Properties

Label 560.6.a.f
Level $560$
Weight $6$
Character orbit 560.a
Self dual yes
Analytic conductor $89.815$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,6,Mod(1,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,11,0,-25,0,-49,0,-122] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 11 q^{3} - 25 q^{5} - 49 q^{7} - 122 q^{9} + 267 q^{11} - 1087 q^{13} - 275 q^{15} - 513 q^{17} + 802 q^{19} - 539 q^{21} + 1290 q^{23} + 625 q^{25} - 4015 q^{27} + 1779 q^{29} + 2584 q^{31} + 2937 q^{33}+ \cdots - 32574 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 11.0000 0 −25.0000 0 −49.0000 0 −122.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.6.a.f 1
4.b odd 2 1 70.6.a.f 1
12.b even 2 1 630.6.a.e 1
20.d odd 2 1 350.6.a.d 1
20.e even 4 2 350.6.c.b 2
28.d even 2 1 490.6.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.f 1 4.b odd 2 1
350.6.a.d 1 20.d odd 2 1
350.6.c.b 2 20.e even 4 2
490.6.a.l 1 28.d even 2 1
560.6.a.f 1 1.a even 1 1 trivial
630.6.a.e 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 11 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(560))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 11 \) Copy content Toggle raw display
$5$ \( T + 25 \) Copy content Toggle raw display
$7$ \( T + 49 \) Copy content Toggle raw display
$11$ \( T - 267 \) Copy content Toggle raw display
$13$ \( T + 1087 \) Copy content Toggle raw display
$17$ \( T + 513 \) Copy content Toggle raw display
$19$ \( T - 802 \) Copy content Toggle raw display
$23$ \( T - 1290 \) Copy content Toggle raw display
$29$ \( T - 1779 \) Copy content Toggle raw display
$31$ \( T - 2584 \) Copy content Toggle raw display
$37$ \( T - 13862 \) Copy content Toggle raw display
$41$ \( T + 11904 \) Copy content Toggle raw display
$43$ \( T - 598 \) Copy content Toggle raw display
$47$ \( T - 17019 \) Copy content Toggle raw display
$53$ \( T - 27852 \) Copy content Toggle raw display
$59$ \( T + 30912 \) Copy content Toggle raw display
$61$ \( T + 1780 \) Copy content Toggle raw display
$67$ \( T + 25052 \) Copy content Toggle raw display
$71$ \( T - 51984 \) Copy content Toggle raw display
$73$ \( T - 47690 \) Copy content Toggle raw display
$79$ \( T - 102121 \) Copy content Toggle raw display
$83$ \( T - 83676 \) Copy content Toggle raw display
$89$ \( T + 32400 \) Copy content Toggle raw display
$97$ \( T + 148645 \) Copy content Toggle raw display
show more
show less