gp: [N,k,chi] = [490,6,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [1,-4,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 − 3 T_{3} - 3 T 3 − 3
T3 - 3
acting on S 6 n e w ( Γ 0 ( 490 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(490)) S 6 n e w ( Γ 0 ( 4 9 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 4 T + 4 T + 4
T + 4
3 3 3
T − 3 T - 3 T − 3
T - 3
5 5 5
T − 25 T - 25 T − 2 5
T - 25
7 7 7
T T T
T
11 11 1 1
T − 405 T - 405 T − 4 0 5
T - 405
13 13 1 3
T − 391 T - 391 T − 3 9 1
T - 391
17 17 1 7
T + 999 T + 999 T + 9 9 9
T + 999
19 19 1 9
T + 2342 T + 2342 T + 2 3 4 2
T + 2342
23 23 2 3
T − 2430 T - 2430 T − 2 4 3 0
T - 2430
29 29 2 9
T − 8259 T - 8259 T − 8 2 5 9
T - 8259
31 31 3 1
T + 4016 T + 4016 T + 4 0 1 6
T + 4016
37 37 3 7
T + 7042 T + 7042 T + 7 0 4 2
T + 7042
41 41 4 1
T + 3336 T + 3336 T + 3 3 3 6
T + 3336
43 43 4 3
T + 23518 T + 23518 T + 2 3 5 1 8
T + 23518
47 47 4 7
T + 10317 T + 10317 T + 1 0 3 1 7
T + 10317
53 53 5 3
T − 3084 T - 3084 T − 3 0 8 4
T - 3084
59 59 5 9
T − 18816 T - 18816 T − 1 8 8 1 6
T - 18816
61 61 6 1
T + 21668 T + 21668 T + 2 1 6 6 8
T + 21668
67 67 6 7
T − 52124 T - 52124 T − 5 2 1 2 4
T - 52124
71 71 7 1
T + 28560 T + 28560 T + 2 8 5 6 0
T + 28560
73 73 7 3
T − 70342 T - 70342 T − 7 0 3 4 2
T - 70342
79 79 7 9
T − 58823 T - 58823 T − 5 8 8 2 3
T - 58823
83 83 8 3
T + 756 T + 756 T + 7 5 6
T + 756
89 89 8 9
T + 135384 T + 135384 T + 1 3 5 3 8 4
T + 135384
97 97 9 7
T + 110435 T + 110435 T + 1 1 0 4 3 5
T + 110435
show more
show less