pi\)
\(150\) 27500.0 0.0997940
\(151\) −206017. −0.735293 −0.367647 0.929966i \(-0.619836\pi\)
−0.367647 + 0.929966i \(0.619836\pi\)
\(152\) 51328.0 0.180196
\(153\) −62586.0 −0.216147
\(154\) 0 0
\(155\) 64600.0 0.215975
\(156\) 191312. 0.629406
\(157\) −581150. −1.88165 −0.940826 0.338891i \(-0.889948\pi\)
−0.940826 + 0.338891i \(0.889948\pi\)
\(158\) −408484. −1.30176
\(159\) 306372. 0.961073
\(160\) 25600.0 0.0790569
\(161\) 0 0
\(162\) −58076.0 −0.173864
\(163\) 346610. 1.02181 0.510907 0.859636i \(-0.329310\pi\)
0.510907 + 0.859636i \(0.329310\pi\)
\(164\) 190464. 0.552972
\(165\) −73425.0 −0.209959
\(166\) 334704. 0.942737
\(167\) 448887. 1.24551 0.622753 0.782418i \(-0.286014\pi\)
0.622753 + 0.782418i \(0.286014\pi\)
\(168\) 0 0
\(169\) 810276. 2.18231
\(170\) 51300.0 0.136143
\(171\) −97844.0 −0.255884
\(172\) −9568.00 −0.0246604
\(173\) 262509. 0.666851 0.333426 0.942776i \(-0.391795\pi\)
0.333426 + 0.942776i \(0.391795\pi\)
\(174\) 78276.0 0.196000
\(175\) 0 0
\(176\) −68352.0 −0.166330
\(177\) −340032. −0.815805
\(178\) 129600. 0.306588
\(179\) −111012. −0.258963 −0.129481 0.991582i \(-0.541331\pi\)
−0.129481 + 0.991582i \(0.541331\pi\)
\(180\) −48800.0 −0.112263
\(181\) −112772. −0.255861 −0.127931 0.991783i \(-0.540834\pi\)
−0.127931 + 0.991783i \(0.540834\pi\)
\(182\) 0 0
\(183\) 19580.0 0.0432200
\(184\) −82560.0 −0.179773
\(185\) 346550. 0.744452
\(186\) 113696. 0.240970
\(187\) −136971. −0.286434
\(188\) 272304. 0.561900
\(189\) 0 0
\(190\) 80200.0 0.161172
\(191\) −731991. −1.45185 −0.725926 0.687773i \(-0.758589\pi\)
−0.725926 + 0.687773i \(0.758589\pi\)
\(192\) 45056.0 0.0882063
\(193\) −186040. −0.359512 −0.179756 0.983711i \(-0.557531\pi\)
−0.179756 + 0.983711i \(0.557531\pi\)
\(194\) 594580. 1.13424
\(195\) 298925. 0.562958
\(196\) 0 0
\(197\) 121356. 0.222790 0.111395 0.993776i \(-0.464468\pi\)
0.111395 + 0.993776i \(0.464468\pi\)
\(198\) 130296. 0.236194
\(199\) −648584. −1.16100 −0.580502 0.814259i \(-0.697144\pi\)
−0.580502 + 0.814259i \(0.697144\pi\)
\(200\) 40000.0 0.0707107
\(201\) 275572. 0.481111
\(202\) 165240. 0.284929
\(203\) 0 0
\(204\) 90288.0 0.151899
\(205\) 297600. 0.494593
\(206\) −435140. −0.714432
\(207\) 157380. 0.255284
\(208\) 278272. 0.445976
\(209\) −214134. −0.339094
\(210\) 0 0
\(211\) −149773. −0.231594 −0.115797 0.993273i \(-0.536942\pi\)
−0.115797 + 0.993273i \(0.536942\pi\)
\(212\) 445632. 0.680984
\(213\) −571824. −0.863601
\(214\) −424392. −0.633480
\(215\) −14950.0 −0.0220569
\(216\) −256960. −0.374741
\(217\) 0 0
\(218\) −496444. −0.707504
\(219\) −524590. −0.739111
\(220\) −106800. −0.148770
\(221\) 557631. 0.768009
\(222\) 609928. 0.830608
\(223\) 1.10096e6 1.48255 0.741274 0.671202i \(-0.234222\pi\)
0.741274 + 0.671202i \(0.234222\pi\)
\(224\) 0 0
\(225\) −76250.0 −0.100412
\(226\) 771336. 1.00455
\(227\) 695127. 0.895364 0.447682 0.894193i \(-0.352250\pi\)
0.447682 + 0.894193i \(0.352250\pi\)
\(228\) 141152. 0.179825
\(229\) −463736. −0.584362 −0.292181 0.956363i \(-0.594381\pi\)
−0.292181 + 0.956363i \(0.594381\pi\)
\(230\) −129000. −0.160794
\(231\) 0 0
\(232\) 113856. 0.138879
\(233\) −1.57654e6 −1.90245 −0.951227 0.308492i \(-0.900176\pi\)
−0.951227 + 0.308492i \(0.900176\pi\)
\(234\) −530456. −0.633300
\(235\) 425475. 0.502579
\(236\) −494592. −0.578052
\(237\) −1.12333e6 −1.29908
\(238\) 0 0
\(239\) −512037. −0.579838 −0.289919 0.957051i \(-0.593628\pi\)
−0.289919 + 0.957051i \(0.593628\pi\)
\(240\) 70400.0 0.0788941
\(241\) −989330. −1.09723 −0.548616 0.836074i \(-0.684845\pi\)
−0.548616 + 0.836074i \(0.684845\pi\)
\(242\) −359048. −0.394107
\(243\) 815936. 0.886422
\(244\) 28480.0 0.0306242
\(245\) 0 0
\(246\) 523776. 0.551833
\(247\) 871774. 0.909204
\(248\) 165376. 0.170743
\(249\) 920436. 0.940795
\(250\) 62500.0 0.0632456
\(251\) 61230.0 0.0613451 0.0306726 0.999529i \(-0.490235\pi\)
0.0306726 + 0.999529i \(0.490235\pi\)
\(252\) 0 0
\(253\) 344430. 0.338298
\(254\) 396992. 0.386098
\(255\) 141075. 0.135863
\(256\) 65536.0 0.0625000
\(257\) −1.33887e6 −1.26446 −0.632231 0.774780i \(-0.717861\pi\)
−0.632231 + 0.774780i \(0.717861\pi\)
\(258\) −26312.0 −0.0246096
\(259\) 0 0
\(260\) 434800. 0.398893
\(261\) −217038. −0.197213
\(262\) 1.10724e6 0.996526
\(263\) −1.65619e6 −1.47645 −0.738227 0.674553i \(-0.764337\pi\)
−0.738227 + 0.674553i \(0.764337\pi\)
\(264\) −187968. −0.165987
\(265\) 696300. 0.609090
\(266\) 0 0
\(267\) 356400. 0.305956
\(268\) 400832. 0.340899
\(269\) 750606. 0.632457 0.316229 0.948683i \(-0.397583\pi\)
0.316229 + 0.948683i \(0.397583\pi\)
\(270\) −401500. −0.335178
\(271\) 557908. 0.461466 0.230733 0.973017i \(-0.425888\pi\)
0.230733 + 0.973017i \(0.425888\pi\)
\(272\) 131328. 0.107630
\(273\) 0 0
\(274\) 950976. 0.765232
\(275\) −166875. −0.133064
\(276\) −227040. −0.179403
\(277\) 1.77256e6 1.38804 0.694018 0.719957i \(-0.255839\pi\)
0.694018 + 0.719957i \(0.255839\pi\)
\(278\) −641912. −0.498154
\(279\) −315248. −0.242461
\(280\) 0 0
\(281\) −1.09893e6 −0.830243 −0.415122 0.909766i \(-0.636261\pi\)
−0.415122 + 0.909766i \(0.636261\pi\)
\(282\) 748836. 0.560743
\(283\) 320569. 0.237933 0.118967 0.992898i \(-0.462042\pi\)
0.118967 + 0.992898i \(0.462042\pi\)
\(284\) −831744. −0.611919
\(285\) 220550. 0.160840
\(286\) −1.16092e6 −0.839239
\(287\) 0 0
\(288\) −124928. −0.0887521
\(289\) −1.15669e6 −0.814651
\(290\) 177900. 0.124217
\(291\) 1.63510e6 1.13191
\(292\) −763040. −0.523709
\(293\) 1.62337e6 1.10471 0.552355 0.833609i \(-0.313729\pi\)
0.552355 + 0.833609i \(0.313729\pi\)
\(294\) 0 0
\(295\) −772800. −0.517026
\(296\) 887168. 0.588541
\(297\) 1.07200e6 0.705189
\(298\) −398712. −0.260087
\(299\) −1.40223e6 −0.907071
\(300\) 110000. 0.0705650
\(301\) 0 0
\(302\) −824068. −0.519931
\(303\) 454410. 0.284342
\(304\) 205312. 0.127418
\(305\) 44500.0 0.0273912
\(306\) −250344. −0.152839
\(307\) −995087. −0.602581 −0.301290 0.953532i \(-0.597417\pi\)
−0.301290 + 0.953532i \(0.597417\pi\)
\(308\) 0 0
\(309\) −1.19664e6 −0.712961
\(310\) 258400. 0.152717
\(311\) −1.34398e6 −0.787939 −0.393969 0.919124i \(-0.628898\pi\)
−0.393969 + 0.919124i \(0.628898\pi\)
\(312\) 765248. 0.445057
\(313\) −1.91971e6 −1.10758 −0.553788 0.832658i \(-0.686818\pi\)
−0.553788 + 0.832658i \(0.686818\pi\)
\(314\) −2.32460e6 −1.33053
\(315\) 0 0
\(316\) −1.63394e6 −0.920486
\(317\) −1.91366e6 −1.06959 −0.534794 0.844983i \(-0.679611\pi\)
−0.534794 + 0.844983i \(0.679611\pi\)
\(318\) 1.22549e6 0.679581
\(319\) −474993. −0.261343
\(320\) 102400. 0.0559017
\(321\) −1.16708e6 −0.632175
\(322\) 0 0
\(323\) 411426. 0.219425
\(324\) −232304. −0.122940
\(325\) 679375. 0.356781
\(326\) 1.38644e6 0.722532
\(327\) −1.36522e6 −0.706047
\(328\) 761856. 0.391010
\(329\) 0 0
\(330\) −293700. −0.148463
\(331\) −2.25694e6 −1.13227 −0.566135 0.824313i \(-0.691562\pi\)
−0.566135 + 0.824313i \(0.691562\pi\)
\(332\) 1.33882e6 0.666616
\(333\) −1.69116e6 −0.835748
\(334\) 1.79555e6 0.880706
\(335\) 626300. 0.304909
\(336\) 0 0
\(337\) −1.45016e6 −0.695571 −0.347786 0.937574i \(-0.613066\pi\)
−0.347786 + 0.937574i \(0.613066\pi\)
\(338\) 3.24110e6 1.54313
\(339\) 2.12117e6 1.00248
\(340\) 205200. 0.0962676
\(341\) −689928. −0.321305
\(342\) −391376. −0.180938
\(343\) 0 0
\(344\) −38272.0 −0.0174375
\(345\) −354750. −0.160463
\(346\) 1.05004e6 0.471535
\(347\) 856386. 0.381809 0.190904 0.981609i \(-0.438858\pi\)
0.190904 + 0.981609i \(0.438858\pi\)
\(348\) 313104. 0.138593
\(349\) 347602. 0.152763 0.0763816 0.997079i \(-0.475663\pi\)
0.0763816 + 0.997079i \(0.475663\pi\)
\(350\) 0 0
\(351\) −4.36430e6 −1.89081
\(352\) −273408. −0.117613
\(353\) 2.21860e6 0.947640 0.473820 0.880622i \(-0.342875\pi\)
0.473820 + 0.880622i \(0.342875\pi\)
\(354\) −1.36013e6 −0.576862
\(355\) −1.29960e6 −0.547317
\(356\) 518400. 0.216790
\(357\) 0 0
\(358\) −444048. −0.183114
\(359\) 2.94338e6 1.20534 0.602672 0.797989i \(-0.294103\pi\)
0.602672 + 0.797989i \(0.294103\pi\)
\(360\) −195200. −0.0793823
\(361\) −1.83290e6 −0.740235
\(362\) −451088. −0.180921
\(363\) −987382. −0.393295
\(364\) 0 0
\(365\) −1.19225e6 −0.468420
\(366\) 78320.0 0.0305612
\(367\) −2.33000e6 −0.903005 −0.451503 0.892270i \(-0.649112\pi\)
−0.451503 + 0.892270i \(0.649112\pi\)
\(368\) −330240. −0.127119
\(369\) −1.45229e6 −0.555248
\(370\) 1.38620e6 0.526407
\(371\) 0 0
\(372\) 454784. 0.170391
\(373\) 1.69246e6 0.629865 0.314932 0.949114i \(-0.398018\pi\)
0.314932 + 0.949114i \(0.398018\pi\)
\(374\) −547884. −0.202539
\(375\) 171875. 0.0631153
\(376\) 1.08922e6 0.397324
\(377\) 1.93377e6 0.700732
\(378\) 0 0
\(379\) −1.50075e6 −0.536673 −0.268337 0.963325i \(-0.586474\pi\)
−0.268337 + 0.963325i \(0.586474\pi\)
\(380\) 320800. 0.113966
\(381\) 1.09173e6 0.385303
\(382\) −2.92796e6 −1.02661
\(383\) −3.48522e6 −1.21404 −0.607020 0.794686i \(-0.707635\pi\)
−0.607020 + 0.794686i \(0.707635\pi\)
\(384\) 180224. 0.0623713
\(385\) 0 0
\(386\) −744160. −0.254213
\(387\) 72956.0 0.0247619
\(388\) 2.37832e6 0.802031
\(389\) −3.60598e6 −1.20823 −0.604114 0.796898i \(-0.706473\pi\)
−0.604114 + 0.796898i \(0.706473\pi\)
\(390\) 1.19570e6 0.398071
\(391\) −661770. −0.218910
\(392\) 0 0
\(393\) 3.04491e6 0.994473
\(394\) 485424. 0.157536
\(395\) −2.55302e6 −0.823308
\(396\) 521184. 0.167014
\(397\) −4.74380e6 −1.51060 −0.755302 0.655377i \(-0.772510\pi\)
−0.755302 + 0.655377i \(0.772510\pi\)
\(398\) −2.59434e6 −0.820953
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) 5.26539e6 1.63520 0.817598 0.575789i \(-0.195305\pi\)
0.817598 + 0.575789i \(0.195305\pi\)
\(402\) 1.10229e6 0.340197
\(403\) 2.80881e6 0.861508
\(404\) 660960. 0.201475
\(405\) −362975. −0.109961
\(406\) 0 0
\(407\) −3.70115e6 −1.10752
\(408\) 361152. 0.107409
\(409\) −1.37015e6 −0.405004 −0.202502 0.979282i \(-0.564907\pi\)
−0.202502 + 0.979282i \(0.564907\pi\)
\(410\) 1.19040e6 0.349730
\(411\) 2.61518e6 0.763656
\(412\) −1.74056e6 −0.505180
\(413\) 0 0
\(414\) 629520. 0.180513
\(415\) 2.09190e6 0.596239
\(416\) 1.11309e6 0.315352
\(417\) −1.76526e6 −0.497128
\(418\) −856536. −0.239776
\(419\) −6.16429e6 −1.71533 −0.857666 0.514207i \(-0.828086\pi\)
−0.857666 + 0.514207i \(0.828086\pi\)
\(420\) 0 0
\(421\) 2.45358e6 0.674677 0.337338 0.941383i \(-0.390473\pi\)
0.337338 + 0.941383i \(0.390473\pi\)
\(422\) −599092. −0.163762
\(423\) −2.07632e6 −0.564213
\(424\) 1.78253e6 0.481528
\(425\) 320625. 0.0861043
\(426\) −2.28730e6 −0.610658
\(427\) 0 0
\(428\) −1.69757e6 −0.447938
\(429\) −3.19252e6 −0.837510
\(430\) −59800.0 −0.0155966
\(431\) 7.66771e6 1.98826 0.994128 0.108207i \(-0.0345111\pi\)
0.994128 + 0.108207i \(0.0345111\pi\)
\(432\) −1.02784e6 −0.264982
\(433\) 5.00285e6 1.28232 0.641161 0.767406i \(-0.278453\pi\)
0.641161 + 0.767406i \(0.278453\pi\)
\(434\) 0 0
\(435\) 489225. 0.123961
\(436\) −1.98578e6 −0.500281
\(437\) −1.03458e6 −0.259156
\(438\) −2.09836e6 −0.522630
\(439\) −1.86363e6 −0.461527 −0.230764 0.973010i \(-0.574122\pi\)
−0.230764 + 0.973010i \(0.574122\pi\)
\(440\) −427200. −0.105196
\(441\) 0 0
\(442\) 2.23052e6 0.543064
\(443\) 2.60747e6 0.631263 0.315632 0.948882i \(-0.397784\pi\)
0.315632 + 0.948882i \(0.397784\pi\)
\(444\) 2.43971e6 0.587329
\(445\) 810000. 0.193903
\(446\) 4.40384e6 1.04832
\(447\) −1.09646e6 −0.259551
\(448\) 0 0
\(449\) −4.78007e6 −1.11897 −0.559484 0.828841i \(-0.689001\pi\)
−0.559484 + 0.828841i \(0.689001\pi\)
\(450\) −305000. −0.0710017
\(451\) −3.17837e6 −0.735805
\(452\) 3.08534e6 0.710326
\(453\) −2.26619e6 −0.518860
\(454\) 2.78051e6 0.633118
\(455\) 0 0
\(456\) 564608. 0.127155
\(457\) −7.96757e6 −1.78458 −0.892289 0.451465i \(-0.850902\pi\)
−0.892289 + 0.451465i \(0.850902\pi\)
\(458\) −1.85494e6 −0.413206
\(459\) −2.05969e6 −0.456322
\(460\) −516000. −0.113699
\(461\) −1.77665e6 −0.389358 −0.194679 0.980867i \(-0.562367\pi\)
−0.194679 + 0.980867i \(0.562367\pi\)
\(462\) 0 0
\(463\) −998548. −0.216479 −0.108240 0.994125i \(-0.534521\pi\)
−0.108240 + 0.994125i \(0.534521\pi\)
\(464\) 455424. 0.0982021
\(465\) 710600. 0.152403
\(466\) −6.30614e6 −1.34524
\(467\) 5.08478e6 1.07890 0.539449 0.842019i \(-0.318633\pi\)
0.539449 + 0.842019i \(0.318633\pi\)
\(468\) −2.12182e6 −0.447811
\(469\) 0 0
\(470\) 1.70190e6 0.355377
\(471\) −6.39265e6 −1.32779
\(472\) −1.97837e6 −0.408745
\(473\) 159666. 0.0328140
\(474\) −4.49332e6 −0.918590
\(475\) 501250. 0.101934
\(476\) 0 0
\(477\) −3.39794e6 −0.683786
\(478\) −2.04815e6 −0.410007
\(479\) −3.71936e6 −0.740678 −0.370339 0.928897i \(-0.620758\pi\)
−0.370339 + 0.928897i \(0.620758\pi\)
\(480\) 281600. 0.0557866
\(481\) 1.50680e7 2.96956
\(482\) −3.95732e6 −0.775860
\(483\) 0 0
\(484\) −1.43619e6 −0.278676
\(485\) 3.71612e6 0.717358
\(486\) 3.26374e6 0.626795
\(487\) −9.12035e6 −1.74256 −0.871282 0.490782i \(-0.836711\pi\)
−0.871282 + 0.490782i \(0.836711\pi\)
\(488\) 113920. 0.0216546
\(489\) 3.81271e6 0.721044
\(490\) 0 0
\(491\) −7.83774e6 −1.46719 −0.733596 0.679586i \(-0.762160\pi\)
−0.733596 + 0.679586i \(0.762160\pi\)
\(492\) 2.09510e6 0.390205
\(493\) 912627. 0.169113
\(494\) 3.48710e6 0.642905
\(495\) 814350. 0.149382
\(496\) 661504. 0.120734
\(497\) 0 0
\(498\) 3.68174e6 0.665243
\(499\) −96103.0 −0.0172777 −0.00863884 0.999963i \(-0.502750\pi\)
−0.00863884 + 0.999963i \(0.502750\pi\)
\(500\) 250000. 0.0447214
\(501\) 4.93776e6 0.878892
\(502\) 244920. 0.0433775
\(503\) 2.37577e6 0.418682 0.209341 0.977843i \(-0.432868\pi\)
0.209341 + 0.977843i \(0.432868\pi\)
\(504\) 0 0
\(505\) 1.03275e6 0.180205
\(506\) 1.37772e6 0.239213
\(507\) 8.91304e6 1.53995
\(508\) 1.58797e6 0.273012
\(509\) −5.91484e6 −1.01193 −0.505963 0.862555i \(-0.668863\pi\)
−0.505963 + 0.862555i \(0.668863\pi\)
\(510\) 564300. 0.0960693
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) −3.22003e6 −0.540215
\(514\) −5.35548e6 −0.894109
\(515\) −2.71963e6 −0.451847
\(516\) −105248. −0.0174016
\(517\) −4.54407e6 −0.747685
\(518\) 0 0
\(519\) 2.88760e6 0.470564
\(520\) 1.73920e6 0.282060
\(521\) −1.46099e6 −0.235806 −0.117903 0.993025i \(-0.537617\pi\)
−0.117903 + 0.993025i \(0.537617\pi\)
\(522\) −868152. −0.139450
\(523\) 2.90691e6 0.464705 0.232352 0.972632i \(-0.425358\pi\)
0.232352 + 0.972632i \(0.425358\pi\)
\(524\) 4.42896e6 0.704650
\(525\) 0 0
\(526\) −6.62474e6 −1.04401
\(527\) 1.32559e6 0.207914
\(528\) −751872. −0.117371
\(529\) −4.77224e6 −0.741453
\(530\) 2.78520e6 0.430692
\(531\) 3.77126e6 0.580431
\(532\) 0 0
\(533\) 1.29396e7 1.97290
\(534\) 1.42560e6 0.216344
\(535\) −2.65245e6 −0.400648
\(536\) 1.60333e6 0.241052
\(537\) −1.22113e6 −0.182737
\(538\) 3.00242e6 0.447215
\(539\) 0 0
\(540\) −1.60600e6 −0.237007
\(541\) 5.28092e6 0.775741 0.387870 0.921714i \(-0.373211\pi\)
0.387870 + 0.921714i \(0.373211\pi\)
\(542\) 2.23163e6 0.326305
\(543\) −1.24049e6 −0.180549
\(544\) 525312. 0.0761062
\(545\) −3.10278e6 −0.447465
\(546\) 0 0
\(547\) 1.31999e7 1.88626 0.943132 0.332419i \(-0.107865\pi\)
0.943132 + 0.332419i \(0.107865\pi\)
\(548\) 3.80390e6 0.541101
\(549\) −217160. −0.0307503
\(550\) −667500. −0.0940902
\(551\) 1.42676e6 0.200203
\(552\) −908160. −0.126857
\(553\) 0 0
\(554\) 7.09023e6 0.981490
\(555\) 3.81205e6 0.525323
\(556\) −2.56765e6 −0.352248
\(557\) −1.39920e7 −1.91091 −0.955457 0.295131i \(-0.904637\pi\)
−0.955457 + 0.295131i \(0.904637\pi\)
\(558\) −1.26099e6 −0.171446
\(559\) −650026. −0.0879835
\(560\) 0 0
\(561\) −1.50668e6 −0.202122
\(562\) −4.39573e6 −0.587071
\(563\) 5.12689e6 0.681684 0.340842 0.940121i \(-0.389288\pi\)
0.340842 + 0.940121i \(0.389288\pi\)
\(564\) 2.99534e6 0.396505
\(565\) 4.82085e6 0.635335
\(566\) 1.28228e6 0.168244
\(567\) 0 0
\(568\) −3.32698e6 −0.432692
\(569\) −8.29102e6 −1.07356 −0.536781 0.843721i \(-0.680360\pi\)
−0.536781 + 0.843721i \(0.680360\pi\)
\(570\) 882200. 0.113731
\(571\) 6.21372e6 0.797556 0.398778 0.917048i \(-0.369434\pi\)
0.398778 + 0.917048i \(0.369434\pi\)
\(572\) −4.64366e6 −0.593432
\(573\) −8.05190e6 −1.02450
\(574\) 0 0
\(575\) −806250. −0.101695
\(576\) −499712. −0.0627572
\(577\) −1.14818e7 −1.43572 −0.717861 0.696186i \(-0.754879\pi\)
−0.717861 + 0.696186i \(0.754879\pi\)
\(578\) −4.62675e6 −0.576045
\(579\) −2.04644e6 −0.253690
\(580\) 711600. 0.0878347
\(581\) 0 0
\(582\) 6.54038e6 0.800379
\(583\) −7.43648e6 −0.906142
\(584\) −3.05216e6 −0.370318
\(585\) −3.31535e6 −0.400534
\(586\) 6.49348e6 0.781148
\(587\) −641856. −0.0768851 −0.0384426 0.999261i \(-0.512240\pi\)
−0.0384426 + 0.999261i \(0.512240\pi\)
\(588\) 0 0
\(589\) 2.07237e6 0.246138
\(590\) −3.09120e6 −0.365592
\(591\) 1.33492e6 0.157212
\(592\) 3.54867e6 0.416161
\(593\) 2.80572e6 0.327648 0.163824 0.986490i \(-0.447617\pi\)
0.163824 + 0.986490i \(0.447617\pi\)
\(594\) 4.28802e6 0.498644
\(595\) 0 0
\(596\) −1.59485e6 −0.183909
\(597\) −7.13442e6 −0.819263
\(598\) −5.60892e6 −0.641396
\(599\) 7.74415e6 0.881874 0.440937 0.897538i \(-0.354646\pi\)
0.440937 + 0.897538i \(0.354646\pi\)
\(600\) 440000. 0.0498970
\(601\) −2.88868e6 −0.326222 −0.163111 0.986608i \(-0.552153\pi\)
−0.163111 + 0.986608i \(0.552153\pi\)
\(602\) 0 0
\(603\) −3.05634e6 −0.342302
\(604\) −3.29627e6 −0.367647
\(605\) −2.24405e6 −0.249255
\(606\) 1.81764e6 0.201060
\(607\) −1.22095e7 −1.34501 −0.672504 0.740093i \(-0.734781\pi\)
−0.672504 + 0.740093i \(0.734781\pi\)
\(608\) 821248. 0.0900980
\(609\) 0 0
\(610\) 178000. 0.0193685
\(611\) 1.84997e7 2.00475
\(612\) −1.00138e6 −0.108073
\(613\) 1.51667e7 1.63019 0.815096 0.579326i \(-0.196684\pi\)
0.815096 + 0.579326i \(0.196684\pi\)
\(614\) −3.98035e6 −0.426089
\(615\) 3.27360e6 0.349010
\(616\) 0 0
\(617\) 1.53927e7 1.62780 0.813899 0.581006i \(-0.197341\pi\)
0.813899 + 0.581006i \(0.197341\pi\)
\(618\) −4.78654e6 −0.504139
\(619\) 1.40843e7 1.47744 0.738720 0.674013i \(-0.235431\pi\)
0.738720 + 0.674013i \(0.235431\pi\)
\(620\) 1.03360e6 0.107987
\(621\) 5.17935e6 0.538947
\(622\) −5.37593e6 −0.557157
\(623\) 0 0
\(624\) 3.06099e6 0.314703
\(625\) 390625. 0.0400000
\(626\) −7.67882e6 −0.783175
\(627\) −2.35547e6 −0.239282
\(628\) −9.29840e6 −0.940826
\(629\) 7.11121e6 0.716666
\(630\) 0 0
\(631\) 1.56178e7 1.56152 0.780760 0.624831i \(-0.214832\pi\)
0.780760 + 0.624831i \(0.214832\pi\)
\(632\) −6.53574e6 −0.650882
\(633\) −1.64750e6 −0.163424
\(634\) −7.65463e6 −0.756312
\(635\) 2.48120e6 0.244190
\(636\) 4.90195e6 0.480536
\(637\) 0 0
\(638\) −1.89997e6 −0.184797
\(639\) 6.34205e6 0.614437
\(640\) 409600. 0.0395285
\(641\) 4.04157e6 0.388513 0.194256 0.980951i \(-0.437771\pi\)
0.194256 + 0.980951i \(0.437771\pi\)
\(642\) −4.66831e6 −0.447015
\(643\) 1.71035e7 1.63139 0.815693 0.578485i \(-0.196356\pi\)
0.815693 + 0.578485i \(0.196356\pi\)
\(644\) 0 0
\(645\) −164450. −0.0155645
\(646\) 1.64570e6 0.155157
\(647\) 8.83546e6 0.829790 0.414895 0.909869i \(-0.363818\pi\)
0.414895 + 0.909869i \(0.363818\pi\)
\(648\) −929216. −0.0869319
\(649\) 8.25350e6 0.769178
\(650\) 2.71750e6 0.252282
\(651\) 0 0
\(652\) 5.54576e6 0.510907
\(653\) 9.36125e6 0.859115 0.429557 0.903040i \(-0.358670\pi\)
0.429557 + 0.903040i \(0.358670\pi\)
\(654\) −5.46088e6 −0.499251
\(655\) 6.92025e6 0.630258
\(656\) 3.04742e6 0.276486
\(657\) 5.81818e6 0.525864
\(658\) 0 0
\(659\) −366111. −0.0328397 −0.0164199 0.999865i \(-0.505227\pi\)
−0.0164199 + 0.999865i \(0.505227\pi\)
\(660\) −1.17480e6 −0.104979
\(661\) −2.05164e7 −1.82640 −0.913202 0.407508i \(-0.866398\pi\)
−0.913202 + 0.407508i \(0.866398\pi\)
\(662\) −9.02776e6 −0.800636
\(663\) 6.13394e6 0.541946
\(664\) 5.35526e6 0.471369
\(665\) 0 0
\(666\) −6.76466e6 −0.590963
\(667\) −2.29491e6 −0.199734
\(668\) 7.18219e6 0.622753
\(669\) 1.21105e7 1.04616
\(670\) 2.50520e6 0.215603
\(671\) −475260. −0.0407498
\(672\) 0 0
\(673\) 7.48189e6 0.636757 0.318378 0.947964i \(-0.396862\pi\)
0.318378 + 0.947964i \(0.396862\pi\)
\(674\) −5.80065e6 −0.491843
\(675\) −2.50938e6 −0.211985
\(676\) 1.29644e7 1.09115
\(677\) −1.21459e7 −1.01849 −0.509247 0.860621i \(-0.670076\pi\)
−0.509247 + 0.860621i \(0.670076\pi\)
\(678\) 8.48470e6 0.708863
\(679\) 0 0
\(680\) 820800. 0.0680715
\(681\) 7.64640e6 0.631814
\(682\) −2.75971e6 −0.227197
\(683\) −1.15232e7 −0.945197 −0.472599 0.881278i \(-0.656684\pi\)
−0.472599 + 0.881278i \(0.656684\pi\)
\(684\) −1.56550e6 −0.127942
\(685\) 5.94360e6 0.483975
\(686\) 0 0
\(687\) −5.10110e6 −0.412355
\(688\) −153088. −0.0123302
\(689\) 3.02751e7 2.42962
\(690\) −1.41900e6 −0.113464
\(691\) 1.71185e7 1.36386 0.681931 0.731417i \(-0.261141\pi\)
0.681931 + 0.731417i \(0.261141\pi\)
\(692\) 4.20014e6 0.333426
\(693\) 0 0
\(694\) 3.42554e6 0.269980
\(695\) −4.01195e6 −0.315060
\(696\) 1.25242e6 0.0979999
\(697\) 6.10675e6 0.476133
\(698\) 1.39041e6 0.108020
\(699\) −1.73419e7 −1.34247
\(700\) 0 0
\(701\) 9.72758e6 0.747669 0.373835 0.927495i \(-0.378043\pi\)
0.373835 + 0.927495i \(0.378043\pi\)
\(702\) −1.74572e7 −1.33700
\(703\) 1.11173e7 0.848422
\(704\) −1.09363e6 −0.0831648
\(705\) 4.68022e6 0.354645
\(706\) 8.87442e6 0.670082
\(707\) 0 0
\(708\) −5.44051e6 −0.407903
\(709\) −673813. −0.0503412 −0.0251706 0.999683i \(-0.508013\pi\)
−0.0251706 + 0.999683i \(0.508013\pi\)
\(710\) −5.19840e6 −0.387011
\(711\) 1.24588e7 0.924274
\(712\) 2.07360e6 0.153294
\(713\) −3.33336e6 −0.245560
\(714\) 0 0
\(715\) −7.25572e6 −0.530781
\(716\) −1.77619e6 −0.129481
\(717\) −5.63241e6 −0.409163
\(718\) 1.17735e7 0.852307
\(719\) −2.77719e6 −0.200347 −0.100174 0.994970i \(-0.531940\pi\)
−0.100174 + 0.994970i \(0.531940\pi\)
\(720\) −780800. −0.0561317
\(721\) 0 0
\(722\) −7.33158e6 −0.523425
\(723\) −1.08826e7 −0.774262
\(724\) −1.80435e6 −0.127931
\(725\) 1.11188e6 0.0785617
\(726\) −3.94953e6 −0.278102
\(727\) −1.16385e7 −0.816700 −0.408350 0.912825i \(-0.633896\pi\)
−0.408350 + 0.912825i \(0.633896\pi\)
\(728\) 0 0
\(729\) 1.25034e7 0.871384
\(730\) −4.76900e6 −0.331223
\(731\) −306774. −0.0212337
\(732\) 313280. 0.0216100
\(733\) 1.32013e7 0.907522 0.453761 0.891123i \(-0.350082\pi\)
0.453761 + 0.891123i \(0.350082\pi\)
\(734\) −9.31999e6 −0.638521
\(735\) 0 0
\(736\) −1.32096e6 −0.0898866
\(737\) −6.68888e6 −0.453612
\(738\) −5.80915e6 −0.392619
\(739\) 3.25476e6 0.219234 0.109617 0.993974i \(-0.465038\pi\)
0.109617 + 0.993974i \(0.465038\pi\)
\(740\) 5.54480e6 0.372226
\(741\) 9.58951e6 0.641580
\(742\) 0 0
\(743\) −7.61596e6 −0.506119 −0.253059 0.967451i \(-0.581437\pi\)
−0.253059 + 0.967451i \(0.581437\pi\)
\(744\) 1.81914e6 0.120485
\(745\) −2.49195e6 −0.164493
\(746\) 6.76986e6 0.445382
\(747\) −1.02085e7 −0.669359
\(748\) −2.19154e6 −0.143217
\(749\) 0 0
\(750\) 687500. 0.0446292
\(751\) 655199. 0.0423910 0.0211955 0.999775i \(-0.493253\pi\)
0.0211955 + 0.999775i \(0.493253\pi\)
\(752\) 4.35686e6 0.280950
\(753\) 673530. 0.0432882
\(754\) 7.73509e6 0.495493
\(755\) −5.15042e6 −0.328833
\(756\) 0 0
\(757\) 1.85111e7 1.17406 0.587032 0.809564i \(-0.300296\pi\)
0.587032 + 0.809564i \(0.300296\pi\)
\(758\) −6.00299e6 −0.379485
\(759\) 3.78873e6 0.238720
\(760\) 1.28320e6 0.0805861
\(761\) 1.85291e7 1.15983 0.579914 0.814678i \(-0.303086\pi\)
0.579914 + 0.814678i \(0.303086\pi\)
\(762\) 4.36691e6 0.272450
\(763\) 0 0
\(764\) −1.17119e7 −0.725926
\(765\) −1.56465e6 −0.0966637
\(766\) −1.39409e7 −0.858456
\(767\) −3.36013e7 −2.06238
\(768\) 720896. 0.0441031
\(769\) 1.48414e7 0.905024 0.452512 0.891758i \(-0.350528\pi\)
0.452512 + 0.891758i \(0.350528\pi\)
\(770\) 0 0
\(771\) −1.47276e7 −0.892268
\(772\) −2.97664e6 −0.179756
\(773\) −3.93042e6 −0.236586 −0.118293 0.992979i \(-0.537742\pi\)
−0.118293 + 0.992979i \(0.537742\pi\)
\(774\) 291824. 0.0175093
\(775\) 1.61500e6 0.0965869
\(776\) 9.51328e6 0.567121
\(777\) 0 0
\(778\) −1.44239e7 −0.854347
\(779\) 9.54701e6 0.563668
\(780\) 4.78280e6 0.281479
\(781\) 1.38797e7 0.814242
\(782\) −2.64708e6 −0.154793
\(783\) −7.14269e6 −0.416349
\(784\) 0 0
\(785\) −1.45288e7 −0.841500
\(786\) 1.21796e7 0.703199
\(787\) −1.17824e7 −0.678105 −0.339053 0.940767i \(-0.610107\pi\)
−0.339053 + 0.940767i \(0.610107\pi\)
\(788\) 1.94170e6 0.111395
\(789\) −1.82180e7 −1.04186
\(790\) −1.02121e7 −0.582167
\(791\) 0 0
\(792\) 2.08474e6 0.118097
\(793\) 1.93486e6 0.109261
\(794\) −1.89752e7 −1.06816
\(795\) 7.65930e6 0.429805
\(796\) −1.03773e7 −0.580502
\(797\) 5.40952e6 0.301657 0.150828 0.988560i \(-0.451806\pi\)
0.150828 + 0.988560i \(0.451806\pi\)
\(798\) 0 0
\(799\) 8.73075e6 0.483821
\(800\) 640000. 0.0353553
\(801\) −3.95280e6 −0.217683
\(802\) 2.10616e7 1.15626
\(803\) 1.27332e7 0.696867
\(804\) 4.40915e6 0.240555
\(805\) 0 0
\(806\) 1.12352e7 0.609178
\(807\) 8.25667e6 0.446294
\(808\) 2.64384e6 0.142465
\(809\) −7.12264e6 −0.382622 −0.191311 0.981529i \(-0.561274\pi\)
−0.191311 + 0.981529i \(0.561274\pi\)
\(810\) −1.45190e6 −0.0777543
\(811\) 3.03045e7 1.61791 0.808956 0.587869i \(-0.200033\pi\)
0.808956 + 0.587869i \(0.200033\pi\)
\(812\) 0 0
\(813\) 6.13699e6 0.325633
\(814\) −1.48046e7 −0.783134
\(815\) 8.66525e6 0.456969
\(816\) 1.44461e6 0.0759494
\(817\) −479596. −0.0251374
\(818\) −5.48060e6 −0.286381
\(819\) 0 0
\(820\) 4.76160e6 0.247297
\(821\) 2.82181e7 1.46106 0.730532 0.682878i \(-0.239272\pi\)
0.730532 + 0.682878i \(0.239272\pi\)
\(822\) 1.04607e7 0.539986
\(823\) −2.64534e7 −1.36139 −0.680694 0.732567i \(-0.738322\pi\)
−0.680694 + 0.732567i \(0.738322\pi\)
\(824\) −6.96224e6 −0.357216
\(825\) −1.83563e6 −0.0938964
\(826\) 0 0
\(827\) 4.44481e6 0.225990 0.112995 0.993596i \(-0.463956\pi\)
0.112995 + 0.993596i \(0.463956\pi\)
\(828\) 2.51808e6 0.127642
\(829\) 2.80386e6 0.141700 0.0708501 0.997487i \(-0.477429\pi\)
0.0708501 + 0.997487i \(0.477429\pi\)
\(830\) 8.36760e6 0.421605
\(831\) 1.94981e7 0.979469
\(832\) 4.45235e6 0.222988
\(833\) 0 0
\(834\) −7.06103e6 −0.351522
\(835\) 1.12222e7 0.557007
\(836\) −3.42614e6 −0.169547
\(837\) −1.03748e7 −0.511876
\(838\) −2.46572e7 −1.21292
\(839\) −2.59804e7 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(840\) 0 0
\(841\) −1.73463e7 −0.845701
\(842\) 9.81434e6 0.477069
\(843\) −1.20883e7 −0.585862
\(844\) −2.39637e6 −0.115797
\(845\) 2.02569e7 0.975958
\(846\) −8.30527e6 −0.398959
\(847\) 0 0
\(848\) 7.13011e6 0.340492
\(849\) 3.52626e6 0.167898
\(850\) 1.28250e6 0.0608850
\(851\) −1.78820e7 −0.846431
\(852\) −9.14918e6 −0.431801
\(853\) −1.18392e7 −0.557121 −0.278560 0.960419i \(-0.589857\pi\)
−0.278560 + 0.960419i \(0.589857\pi\)
\(854\) 0 0
\(855\) −2.44610e6 −0.114435
\(856\) −6.79027e6 −0.316740
\(857\) 2.99283e6 0.139197 0.0695985 0.997575i \(-0.477828\pi\)
0.0695985 + 0.997575i \(0.477828\pi\)
\(858\) −1.27701e7 −0.592209
\(859\) −2.80980e7 −1.29925 −0.649626 0.760254i \(-0.725074\pi\)
−0.649626 + 0.760254i \(0.725074\pi\)
\(860\) −239200. −0.0110285
\(861\) 0 0
\(862\) 3.06708e7 1.40591
\(863\) 1.15833e7 0.529424 0.264712 0.964328i \(-0.414723\pi\)
0.264712 + 0.964328i \(0.414723\pi\)
\(864\) −4.11136e6 −0.187370
\(865\) 6.56272e6 0.298225
\(866\) 2.00114e7 0.906739
\(867\) −1.27236e7 −0.574859
\(868\) 0 0
\(869\) 2.72663e7 1.22483
\(870\) 1.95690e6 0.0876538
\(871\) 2.72315e7 1.21626
\(872\) −7.94310e6 −0.353752
\(873\) −1.81347e7 −0.805331
\(874\) −4.13832e6 −0.183251
\(875\) 0 0
\(876\) −8.39344e6 −0.369556
\(877\) 4.12538e7 1.81119 0.905596 0.424141i \(-0.139424\pi\)
0.905596 + 0.424141i \(0.139424\pi\)
\(878\) −7.45450e6 −0.326349
\(879\) 1.78571e7 0.779539
\(880\) −1.70880e6 −0.0743849
\(881\) 1.32541e7 0.575321 0.287661 0.957732i \(-0.407123\pi\)
0.287661 + 0.957732i \(0.407123\pi\)
\(882\) 0 0
\(883\) −3.19208e7 −1.37776 −0.688878 0.724877i \(-0.741897\pi\)
−0.688878 + 0.724877i \(0.741897\pi\)
\(884\) 8.92210e6 0.384004
\(885\) −8.50080e6 −0.364839
\(886\) 1.04299e7 0.446371
\(887\) −1.74303e7 −0.743866 −0.371933 0.928260i \(-0.621305\pi\)
−0.371933 + 0.928260i \(0.621305\pi\)
\(888\) 9.75885e6 0.415304
\(889\) 0 0
\(890\) 3.24000e6 0.137110
\(891\) 3.87657e6 0.163589
\(892\) 1.76153e7 0.741274
\(893\) 1.36492e7 0.572769
\(894\) −4.38583e6 −0.183530
\(895\) −2.77530e6 −0.115812
\(896\) 0 0
\(897\) −1.54245e7 −0.640075
\(898\) −1.91203e7 −0.791230
\(899\) 4.59694e6 0.189701
\(900\) −1.22000e6 −0.0502058
\(901\) 1.42881e7 0.586357
\(902\) −1.27135e7 −0.520293
\(903\) 0 0
\(904\) 1.23414e7 0.502276
\(905\) −2.81930e6 −0.114425
\(906\) −9.06475e6 −0.366889
\(907\) −3.15066e7 −1.27170 −0.635848 0.771815i \(-0.719349\pi\)
−0.635848 + 0.771815i \(0.719349\pi\)
\(908\) 1.11220e7 0.447682
\(909\) −5.03982e6 −0.202304
\(910\) 0 0
\(911\) −4.91214e7 −1.96099 −0.980494 0.196548i \(-0.937027\pi\)
−0.980494 + 0.196548i \(0.937027\pi\)
\(912\) 2.25843e6 0.0899125
\(913\) −2.23415e7 −0.887024
\(914\) −3.18703e7 −1.26189
\(915\) 489500. 0.0193286
\(916\) −7.41978e6 −0.292181
\(917\) 0 0
\(918\) −8.23878e6 −0.322668
\(919\) −4.51238e7 −1.76245 −0.881226 0.472696i \(-0.843281\pi\)
−0.881226 + 0.472696i \(0.843281\pi\)
\(920\) −2.06400e6 −0.0803971
\(921\) −1.09460e7 −0.425211
\(922\) −7.10659e6 −0.275318
\(923\) −5.65066e7 −2.18321
\(924\) 0 0
\(925\) 8.66375e6 0.332929
\(926\) −3.99419e6 −0.153074
\(927\) 1.32718e7 0.507259
\(928\) 1.82170e6 0.0694394
\(929\) 3.68196e7 1.39972 0.699858 0.714282i \(-0.253247\pi\)
0.699858 + 0.714282i \(0.253247\pi\)
\(930\) 2.84240e6 0.107765
\(931\) 0 0
\(932\) −2.52246e7 −0.951227
\(933\) −1.47838e7 −0.556009
\(934\) 2.03391e7 0.762896
\(935\) −3.42428e6 −0.128097
\(936\) −8.48730e6 −0.316650
\(937\) −1.71904e7 −0.639641 −0.319820 0.947478i \(-0.603623\pi\)
−0.319820 + 0.947478i \(0.603623\pi\)
\(938\) 0 0
\(939\) −2.11168e7 −0.781562
\(940\) 6.80760e6 0.251290
\(941\) 8.10352e6 0.298332 0.149166 0.988812i \(-0.452341\pi\)
0.149166 + 0.988812i \(0.452341\pi\)
\(942\) −2.55706e7 −0.938888
\(943\) −1.53562e7 −0.562346
\(944\) −7.91347e6 −0.289026
\(945\) 0 0
\(946\) 638664. 0.0232030
\(947\) 1.83337e7 0.664317 0.332158 0.943224i \(-0.392223\pi\)
0.332158 + 0.943224i \(0.392223\pi\)
\(948\) −1.79733e7 −0.649541
\(949\) −5.18390e7 −1.86849
\(950\) 2.00500e6 0.0720784
\(951\) −2.10502e7 −0.754755
\(952\) 0 0
\(953\) 6.03035e6 0.215085 0.107542 0.994200i \(-0.465702\pi\)
0.107542 + 0.994200i \(0.465702\pi\)
\(954\) −1.35918e7 −0.483510
\(955\) −1.82998e7 −0.649288
\(956\) −8.19259e6 −0.289919
\(957\) −5.22492e6 −0.184417
\(958\) −1.48774e7 −0.523738
\(959\) 0 0
\(960\) 1.12640e6 0.0394471
\(961\) −2.19521e7 −0.766774
\(962\) 6.02720e7 2.09980
\(963\) 1.29440e7 0.449781
\(964\) −1.58293e7 −0.548616
\(965\) −4.65100e6 −0.160779
\(966\) 0 0
\(967\) −3.09228e7 −1.06344 −0.531720 0.846920i \(-0.678454\pi\)
−0.531720 + 0.846920i \(0.678454\pi\)
\(968\) −5.74477e6 −0.197053
\(969\) 4.52569e6 0.154837
\(970\) 1.48645e7 0.507249
\(971\) 2.47924e6 0.0843859 0.0421929 0.999109i \(-0.486566\pi\)
0.0421929 + 0.999109i \(0.486566\pi\)
\(972\) 1.30550e7 0.443211
\(973\) 0 0
\(974\) −3.64814e7 −1.23218
\(975\) 7.47312e6 0.251762
\(976\) 455680. 0.0153121
\(977\) −2.09758e6 −0.0703044 −0.0351522 0.999382i \(-0.511192\pi\)
−0.0351522 + 0.999382i \(0.511192\pi\)
\(978\) 1.52508e7 0.509855
\(979\) −8.65080e6 −0.288469
\(980\) 0 0
\(981\) 1.51415e7 0.502340
\(982\) −3.13509e7 −1.03746
\(983\) 4.45491e7 1.47047 0.735233 0.677814i \(-0.237073\pi\)
0.735233 + 0.677814i \(0.237073\pi\)
\(984\) 8.38042e6 0.275917
\(985\) 3.03390e6 0.0996347
\(986\) 3.65051e6 0.119581
\(987\) 0 0
\(988\) 1.39484e7 0.454602
\(989\) 771420. 0.0250784
\(990\) 3.25740e6 0.105629
\(991\) −1.95104e7 −0.631075 −0.315538 0.948913i \(-0.602185\pi\)
−0.315538 + 0.948913i \(0.602185\pi\)
\(992\) 2.64602e6 0.0853716
\(993\) −2.48263e7 −0.798987
\(994\) 0 0
\(995\) −1.62146e7 −0.519217
\(996\) 1.47270e7 0.470398
\(997\) 2.00678e7 0.639385 0.319692 0.947521i \(-0.396420\pi\)
0.319692 + 0.947521i \(0.396420\pi\)
\(998\) −384412. −0.0122172
\(999\) −5.56559e7 −1.76440
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.6.a.l.1.1 1
7.6 odd 2 70.6.a.f.1.1 1
21.20 even 2 630.6.a.e.1.1 1
28.27 even 2 560.6.a.f.1.1 1
35.13 even 4 350.6.c.b.99.1 2
35.27 even 4 350.6.c.b.99.2 2
35.34 odd 2 350.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.f.1.1 1 7.6 odd 2
350.6.a.d.1.1 1 35.34 odd 2
350.6.c.b.99.1 2 35.13 even 4
350.6.c.b.99.2 2 35.27 even 4
490.6.a.l.1.1 1 1.1 even 1 trivial
560.6.a.f.1.1 1 28.27 even 2
630.6.a.e.1.1 1 21.20 even 2