Defining parameters
Level: | \( N \) | = | \( 490 = 2 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(84672\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(490))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 35760 | 10345 | 25415 |
Cusp forms | 34800 | 10345 | 24455 |
Eisenstein series | 960 | 0 | 960 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(490))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
490.6.a | \(\chi_{490}(1, \cdot)\) | 490.6.a.a | 1 | 1 |
490.6.a.b | 1 | |||
490.6.a.c | 1 | |||
490.6.a.d | 1 | |||
490.6.a.e | 1 | |||
490.6.a.f | 1 | |||
490.6.a.g | 1 | |||
490.6.a.h | 1 | |||
490.6.a.i | 1 | |||
490.6.a.j | 1 | |||
490.6.a.k | 1 | |||
490.6.a.l | 1 | |||
490.6.a.m | 1 | |||
490.6.a.n | 2 | |||
490.6.a.o | 2 | |||
490.6.a.p | 2 | |||
490.6.a.q | 2 | |||
490.6.a.r | 2 | |||
490.6.a.s | 2 | |||
490.6.a.t | 2 | |||
490.6.a.u | 2 | |||
490.6.a.v | 2 | |||
490.6.a.w | 2 | |||
490.6.a.x | 3 | |||
490.6.a.y | 3 | |||
490.6.a.z | 4 | |||
490.6.a.ba | 4 | |||
490.6.a.bb | 4 | |||
490.6.a.bc | 4 | |||
490.6.a.bd | 6 | |||
490.6.a.be | 6 | |||
490.6.c | \(\chi_{490}(99, \cdot)\) | n/a | 102 | 1 |
490.6.e | \(\chi_{490}(361, \cdot)\) | n/a | 136 | 2 |
490.6.g | \(\chi_{490}(97, \cdot)\) | n/a | 200 | 2 |
490.6.i | \(\chi_{490}(79, \cdot)\) | n/a | 200 | 2 |
490.6.k | \(\chi_{490}(71, \cdot)\) | n/a | 576 | 6 |
490.6.l | \(\chi_{490}(117, \cdot)\) | n/a | 400 | 4 |
490.6.p | \(\chi_{490}(29, \cdot)\) | n/a | 840 | 6 |
490.6.q | \(\chi_{490}(11, \cdot)\) | n/a | 1104 | 12 |
490.6.s | \(\chi_{490}(13, \cdot)\) | n/a | 1680 | 12 |
490.6.t | \(\chi_{490}(9, \cdot)\) | n/a | 1680 | 12 |
490.6.w | \(\chi_{490}(3, \cdot)\) | n/a | 3360 | 24 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(490))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(490)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(245))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(490))\)\(^{\oplus 1}\)