Properties

Label 490.6.a.e.1.1
Level $490$
Weight $6$
Character 490.1
Self dual yes
Analytic conductor $78.588$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [490,6,Mod(1,490)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(490, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("490.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.5880717084\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 490.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +3.00000 q^{3} +16.0000 q^{4} +25.0000 q^{5} -12.0000 q^{6} -64.0000 q^{8} -234.000 q^{9} -100.000 q^{10} +405.000 q^{11} +48.0000 q^{12} +391.000 q^{13} +75.0000 q^{15} +256.000 q^{16} -999.000 q^{17} +936.000 q^{18} -2342.00 q^{19} +400.000 q^{20} -1620.00 q^{22} +2430.00 q^{23} -192.000 q^{24} +625.000 q^{25} -1564.00 q^{26} -1431.00 q^{27} +8259.00 q^{29} -300.000 q^{30} -4016.00 q^{31} -1024.00 q^{32} +1215.00 q^{33} +3996.00 q^{34} -3744.00 q^{36} -7042.00 q^{37} +9368.00 q^{38} +1173.00 q^{39} -1600.00 q^{40} -3336.00 q^{41} -23518.0 q^{43} +6480.00 q^{44} -5850.00 q^{45} -9720.00 q^{46} -10317.0 q^{47} +768.000 q^{48} -2500.00 q^{50} -2997.00 q^{51} +6256.00 q^{52} +3084.00 q^{53} +5724.00 q^{54} +10125.0 q^{55} -7026.00 q^{57} -33036.0 q^{58} +18816.0 q^{59} +1200.00 q^{60} -21668.0 q^{61} +16064.0 q^{62} +4096.00 q^{64} +9775.00 q^{65} -4860.00 q^{66} +52124.0 q^{67} -15984.0 q^{68} +7290.00 q^{69} -28560.0 q^{71} +14976.0 q^{72} +70342.0 q^{73} +28168.0 q^{74} +1875.00 q^{75} -37472.0 q^{76} -4692.00 q^{78} +58823.0 q^{79} +6400.00 q^{80} +52569.0 q^{81} +13344.0 q^{82} -756.000 q^{83} -24975.0 q^{85} +94072.0 q^{86} +24777.0 q^{87} -25920.0 q^{88} -135384. q^{89} +23400.0 q^{90} +38880.0 q^{92} -12048.0 q^{93} +41268.0 q^{94} -58550.0 q^{95} -3072.00 q^{96} -110435. q^{97} -94770.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 3.00000 0.192450 0.0962250 0.995360i \(-0.469323\pi\)
0.0962250 + 0.995360i \(0.469323\pi\)
\(4\) 16.0000 0.500000
\(5\) 25.0000 0.447214
\(6\) −12.0000 −0.136083
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −234.000 −0.962963
\(10\) −100.000 −0.316228
\(11\) 405.000 1.00919 0.504595 0.863356i \(-0.331642\pi\)
0.504595 + 0.863356i \(0.331642\pi\)
\(12\) 48.0000 0.0962250
\(13\) 391.000 0.641680 0.320840 0.947133i \(-0.396035\pi\)
0.320840 + 0.947133i \(0.396035\pi\)
\(14\) 0 0
\(15\) 75.0000 0.0860663
\(16\) 256.000 0.250000
\(17\) −999.000 −0.838384 −0.419192 0.907898i \(-0.637687\pi\)
−0.419192 + 0.907898i \(0.637687\pi\)
\(18\) 936.000 0.680918
\(19\) −2342.00 −1.48834 −0.744171 0.667989i \(-0.767155\pi\)
−0.744171 + 0.667989i \(0.767155\pi\)
\(20\) 400.000 0.223607
\(21\) 0 0
\(22\) −1620.00 −0.713606
\(23\) 2430.00 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(24\) −192.000 −0.0680414
\(25\) 625.000 0.200000
\(26\) −1564.00 −0.453736
\(27\) −1431.00 −0.377772
\(28\) 0 0
\(29\) 8259.00 1.82361 0.911806 0.410621i \(-0.134688\pi\)
0.911806 + 0.410621i \(0.134688\pi\)
\(30\) −300.000 −0.0608581
\(31\) −4016.00 −0.750567 −0.375284 0.926910i \(-0.622455\pi\)
−0.375284 + 0.926910i \(0.622455\pi\)
\(32\) −1024.00 −0.176777
\(33\) 1215.00 0.194219
\(34\) 3996.00 0.592827
\(35\) 0 0
\(36\) −3744.00 −0.481481
\(37\) −7042.00 −0.845652 −0.422826 0.906211i \(-0.638962\pi\)
−0.422826 + 0.906211i \(0.638962\pi\)
\(38\) 9368.00 1.05242
\(39\) 1173.00 0.123491
\(40\) −1600.00 −0.158114
\(41\) −3336.00 −0.309932 −0.154966 0.987920i \(-0.549527\pi\)
−0.154966 + 0.987920i \(0.549527\pi\)
\(42\) 0 0
\(43\) −23518.0 −1.93968 −0.969838 0.243750i \(-0.921622\pi\)
−0.969838 + 0.243750i \(0.921622\pi\)
\(44\) 6480.00 0.504595
\(45\) −5850.00 −0.430650
\(46\) −9720.00 −0.677285
\(47\) −10317.0 −0.681254 −0.340627 0.940199i \(-0.610639\pi\)
−0.340627 + 0.940199i \(0.610639\pi\)
\(48\) 768.000 0.0481125
\(49\) 0 0
\(50\) −2500.00 −0.141421
\(51\) −2997.00 −0.161347
\(52\) 6256.00 0.320840
\(53\) 3084.00 0.150808 0.0754041 0.997153i \(-0.475975\pi\)
0.0754041 + 0.997153i \(0.475975\pi\)
\(54\) 5724.00 0.267125
\(55\) 10125.0 0.451324
\(56\) 0 0
\(57\) −7026.00 −0.286432
\(58\) −33036.0 −1.28949
\(59\) 18816.0 0.703716 0.351858 0.936053i \(-0.385550\pi\)
0.351858 + 0.936053i \(0.385550\pi\)
\(60\) 1200.00 0.0430331
\(61\) −21668.0 −0.745580 −0.372790 0.927916i \(-0.621599\pi\)
−0.372790 + 0.927916i \(0.621599\pi\)
\(62\) 16064.0 0.530731
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 9775.00 0.286968
\(66\) −4860.00 −0.137333
\(67\) 52124.0 1.41857 0.709285 0.704922i \(-0.249018\pi\)
0.709285 + 0.704922i \(0.249018\pi\)
\(68\) −15984.0 −0.419192
\(69\) 7290.00 0.184334
\(70\) 0 0
\(71\) −28560.0 −0.672376 −0.336188 0.941795i \(-0.609138\pi\)
−0.336188 + 0.941795i \(0.609138\pi\)
\(72\) 14976.0 0.340459
\(73\) 70342.0 1.54493 0.772463 0.635060i \(-0.219025\pi\)
0.772463 + 0.635060i \(0.219025\pi\)
\(74\) 28168.0 0.597966
\(75\) 1875.00 0.0384900
\(76\) −37472.0 −0.744171
\(77\) 0 0
\(78\) −4692.00 −0.0873216
\(79\) 58823.0 1.06042 0.530212 0.847865i \(-0.322112\pi\)
0.530212 + 0.847865i \(0.322112\pi\)
\(80\) 6400.00 0.111803
\(81\) 52569.0 0.890261
\(82\) 13344.0 0.219155
\(83\) −756.000 −0.0120455 −0.00602277 0.999982i \(-0.501917\pi\)
−0.00602277 + 0.999982i \(0.501917\pi\)
\(84\) 0 0
\(85\) −24975.0 −0.374937
\(86\) 94072.0 1.37156
\(87\) 24777.0 0.350954
\(88\) −25920.0 −0.356803
\(89\) −135384. −1.81173 −0.905863 0.423572i \(-0.860776\pi\)
−0.905863 + 0.423572i \(0.860776\pi\)
\(90\) 23400.0 0.304516
\(91\) 0 0
\(92\) 38880.0 0.478913
\(93\) −12048.0 −0.144447
\(94\) 41268.0 0.481719
\(95\) −58550.0 −0.665607
\(96\) −3072.00 −0.0340207
\(97\) −110435. −1.19173 −0.595864 0.803085i \(-0.703190\pi\)
−0.595864 + 0.803085i \(0.703190\pi\)
\(98\) 0 0
\(99\) −94770.0 −0.971813
\(100\) 10000.0 0.100000
\(101\) −33450.0 −0.326282 −0.163141 0.986603i \(-0.552162\pi\)
−0.163141 + 0.986603i \(0.552162\pi\)
\(102\) 11988.0 0.114090
\(103\) 110311. 1.02453 0.512266 0.858827i \(-0.328806\pi\)
0.512266 + 0.858827i \(0.328806\pi\)
\(104\) −25024.0 −0.226868
\(105\) 0 0
\(106\) −12336.0 −0.106637
\(107\) 35358.0 0.298558 0.149279 0.988795i \(-0.452305\pi\)
0.149279 + 0.988795i \(0.452305\pi\)
\(108\) −22896.0 −0.188886
\(109\) −151183. −1.21881 −0.609406 0.792858i \(-0.708592\pi\)
−0.609406 + 0.792858i \(0.708592\pi\)
\(110\) −40500.0 −0.319134
\(111\) −21126.0 −0.162746
\(112\) 0 0
\(113\) −133686. −0.984895 −0.492447 0.870342i \(-0.663898\pi\)
−0.492447 + 0.870342i \(0.663898\pi\)
\(114\) 28104.0 0.202538
\(115\) 60750.0 0.428353
\(116\) 132144. 0.911806
\(117\) −91494.0 −0.617914
\(118\) −75264.0 −0.497602
\(119\) 0 0
\(120\) −4800.00 −0.0304290
\(121\) 2974.00 0.0184662
\(122\) 86672.0 0.527205
\(123\) −10008.0 −0.0596464
\(124\) −64256.0 −0.375284
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −283984. −1.56237 −0.781186 0.624298i \(-0.785385\pi\)
−0.781186 + 0.624298i \(0.785385\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −70554.0 −0.373291
\(130\) −39100.0 −0.202917
\(131\) −261438. −1.33104 −0.665519 0.746381i \(-0.731790\pi\)
−0.665519 + 0.746381i \(0.731790\pi\)
\(132\) 19440.0 0.0971094
\(133\) 0 0
\(134\) −208496. −1.00308
\(135\) −35775.0 −0.168945
\(136\) 63936.0 0.296414
\(137\) 39672.0 0.180585 0.0902927 0.995915i \(-0.471220\pi\)
0.0902927 + 0.995915i \(0.471220\pi\)
\(138\) −29160.0 −0.130344
\(139\) 182626. 0.801725 0.400863 0.916138i \(-0.368710\pi\)
0.400863 + 0.916138i \(0.368710\pi\)
\(140\) 0 0
\(141\) −30951.0 −0.131107
\(142\) 114240. 0.475442
\(143\) 158355. 0.647577
\(144\) −59904.0 −0.240741
\(145\) 206475. 0.815544
\(146\) −281368. −1.09243
\(147\) 0 0
\(148\) −112672. −0.422826
\(149\) −12078.0 −0.0445686 −0.0222843 0.999752i \(-0.507094\pi\)
−0.0222843 + 0.999752i \(0.507094\pi\)
\(150\) −7500.00 −0.0272166
\(151\) −208417. −0.743859 −0.371930 0.928261i \(-0.621304\pi\)
−0.371930 + 0.928261i \(0.621304\pi\)
\(152\) 149888. 0.526209
\(153\) 233766. 0.807333
\(154\) 0 0
\(155\) −100400. −0.335664
\(156\) 18768.0 0.0617457
\(157\) −364094. −1.17887 −0.589433 0.807817i \(-0.700649\pi\)
−0.589433 + 0.807817i \(0.700649\pi\)
\(158\) −235292. −0.749833
\(159\) 9252.00 0.0290230
\(160\) −25600.0 −0.0790569
\(161\) 0 0
\(162\) −210276. −0.629509
\(163\) 626.000 0.00184546 0.000922731 1.00000i \(-0.499706\pi\)
0.000922731 1.00000i \(0.499706\pi\)
\(164\) −53376.0 −0.154966
\(165\) 30375.0 0.0868573
\(166\) 3024.00 0.00851749
\(167\) −445617. −1.23643 −0.618216 0.786008i \(-0.712144\pi\)
−0.618216 + 0.786008i \(0.712144\pi\)
\(168\) 0 0
\(169\) −218412. −0.588247
\(170\) 99900.0 0.265120
\(171\) 548028. 1.43322
\(172\) −376288. −0.969838
\(173\) −643467. −1.63460 −0.817299 0.576214i \(-0.804530\pi\)
−0.817299 + 0.576214i \(0.804530\pi\)
\(174\) −99108.0 −0.248162
\(175\) 0 0
\(176\) 103680. 0.252298
\(177\) 56448.0 0.135430
\(178\) 541536. 1.28108
\(179\) 245148. 0.571868 0.285934 0.958249i \(-0.407696\pi\)
0.285934 + 0.958249i \(0.407696\pi\)
\(180\) −93600.0 −0.215325
\(181\) −686180. −1.55683 −0.778416 0.627749i \(-0.783976\pi\)
−0.778416 + 0.627749i \(0.783976\pi\)
\(182\) 0 0
\(183\) −65004.0 −0.143487
\(184\) −155520. −0.338643
\(185\) −176050. −0.378187
\(186\) 48192.0 0.102139
\(187\) −404595. −0.846090
\(188\) −165072. −0.340627
\(189\) 0 0
\(190\) 234200. 0.470655
\(191\) −527031. −1.04533 −0.522664 0.852539i \(-0.675062\pi\)
−0.522664 + 0.852539i \(0.675062\pi\)
\(192\) 12288.0 0.0240563
\(193\) 143216. 0.276757 0.138378 0.990379i \(-0.455811\pi\)
0.138378 + 0.990379i \(0.455811\pi\)
\(194\) 441740. 0.842679
\(195\) 29325.0 0.0552270
\(196\) 0 0
\(197\) 348468. 0.639731 0.319865 0.947463i \(-0.396362\pi\)
0.319865 + 0.947463i \(0.396362\pi\)
\(198\) 379080. 0.687176
\(199\) −754520. −1.35064 −0.675318 0.737527i \(-0.735993\pi\)
−0.675318 + 0.737527i \(0.735993\pi\)
\(200\) −40000.0 −0.0707107
\(201\) 156372. 0.273004
\(202\) 133800. 0.230716
\(203\) 0 0
\(204\) −47952.0 −0.0806736
\(205\) −83400.0 −0.138606
\(206\) −441244. −0.724454
\(207\) −568620. −0.922351
\(208\) 100096. 0.160420
\(209\) −948510. −1.50202
\(210\) 0 0
\(211\) −590749. −0.913475 −0.456738 0.889601i \(-0.650982\pi\)
−0.456738 + 0.889601i \(0.650982\pi\)
\(212\) 49344.0 0.0754041
\(213\) −85680.0 −0.129399
\(214\) −141432. −0.211112
\(215\) −587950. −0.867450
\(216\) 91584.0 0.133563
\(217\) 0 0
\(218\) 604732. 0.861830
\(219\) 211026. 0.297321
\(220\) 162000. 0.225662
\(221\) −390609. −0.537974
\(222\) 84504.0 0.115079
\(223\) 396103. 0.533391 0.266696 0.963781i \(-0.414068\pi\)
0.266696 + 0.963781i \(0.414068\pi\)
\(224\) 0 0
\(225\) −146250. −0.192593
\(226\) 534744. 0.696426
\(227\) −9537.00 −0.0122842 −0.00614210 0.999981i \(-0.501955\pi\)
−0.00614210 + 0.999981i \(0.501955\pi\)
\(228\) −112416. −0.143216
\(229\) −705056. −0.888454 −0.444227 0.895914i \(-0.646522\pi\)
−0.444227 + 0.895914i \(0.646522\pi\)
\(230\) −243000. −0.302891
\(231\) 0 0
\(232\) −528576. −0.644744
\(233\) 534216. 0.644655 0.322327 0.946628i \(-0.395535\pi\)
0.322327 + 0.946628i \(0.395535\pi\)
\(234\) 365976. 0.436931
\(235\) −257925. −0.304666
\(236\) 301056. 0.351858
\(237\) 176469. 0.204079
\(238\) 0 0
\(239\) −901221. −1.02056 −0.510278 0.860010i \(-0.670457\pi\)
−0.510278 + 0.860010i \(0.670457\pi\)
\(240\) 19200.0 0.0215166
\(241\) 952390. 1.05626 0.528132 0.849162i \(-0.322893\pi\)
0.528132 + 0.849162i \(0.322893\pi\)
\(242\) −11896.0 −0.0130576
\(243\) 505440. 0.549103
\(244\) −346688. −0.372790
\(245\) 0 0
\(246\) 40032.0 0.0421764
\(247\) −915722. −0.955039
\(248\) 257024. 0.265366
\(249\) −2268.00 −0.00231817
\(250\) −62500.0 −0.0632456
\(251\) 1.10024e6 1.10231 0.551153 0.834404i \(-0.314188\pi\)
0.551153 + 0.834404i \(0.314188\pi\)
\(252\) 0 0
\(253\) 984150. 0.966629
\(254\) 1.13594e6 1.10476
\(255\) −74925.0 −0.0721566
\(256\) 65536.0 0.0625000
\(257\) 1.08230e6 1.02215 0.511074 0.859537i \(-0.329248\pi\)
0.511074 + 0.859537i \(0.329248\pi\)
\(258\) 282216. 0.263957
\(259\) 0 0
\(260\) 156400. 0.143484
\(261\) −1.93261e6 −1.75607
\(262\) 1.04575e6 0.941186
\(263\) 82950.0 0.0739481 0.0369740 0.999316i \(-0.488228\pi\)
0.0369740 + 0.999316i \(0.488228\pi\)
\(264\) −77760.0 −0.0686667
\(265\) 77100.0 0.0674434
\(266\) 0 0
\(267\) −406152. −0.348667
\(268\) 833984. 0.709285
\(269\) 633822. 0.534056 0.267028 0.963689i \(-0.413958\pi\)
0.267028 + 0.963689i \(0.413958\pi\)
\(270\) 143100. 0.119462
\(271\) 278956. 0.230734 0.115367 0.993323i \(-0.463196\pi\)
0.115367 + 0.993323i \(0.463196\pi\)
\(272\) −255744. −0.209596
\(273\) 0 0
\(274\) −158688. −0.127693
\(275\) 253125. 0.201838
\(276\) 116640. 0.0921669
\(277\) 2.17523e6 1.70336 0.851679 0.524064i \(-0.175585\pi\)
0.851679 + 0.524064i \(0.175585\pi\)
\(278\) −730504. −0.566905
\(279\) 939744. 0.722768
\(280\) 0 0
\(281\) −692901. −0.523486 −0.261743 0.965138i \(-0.584297\pi\)
−0.261743 + 0.965138i \(0.584297\pi\)
\(282\) 123804. 0.0927069
\(283\) −1.04021e6 −0.772065 −0.386032 0.922485i \(-0.626155\pi\)
−0.386032 + 0.922485i \(0.626155\pi\)
\(284\) −456960. −0.336188
\(285\) −175650. −0.128096
\(286\) −633420. −0.457906
\(287\) 0 0
\(288\) 239616. 0.170229
\(289\) −421856. −0.297112
\(290\) −825900. −0.576677
\(291\) −331305. −0.229348
\(292\) 1.12547e6 0.772463
\(293\) 1.08565e6 0.738789 0.369394 0.929273i \(-0.379565\pi\)
0.369394 + 0.929273i \(0.379565\pi\)
\(294\) 0 0
\(295\) 470400. 0.314711
\(296\) 450688. 0.298983
\(297\) −579555. −0.381244
\(298\) 48312.0 0.0315148
\(299\) 950130. 0.614618
\(300\) 30000.0 0.0192450
\(301\) 0 0
\(302\) 833668. 0.525988
\(303\) −100350. −0.0627929
\(304\) −599552. −0.372086
\(305\) −541700. −0.333434
\(306\) −935064. −0.570871
\(307\) −1463.00 −0.000885928 0 −0.000442964 1.00000i \(-0.500141\pi\)
−0.000442964 1.00000i \(0.500141\pi\)
\(308\) 0 0
\(309\) 330933. 0.197171
\(310\) 401600. 0.237350
\(311\) −3.11977e6 −1.82903 −0.914515 0.404551i \(-0.867428\pi\)
−0.914515 + 0.404551i \(0.867428\pi\)
\(312\) −75072.0 −0.0436608
\(313\) −831425. −0.479692 −0.239846 0.970811i \(-0.577097\pi\)
−0.239846 + 0.970811i \(0.577097\pi\)
\(314\) 1.45638e6 0.833584
\(315\) 0 0
\(316\) 941168. 0.530212
\(317\) −1.25851e6 −0.703408 −0.351704 0.936111i \(-0.614398\pi\)
−0.351704 + 0.936111i \(0.614398\pi\)
\(318\) −37008.0 −0.0205224
\(319\) 3.34489e6 1.84037
\(320\) 102400. 0.0559017
\(321\) 106074. 0.0574575
\(322\) 0 0
\(323\) 2.33966e6 1.24780
\(324\) 841104. 0.445130
\(325\) 244375. 0.128336
\(326\) −2504.00 −0.00130494
\(327\) −453549. −0.234560
\(328\) 213504. 0.109578
\(329\) 0 0
\(330\) −121500. −0.0614174
\(331\) −2.30465e6 −1.15621 −0.578103 0.815964i \(-0.696207\pi\)
−0.578103 + 0.815964i \(0.696207\pi\)
\(332\) −12096.0 −0.00602277
\(333\) 1.64783e6 0.814332
\(334\) 1.78247e6 0.874290
\(335\) 1.30310e6 0.634404
\(336\) 0 0
\(337\) 769166. 0.368931 0.184466 0.982839i \(-0.440945\pi\)
0.184466 + 0.982839i \(0.440945\pi\)
\(338\) 873648. 0.415953
\(339\) −401058. −0.189543
\(340\) −399600. −0.187468
\(341\) −1.62648e6 −0.757465
\(342\) −2.19211e6 −1.01344
\(343\) 0 0
\(344\) 1.50515e6 0.685779
\(345\) 182250. 0.0824365
\(346\) 2.57387e6 1.15584
\(347\) 382074. 0.170343 0.0851714 0.996366i \(-0.472856\pi\)
0.0851714 + 0.996366i \(0.472856\pi\)
\(348\) 396432. 0.175477
\(349\) 3.88710e6 1.70829 0.854146 0.520034i \(-0.174081\pi\)
0.854146 + 0.520034i \(0.174081\pi\)
\(350\) 0 0
\(351\) −559521. −0.242409
\(352\) −414720. −0.178401
\(353\) 366453. 0.156524 0.0782621 0.996933i \(-0.475063\pi\)
0.0782621 + 0.996933i \(0.475063\pi\)
\(354\) −225792. −0.0957636
\(355\) −714000. −0.300696
\(356\) −2.16614e6 −0.905863
\(357\) 0 0
\(358\) −980592. −0.404372
\(359\) −3.14858e6 −1.28937 −0.644687 0.764446i \(-0.723012\pi\)
−0.644687 + 0.764446i \(0.723012\pi\)
\(360\) 374400. 0.152258
\(361\) 3.00887e6 1.21516
\(362\) 2.74472e6 1.10085
\(363\) 8922.00 0.00355382
\(364\) 0 0
\(365\) 1.75855e6 0.690912
\(366\) 260016. 0.101461
\(367\) −2.13740e6 −0.828362 −0.414181 0.910195i \(-0.635932\pi\)
−0.414181 + 0.910195i \(0.635932\pi\)
\(368\) 622080. 0.239457
\(369\) 780624. 0.298453
\(370\) 704200. 0.267419
\(371\) 0 0
\(372\) −192768. −0.0722233
\(373\) −205624. −0.0765247 −0.0382624 0.999268i \(-0.512182\pi\)
−0.0382624 + 0.999268i \(0.512182\pi\)
\(374\) 1.61838e6 0.598276
\(375\) 46875.0 0.0172133
\(376\) 660288. 0.240860
\(377\) 3.22927e6 1.17018
\(378\) 0 0
\(379\) 3.50536e6 1.25353 0.626766 0.779208i \(-0.284378\pi\)
0.626766 + 0.779208i \(0.284378\pi\)
\(380\) −936800. −0.332804
\(381\) −851952. −0.300679
\(382\) 2.10812e6 0.739159
\(383\) −1.12904e6 −0.393291 −0.196645 0.980475i \(-0.563005\pi\)
−0.196645 + 0.980475i \(0.563005\pi\)
\(384\) −49152.0 −0.0170103
\(385\) 0 0
\(386\) −572864. −0.195697
\(387\) 5.50321e6 1.86784
\(388\) −1.76696e6 −0.595864
\(389\) −1.20003e6 −0.402084 −0.201042 0.979583i \(-0.564433\pi\)
−0.201042 + 0.979583i \(0.564433\pi\)
\(390\) −117300. −0.0390514
\(391\) −2.42757e6 −0.803026
\(392\) 0 0
\(393\) −784314. −0.256158
\(394\) −1.39387e6 −0.452358
\(395\) 1.47058e6 0.474236
\(396\) −1.51632e6 −0.485907
\(397\) 4.41836e6 1.40697 0.703486 0.710709i \(-0.251626\pi\)
0.703486 + 0.710709i \(0.251626\pi\)
\(398\) 3.01808e6 0.955043
\(399\) 0 0
\(400\) 160000. 0.0500000
\(401\) −3.13278e6 −0.972903 −0.486451 0.873708i \(-0.661709\pi\)
−0.486451 + 0.873708i \(0.661709\pi\)
\(402\) −625488. −0.193043
\(403\) −1.57026e6 −0.481624
\(404\) −535200. −0.163141
\(405\) 1.31422e6 0.398137
\(406\) 0 0
\(407\) −2.85201e6 −0.853424
\(408\) 191808. 0.0570448
\(409\) −861494. −0.254650 −0.127325 0.991861i \(-0.540639\pi\)
−0.127325 + 0.991861i \(0.540639\pi\)
\(410\) 333600. 0.0980091
\(411\) 119016. 0.0347537
\(412\) 1.76498e6 0.512266
\(413\) 0 0
\(414\) 2.27448e6 0.652201
\(415\) −18900.0 −0.00538693
\(416\) −400384. −0.113434
\(417\) 547878. 0.154292
\(418\) 3.79404e6 1.06209
\(419\) −4.65796e6 −1.29617 −0.648083 0.761570i \(-0.724429\pi\)
−0.648083 + 0.761570i \(0.724429\pi\)
\(420\) 0 0
\(421\) 6.99894e6 1.92454 0.962271 0.272093i \(-0.0877159\pi\)
0.962271 + 0.272093i \(0.0877159\pi\)
\(422\) 2.36300e6 0.645925
\(423\) 2.41418e6 0.656022
\(424\) −197376. −0.0533187
\(425\) −624375. −0.167677
\(426\) 342720. 0.0914988
\(427\) 0 0
\(428\) 565728. 0.149279
\(429\) 475065. 0.124626
\(430\) 2.35180e6 0.613379
\(431\) −227091. −0.0588853 −0.0294426 0.999566i \(-0.509373\pi\)
−0.0294426 + 0.999566i \(0.509373\pi\)
\(432\) −366336. −0.0944431
\(433\) 7.09613e6 1.81887 0.909435 0.415846i \(-0.136515\pi\)
0.909435 + 0.415846i \(0.136515\pi\)
\(434\) 0 0
\(435\) 619425. 0.156952
\(436\) −2.41893e6 −0.609406
\(437\) −5.69106e6 −1.42557
\(438\) −844104. −0.210238
\(439\) −593258. −0.146920 −0.0734602 0.997298i \(-0.523404\pi\)
−0.0734602 + 0.997298i \(0.523404\pi\)
\(440\) −648000. −0.159567
\(441\) 0 0
\(442\) 1.56244e6 0.380405
\(443\) −3.27692e6 −0.793334 −0.396667 0.917963i \(-0.629833\pi\)
−0.396667 + 0.917963i \(0.629833\pi\)
\(444\) −338016. −0.0813729
\(445\) −3.38460e6 −0.810228
\(446\) −1.58441e6 −0.377165
\(447\) −36234.0 −0.00857724
\(448\) 0 0
\(449\) −4.32930e6 −1.01345 −0.506724 0.862108i \(-0.669144\pi\)
−0.506724 + 0.862108i \(0.669144\pi\)
\(450\) 585000. 0.136184
\(451\) −1.35108e6 −0.312781
\(452\) −2.13898e6 −0.492447
\(453\) −625251. −0.143156
\(454\) 38148.0 0.00868625
\(455\) 0 0
\(456\) 449664. 0.101269
\(457\) −4.91638e6 −1.10117 −0.550586 0.834779i \(-0.685596\pi\)
−0.550586 + 0.834779i \(0.685596\pi\)
\(458\) 2.82022e6 0.628232
\(459\) 1.42957e6 0.316718
\(460\) 972000. 0.214176
\(461\) −7.02919e6 −1.54047 −0.770235 0.637761i \(-0.779861\pi\)
−0.770235 + 0.637761i \(0.779861\pi\)
\(462\) 0 0
\(463\) 2.88559e6 0.625579 0.312789 0.949823i \(-0.398737\pi\)
0.312789 + 0.949823i \(0.398737\pi\)
\(464\) 2.11430e6 0.455903
\(465\) −301200. −0.0645985
\(466\) −2.13686e6 −0.455840
\(467\) 6.00583e6 1.27433 0.637163 0.770729i \(-0.280108\pi\)
0.637163 + 0.770729i \(0.280108\pi\)
\(468\) −1.46390e6 −0.308957
\(469\) 0 0
\(470\) 1.03170e6 0.215431
\(471\) −1.09228e6 −0.226873
\(472\) −1.20422e6 −0.248801
\(473\) −9.52479e6 −1.95750
\(474\) −705876. −0.144305
\(475\) −1.46375e6 −0.297669
\(476\) 0 0
\(477\) −721656. −0.145223
\(478\) 3.60488e6 0.721642
\(479\) −941094. −0.187411 −0.0937053 0.995600i \(-0.529871\pi\)
−0.0937053 + 0.995600i \(0.529871\pi\)
\(480\) −76800.0 −0.0152145
\(481\) −2.75342e6 −0.542638
\(482\) −3.80956e6 −0.746891
\(483\) 0 0
\(484\) 47584.0 0.00923310
\(485\) −2.76087e6 −0.532957
\(486\) −2.02176e6 −0.388275
\(487\) 1.91121e6 0.365162 0.182581 0.983191i \(-0.441555\pi\)
0.182581 + 0.983191i \(0.441555\pi\)
\(488\) 1.38675e6 0.263602
\(489\) 1878.00 0.000355160 0
\(490\) 0 0
\(491\) 3.95490e6 0.740342 0.370171 0.928964i \(-0.379299\pi\)
0.370171 + 0.928964i \(0.379299\pi\)
\(492\) −160128. −0.0298232
\(493\) −8.25074e6 −1.52889
\(494\) 3.66289e6 0.675315
\(495\) −2.36925e6 −0.434608
\(496\) −1.02810e6 −0.187642
\(497\) 0 0
\(498\) 9072.00 0.00163919
\(499\) 7.09708e6 1.27593 0.637967 0.770063i \(-0.279775\pi\)
0.637967 + 0.770063i \(0.279775\pi\)
\(500\) 250000. 0.0447214
\(501\) −1.33685e6 −0.237952
\(502\) −4.40095e6 −0.779448
\(503\) 9.15982e6 1.61424 0.807118 0.590390i \(-0.201026\pi\)
0.807118 + 0.590390i \(0.201026\pi\)
\(504\) 0 0
\(505\) −836250. −0.145918
\(506\) −3.93660e6 −0.683510
\(507\) −655236. −0.113208
\(508\) −4.54374e6 −0.781186
\(509\) 9.42509e6 1.61247 0.806234 0.591596i \(-0.201502\pi\)
0.806234 + 0.591596i \(0.201502\pi\)
\(510\) 299700. 0.0510224
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 3.35140e6 0.562255
\(514\) −4.32919e6 −0.722768
\(515\) 2.75778e6 0.458185
\(516\) −1.12886e6 −0.186645
\(517\) −4.17838e6 −0.687515
\(518\) 0 0
\(519\) −1.93040e6 −0.314579
\(520\) −625600. −0.101458
\(521\) 6.18917e6 0.998938 0.499469 0.866332i \(-0.333529\pi\)
0.499469 + 0.866332i \(0.333529\pi\)
\(522\) 7.73042e6 1.24173
\(523\) 3.81497e6 0.609870 0.304935 0.952373i \(-0.401365\pi\)
0.304935 + 0.952373i \(0.401365\pi\)
\(524\) −4.18301e6 −0.665519
\(525\) 0 0
\(526\) −331800. −0.0522892
\(527\) 4.01198e6 0.629264
\(528\) 311040. 0.0485547
\(529\) −531443. −0.0825691
\(530\) −308400. −0.0476897
\(531\) −4.40294e6 −0.677652
\(532\) 0 0
\(533\) −1.30438e6 −0.198877
\(534\) 1.62461e6 0.246545
\(535\) 883950. 0.133519
\(536\) −3.33594e6 −0.501540
\(537\) 735444. 0.110056
\(538\) −2.53529e6 −0.377634
\(539\) 0 0
\(540\) −572400. −0.0844725
\(541\) 6.30404e6 0.926032 0.463016 0.886350i \(-0.346767\pi\)
0.463016 + 0.886350i \(0.346767\pi\)
\(542\) −1.11582e6 −0.163154
\(543\) −2.05854e6 −0.299612
\(544\) 1.02298e6 0.148207
\(545\) −3.77957e6 −0.545069
\(546\) 0 0
\(547\) −8.48475e6 −1.21247 −0.606234 0.795286i \(-0.707321\pi\)
−0.606234 + 0.795286i \(0.707321\pi\)
\(548\) 634752. 0.0902927
\(549\) 5.07031e6 0.717966
\(550\) −1.01250e6 −0.142721
\(551\) −1.93426e7 −2.71416
\(552\) −466560. −0.0651718
\(553\) 0 0
\(554\) −8.70092e6 −1.20446
\(555\) −528150. −0.0727821
\(556\) 2.92202e6 0.400863
\(557\) 6.87794e6 0.939335 0.469668 0.882843i \(-0.344374\pi\)
0.469668 + 0.882843i \(0.344374\pi\)
\(558\) −3.75898e6 −0.511074
\(559\) −9.19554e6 −1.24465
\(560\) 0 0
\(561\) −1.21378e6 −0.162830
\(562\) 2.77160e6 0.370161
\(563\) 1.02257e7 1.35964 0.679820 0.733379i \(-0.262058\pi\)
0.679820 + 0.733379i \(0.262058\pi\)
\(564\) −495216. −0.0655537
\(565\) −3.34215e6 −0.440458
\(566\) 4.16083e6 0.545932
\(567\) 0 0
\(568\) 1.82784e6 0.237721
\(569\) −1.26751e7 −1.64123 −0.820614 0.571482i \(-0.806369\pi\)
−0.820614 + 0.571482i \(0.806369\pi\)
\(570\) 702600. 0.0905776
\(571\) −6.67155e6 −0.856321 −0.428160 0.903703i \(-0.640838\pi\)
−0.428160 + 0.903703i \(0.640838\pi\)
\(572\) 2.53368e6 0.323789
\(573\) −1.58109e6 −0.201174
\(574\) 0 0
\(575\) 1.51875e6 0.191565
\(576\) −958464. −0.120370
\(577\) 3.36511e6 0.420784 0.210392 0.977617i \(-0.432526\pi\)
0.210392 + 0.977617i \(0.432526\pi\)
\(578\) 1.68742e6 0.210090
\(579\) 429648. 0.0532619
\(580\) 3.30360e6 0.407772
\(581\) 0 0
\(582\) 1.32522e6 0.162174
\(583\) 1.24902e6 0.152194
\(584\) −4.50189e6 −0.546214
\(585\) −2.28735e6 −0.276339
\(586\) −4.34260e6 −0.522403
\(587\) 1.10055e7 1.31830 0.659150 0.752012i \(-0.270916\pi\)
0.659150 + 0.752012i \(0.270916\pi\)
\(588\) 0 0
\(589\) 9.40547e6 1.11710
\(590\) −1.88160e6 −0.222534
\(591\) 1.04540e6 0.123116
\(592\) −1.80275e6 −0.211413
\(593\) −1.40222e6 −0.163749 −0.0818747 0.996643i \(-0.526091\pi\)
−0.0818747 + 0.996643i \(0.526091\pi\)
\(594\) 2.31822e6 0.269581
\(595\) 0 0
\(596\) −193248. −0.0222843
\(597\) −2.26356e6 −0.259930
\(598\) −3.80052e6 −0.434600
\(599\) 1.93034e6 0.219820 0.109910 0.993942i \(-0.464944\pi\)
0.109910 + 0.993942i \(0.464944\pi\)
\(600\) −120000. −0.0136083
\(601\) 1.82271e6 0.205841 0.102921 0.994690i \(-0.467181\pi\)
0.102921 + 0.994690i \(0.467181\pi\)
\(602\) 0 0
\(603\) −1.21970e7 −1.36603
\(604\) −3.33467e6 −0.371930
\(605\) 74350.0 0.00825834
\(606\) 401400. 0.0444013
\(607\) 1.36917e7 1.50830 0.754148 0.656704i \(-0.228050\pi\)
0.754148 + 0.656704i \(0.228050\pi\)
\(608\) 2.39821e6 0.263104
\(609\) 0 0
\(610\) 2.16680e6 0.235773
\(611\) −4.03395e6 −0.437147
\(612\) 3.74026e6 0.403667
\(613\) 1.11975e7 1.20357 0.601785 0.798658i \(-0.294456\pi\)
0.601785 + 0.798658i \(0.294456\pi\)
\(614\) 5852.00 0.000626446 0
\(615\) −250200. −0.0266747
\(616\) 0 0
\(617\) −1.37060e7 −1.44944 −0.724718 0.689045i \(-0.758030\pi\)
−0.724718 + 0.689045i \(0.758030\pi\)
\(618\) −1.32373e6 −0.139421
\(619\) 7.93359e6 0.832230 0.416115 0.909312i \(-0.363391\pi\)
0.416115 + 0.909312i \(0.363391\pi\)
\(620\) −1.60640e6 −0.167832
\(621\) −3.47733e6 −0.361840
\(622\) 1.24791e7 1.29332
\(623\) 0 0
\(624\) 300288. 0.0308728
\(625\) 390625. 0.0400000
\(626\) 3.32570e6 0.339193
\(627\) −2.84553e6 −0.289064
\(628\) −5.82550e6 −0.589433
\(629\) 7.03496e6 0.708981
\(630\) 0 0
\(631\) −1.31143e7 −1.31121 −0.655604 0.755105i \(-0.727586\pi\)
−0.655604 + 0.755105i \(0.727586\pi\)
\(632\) −3.76467e6 −0.374916
\(633\) −1.77225e6 −0.175798
\(634\) 5.03402e6 0.497384
\(635\) −7.09960e6 −0.698714
\(636\) 148032. 0.0145115
\(637\) 0 0
\(638\) −1.33796e7 −1.30134
\(639\) 6.68304e6 0.647473
\(640\) −409600. −0.0395285
\(641\) −1.27270e7 −1.22344 −0.611719 0.791075i \(-0.709522\pi\)
−0.611719 + 0.791075i \(0.709522\pi\)
\(642\) −424296. −0.0406286
\(643\) −1.88399e7 −1.79701 −0.898505 0.438964i \(-0.855345\pi\)
−0.898505 + 0.438964i \(0.855345\pi\)
\(644\) 0 0
\(645\) −1.76385e6 −0.166941
\(646\) −9.35863e6 −0.882330
\(647\) 944688. 0.0887213 0.0443606 0.999016i \(-0.485875\pi\)
0.0443606 + 0.999016i \(0.485875\pi\)
\(648\) −3.36442e6 −0.314755
\(649\) 7.62048e6 0.710184
\(650\) −977500. −0.0907472
\(651\) 0 0
\(652\) 10016.0 0.000922731 0
\(653\) 2.01024e7 1.84486 0.922432 0.386158i \(-0.126198\pi\)
0.922432 + 0.386158i \(0.126198\pi\)
\(654\) 1.81420e6 0.165859
\(655\) −6.53595e6 −0.595258
\(656\) −854016. −0.0774830
\(657\) −1.64600e7 −1.48771
\(658\) 0 0
\(659\) −1.97097e7 −1.76793 −0.883967 0.467549i \(-0.845137\pi\)
−0.883967 + 0.467549i \(0.845137\pi\)
\(660\) 486000. 0.0434287
\(661\) 227080. 0.0202151 0.0101075 0.999949i \(-0.496783\pi\)
0.0101075 + 0.999949i \(0.496783\pi\)
\(662\) 9.21861e6 0.817561
\(663\) −1.17183e6 −0.103533
\(664\) 48384.0 0.00425874
\(665\) 0 0
\(666\) −6.59131e6 −0.575819
\(667\) 2.00694e7 1.74670
\(668\) −7.12987e6 −0.618216
\(669\) 1.18831e6 0.102651
\(670\) −5.21240e6 −0.448591
\(671\) −8.77554e6 −0.752433
\(672\) 0 0
\(673\) 1.93220e7 1.64443 0.822214 0.569178i \(-0.192739\pi\)
0.822214 + 0.569178i \(0.192739\pi\)
\(674\) −3.07666e6 −0.260874
\(675\) −894375. −0.0755545
\(676\) −3.49459e6 −0.294124
\(677\) −3.35334e6 −0.281194 −0.140597 0.990067i \(-0.544902\pi\)
−0.140597 + 0.990067i \(0.544902\pi\)
\(678\) 1.60423e6 0.134027
\(679\) 0 0
\(680\) 1.59840e6 0.132560
\(681\) −28611.0 −0.00236410
\(682\) 6.50592e6 0.535609
\(683\) 1.60555e7 1.31696 0.658481 0.752598i \(-0.271199\pi\)
0.658481 + 0.752598i \(0.271199\pi\)
\(684\) 8.76845e6 0.716609
\(685\) 991800. 0.0807603
\(686\) 0 0
\(687\) −2.11517e6 −0.170983
\(688\) −6.02061e6 −0.484919
\(689\) 1.20584e6 0.0967705
\(690\) −729000. −0.0582914
\(691\) −1.35824e7 −1.08213 −0.541066 0.840980i \(-0.681979\pi\)
−0.541066 + 0.840980i \(0.681979\pi\)
\(692\) −1.02955e7 −0.817299
\(693\) 0 0
\(694\) −1.52830e6 −0.120451
\(695\) 4.56565e6 0.358542
\(696\) −1.58573e6 −0.124081
\(697\) 3.33266e6 0.259842
\(698\) −1.55484e7 −1.20794
\(699\) 1.60265e6 0.124064
\(700\) 0 0
\(701\) 2.05454e7 1.57913 0.789567 0.613664i \(-0.210305\pi\)
0.789567 + 0.613664i \(0.210305\pi\)
\(702\) 2.23808e6 0.171409
\(703\) 1.64924e7 1.25862
\(704\) 1.65888e6 0.126149
\(705\) −773775. −0.0586330
\(706\) −1.46581e6 −0.110679
\(707\) 0 0
\(708\) 903168. 0.0677151
\(709\) 2.57278e7 1.92215 0.961075 0.276287i \(-0.0891040\pi\)
0.961075 + 0.276287i \(0.0891040\pi\)
\(710\) 2.85600e6 0.212624
\(711\) −1.37646e7 −1.02115
\(712\) 8.66458e6 0.640542
\(713\) −9.75888e6 −0.718913
\(714\) 0 0
\(715\) 3.95888e6 0.289605
\(716\) 3.92237e6 0.285934
\(717\) −2.70366e6 −0.196406
\(718\) 1.25943e7 0.911726
\(719\) −7.04806e6 −0.508449 −0.254225 0.967145i \(-0.581820\pi\)
−0.254225 + 0.967145i \(0.581820\pi\)
\(720\) −1.49760e6 −0.107663
\(721\) 0 0
\(722\) −1.20355e7 −0.859250
\(723\) 2.85717e6 0.203278
\(724\) −1.09789e7 −0.778416
\(725\) 5.16187e6 0.364722
\(726\) −35688.0 −0.00251293
\(727\) 1.90997e7 1.34027 0.670134 0.742240i \(-0.266237\pi\)
0.670134 + 0.742240i \(0.266237\pi\)
\(728\) 0 0
\(729\) −1.12579e7 −0.784586
\(730\) −7.03420e6 −0.488548
\(731\) 2.34945e7 1.62619
\(732\) −1.04006e6 −0.0717435
\(733\) 2.30424e6 0.158404 0.0792021 0.996859i \(-0.474763\pi\)
0.0792021 + 0.996859i \(0.474763\pi\)
\(734\) 8.54959e6 0.585740
\(735\) 0 0
\(736\) −2.48832e6 −0.169321
\(737\) 2.11102e7 1.43161
\(738\) −3.12250e6 −0.211038
\(739\) 3.62955e6 0.244479 0.122240 0.992501i \(-0.460992\pi\)
0.122240 + 0.992501i \(0.460992\pi\)
\(740\) −2.81680e6 −0.189094
\(741\) −2.74717e6 −0.183797
\(742\) 0 0
\(743\) −9.73856e6 −0.647177 −0.323588 0.946198i \(-0.604889\pi\)
−0.323588 + 0.946198i \(0.604889\pi\)
\(744\) 771072. 0.0510696
\(745\) −301950. −0.0199317
\(746\) 822496. 0.0541111
\(747\) 176904. 0.0115994
\(748\) −6.47352e6 −0.423045
\(749\) 0 0
\(750\) −187500. −0.0121716
\(751\) −2.48272e7 −1.60630 −0.803152 0.595774i \(-0.796845\pi\)
−0.803152 + 0.595774i \(0.796845\pi\)
\(752\) −2.64115e6 −0.170313
\(753\) 3.30071e6 0.212139
\(754\) −1.29171e7 −0.827439
\(755\) −5.21043e6 −0.332664
\(756\) 0 0
\(757\) −1.28400e7 −0.814376 −0.407188 0.913344i \(-0.633491\pi\)
−0.407188 + 0.913344i \(0.633491\pi\)
\(758\) −1.40215e7 −0.886380
\(759\) 2.95245e6 0.186028
\(760\) 3.74720e6 0.235328
\(761\) −2.89560e7 −1.81250 −0.906249 0.422744i \(-0.861067\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(762\) 3.40781e6 0.212612
\(763\) 0 0
\(764\) −8.43250e6 −0.522664
\(765\) 5.84415e6 0.361050
\(766\) 4.51618e6 0.278099
\(767\) 7.35706e6 0.451560
\(768\) 196608. 0.0120281
\(769\) 1.78116e7 1.08614 0.543071 0.839687i \(-0.317261\pi\)
0.543071 + 0.839687i \(0.317261\pi\)
\(770\) 0 0
\(771\) 3.24689e6 0.196713
\(772\) 2.29146e6 0.138378
\(773\) −1.73536e7 −1.04458 −0.522290 0.852768i \(-0.674922\pi\)
−0.522290 + 0.852768i \(0.674922\pi\)
\(774\) −2.20128e7 −1.32076
\(775\) −2.51000e6 −0.150113
\(776\) 7.06784e6 0.421340
\(777\) 0 0
\(778\) 4.80011e6 0.284316
\(779\) 7.81291e6 0.461285
\(780\) 469200. 0.0276135
\(781\) −1.15668e7 −0.678556
\(782\) 9.71028e6 0.567825
\(783\) −1.18186e7 −0.688910
\(784\) 0 0
\(785\) −9.10235e6 −0.527205
\(786\) 3.13726e6 0.181131
\(787\) −812177. −0.0467427 −0.0233714 0.999727i \(-0.507440\pi\)
−0.0233714 + 0.999727i \(0.507440\pi\)
\(788\) 5.57549e6 0.319865
\(789\) 248850. 0.0142313
\(790\) −5.88230e6 −0.335335
\(791\) 0 0
\(792\) 6.06528e6 0.343588
\(793\) −8.47219e6 −0.478424
\(794\) −1.76735e7 −0.994879
\(795\) 231300. 0.0129795
\(796\) −1.20723e7 −0.675318
\(797\) 8.58201e6 0.478568 0.239284 0.970950i \(-0.423087\pi\)
0.239284 + 0.970950i \(0.423087\pi\)
\(798\) 0 0
\(799\) 1.03067e7 0.571152
\(800\) −640000. −0.0353553
\(801\) 3.16799e7 1.74462
\(802\) 1.25311e7 0.687946
\(803\) 2.84885e7 1.55912
\(804\) 2.50195e6 0.136502
\(805\) 0 0
\(806\) 6.28102e6 0.340559
\(807\) 1.90147e6 0.102779
\(808\) 2.14080e6 0.115358
\(809\) −2.83000e6 −0.152025 −0.0760125 0.997107i \(-0.524219\pi\)
−0.0760125 + 0.997107i \(0.524219\pi\)
\(810\) −5.25690e6 −0.281525
\(811\) 1.06484e7 0.568504 0.284252 0.958750i \(-0.408255\pi\)
0.284252 + 0.958750i \(0.408255\pi\)
\(812\) 0 0
\(813\) 836868. 0.0444049
\(814\) 1.14080e7 0.603462
\(815\) 15650.0 0.000825316 0
\(816\) −767232. −0.0403368
\(817\) 5.50792e7 2.88690
\(818\) 3.44598e6 0.180065
\(819\) 0 0
\(820\) −1.33440e6 −0.0693029
\(821\) −2.59970e7 −1.34606 −0.673032 0.739613i \(-0.735008\pi\)
−0.673032 + 0.739613i \(0.735008\pi\)
\(822\) −476064. −0.0245746
\(823\) −2.03099e7 −1.04522 −0.522611 0.852571i \(-0.675042\pi\)
−0.522611 + 0.852571i \(0.675042\pi\)
\(824\) −7.05990e6 −0.362227
\(825\) 759375. 0.0388438
\(826\) 0 0
\(827\) 1.68001e6 0.0854175 0.0427088 0.999088i \(-0.486401\pi\)
0.0427088 + 0.999088i \(0.486401\pi\)
\(828\) −9.09792e6 −0.461176
\(829\) 6.71070e6 0.339142 0.169571 0.985518i \(-0.445762\pi\)
0.169571 + 0.985518i \(0.445762\pi\)
\(830\) 75600.0 0.00380914
\(831\) 6.52569e6 0.327811
\(832\) 1.60154e6 0.0802100
\(833\) 0 0
\(834\) −2.19151e6 −0.109101
\(835\) −1.11404e7 −0.552950
\(836\) −1.51762e7 −0.751011
\(837\) 5.74690e6 0.283543
\(838\) 1.86318e7 0.916527
\(839\) −2.60856e7 −1.27937 −0.639686 0.768637i \(-0.720935\pi\)
−0.639686 + 0.768637i \(0.720935\pi\)
\(840\) 0 0
\(841\) 4.76999e7 2.32556
\(842\) −2.79958e7 −1.36086
\(843\) −2.07870e6 −0.100745
\(844\) −9.45198e6 −0.456738
\(845\) −5.46030e6 −0.263072
\(846\) −9.65671e6 −0.463878
\(847\) 0 0
\(848\) 789504. 0.0377020
\(849\) −3.12062e6 −0.148584
\(850\) 2.49750e6 0.118565
\(851\) −1.71121e7 −0.809988
\(852\) −1.37088e6 −0.0646994
\(853\) −9.54873e6 −0.449338 −0.224669 0.974435i \(-0.572130\pi\)
−0.224669 + 0.974435i \(0.572130\pi\)
\(854\) 0 0
\(855\) 1.37007e7 0.640955
\(856\) −2.26291e6 −0.105556
\(857\) −3.51377e7 −1.63426 −0.817130 0.576453i \(-0.804436\pi\)
−0.817130 + 0.576453i \(0.804436\pi\)
\(858\) −1.90026e6 −0.0881241
\(859\) 1.60428e7 0.741816 0.370908 0.928670i \(-0.379047\pi\)
0.370908 + 0.928670i \(0.379047\pi\)
\(860\) −9.40720e6 −0.433725
\(861\) 0 0
\(862\) 908364. 0.0416382
\(863\) −2.77776e7 −1.26960 −0.634802 0.772675i \(-0.718918\pi\)
−0.634802 + 0.772675i \(0.718918\pi\)
\(864\) 1.46534e6 0.0667814
\(865\) −1.60867e7 −0.731015
\(866\) −2.83845e7 −1.28614
\(867\) −1.26557e6 −0.0571792
\(868\) 0 0
\(869\) 2.38233e7 1.07017
\(870\) −2.47770e6 −0.110981
\(871\) 2.03805e7 0.910268
\(872\) 9.67571e6 0.430915
\(873\) 2.58418e7 1.14759
\(874\) 2.27642e7 1.00803
\(875\) 0 0
\(876\) 3.37642e6 0.148661
\(877\) 2.46748e7 1.08332 0.541658 0.840599i \(-0.317797\pi\)
0.541658 + 0.840599i \(0.317797\pi\)
\(878\) 2.37303e6 0.103888
\(879\) 3.25695e6 0.142180
\(880\) 2.59200e6 0.112831
\(881\) 1.27792e7 0.554707 0.277353 0.960768i \(-0.410543\pi\)
0.277353 + 0.960768i \(0.410543\pi\)
\(882\) 0 0
\(883\) −2.63417e7 −1.13695 −0.568476 0.822700i \(-0.692467\pi\)
−0.568476 + 0.822700i \(0.692467\pi\)
\(884\) −6.24974e6 −0.268987
\(885\) 1.41120e6 0.0605662
\(886\) 1.31077e7 0.560972
\(887\) −2.60037e7 −1.10975 −0.554877 0.831932i \(-0.687235\pi\)
−0.554877 + 0.831932i \(0.687235\pi\)
\(888\) 1.35206e6 0.0575393
\(889\) 0 0
\(890\) 1.35384e7 0.572918
\(891\) 2.12904e7 0.898443
\(892\) 6.33765e6 0.266696
\(893\) 2.41624e7 1.01394
\(894\) 144936. 0.00606502
\(895\) 6.12870e6 0.255747
\(896\) 0 0
\(897\) 2.85039e6 0.118283
\(898\) 1.73172e7 0.716616
\(899\) −3.31681e7 −1.36874
\(900\) −2.34000e6 −0.0962963
\(901\) −3.08092e6 −0.126435
\(902\) 5.40432e6 0.221169
\(903\) 0 0
\(904\) 8.55590e6 0.348213
\(905\) −1.71545e7 −0.696236
\(906\) 2.50100e6 0.101226
\(907\) −4.11852e7 −1.66235 −0.831177 0.556008i \(-0.812332\pi\)
−0.831177 + 0.556008i \(0.812332\pi\)
\(908\) −152592. −0.00614210
\(909\) 7.82730e6 0.314197
\(910\) 0 0
\(911\) −7.92211e6 −0.316261 −0.158130 0.987418i \(-0.550547\pi\)
−0.158130 + 0.987418i \(0.550547\pi\)
\(912\) −1.79866e6 −0.0716079
\(913\) −306180. −0.0121563
\(914\) 1.96655e7 0.778646
\(915\) −1.62510e6 −0.0641693
\(916\) −1.12809e7 −0.444227
\(917\) 0 0
\(918\) −5.71828e6 −0.223954
\(919\) 1.59154e7 0.621624 0.310812 0.950471i \(-0.399399\pi\)
0.310812 + 0.950471i \(0.399399\pi\)
\(920\) −3.88800e6 −0.151446
\(921\) −4389.00 −0.000170497 0
\(922\) 2.81168e7 1.08928
\(923\) −1.11670e7 −0.431450
\(924\) 0 0
\(925\) −4.40125e6 −0.169130
\(926\) −1.15424e7 −0.442351
\(927\) −2.58128e7 −0.986587
\(928\) −8.45722e6 −0.322372
\(929\) 3.37148e7 1.28169 0.640843 0.767672i \(-0.278585\pi\)
0.640843 + 0.767672i \(0.278585\pi\)
\(930\) 1.20480e6 0.0456781
\(931\) 0 0
\(932\) 8.54746e6 0.322327
\(933\) −9.35930e6 −0.351997
\(934\) −2.40233e7 −0.901085
\(935\) −1.01149e7 −0.378383
\(936\) 5.85562e6 0.218466
\(937\) 4.04362e7 1.50460 0.752300 0.658820i \(-0.228944\pi\)
0.752300 + 0.658820i \(0.228944\pi\)
\(938\) 0 0
\(939\) −2.49428e6 −0.0923167
\(940\) −4.12680e6 −0.152333
\(941\) −3.62378e7 −1.33410 −0.667048 0.745015i \(-0.732443\pi\)
−0.667048 + 0.745015i \(0.732443\pi\)
\(942\) 4.36913e6 0.160423
\(943\) −8.10648e6 −0.296861
\(944\) 4.81690e6 0.175929
\(945\) 0 0
\(946\) 3.80992e7 1.38416
\(947\) 2.94238e7 1.06616 0.533082 0.846064i \(-0.321034\pi\)
0.533082 + 0.846064i \(0.321034\pi\)
\(948\) 2.82350e6 0.102039
\(949\) 2.75037e7 0.991348
\(950\) 5.85500e6 0.210483
\(951\) −3.77552e6 −0.135371
\(952\) 0 0
\(953\) 3.59497e7 1.28222 0.641110 0.767449i \(-0.278474\pi\)
0.641110 + 0.767449i \(0.278474\pi\)
\(954\) 2.88662e6 0.102688
\(955\) −1.31758e7 −0.467485
\(956\) −1.44195e7 −0.510278
\(957\) 1.00347e7 0.354180
\(958\) 3.76438e6 0.132519
\(959\) 0 0
\(960\) 307200. 0.0107583
\(961\) −1.25009e7 −0.436649
\(962\) 1.10137e7 0.383703
\(963\) −8.27377e6 −0.287500
\(964\) 1.52382e7 0.528132
\(965\) 3.58040e6 0.123769
\(966\) 0 0
\(967\) 1.19506e6 0.0410982 0.0205491 0.999789i \(-0.493459\pi\)
0.0205491 + 0.999789i \(0.493459\pi\)
\(968\) −190336. −0.00652879
\(969\) 7.01897e6 0.240140
\(970\) 1.10435e7 0.376858
\(971\) −3.26221e7 −1.11036 −0.555180 0.831730i \(-0.687351\pi\)
−0.555180 + 0.831730i \(0.687351\pi\)
\(972\) 8.08704e6 0.274552
\(973\) 0 0
\(974\) −7.64482e6 −0.258208
\(975\) 733125. 0.0246983
\(976\) −5.54701e6 −0.186395
\(977\) 5.36858e7 1.79938 0.899690 0.436529i \(-0.143792\pi\)
0.899690 + 0.436529i \(0.143792\pi\)
\(978\) −7512.00 −0.000251136 0
\(979\) −5.48305e7 −1.82838
\(980\) 0 0
\(981\) 3.53768e7 1.17367
\(982\) −1.58196e7 −0.523501
\(983\) 3.31124e7 1.09297 0.546484 0.837469i \(-0.315966\pi\)
0.546484 + 0.837469i \(0.315966\pi\)
\(984\) 640512. 0.0210882
\(985\) 8.71170e6 0.286096
\(986\) 3.30030e7 1.08109
\(987\) 0 0
\(988\) −1.46516e7 −0.477520
\(989\) −5.71487e7 −1.85787
\(990\) 9.47700e6 0.307314
\(991\) −1.97082e7 −0.637475 −0.318738 0.947843i \(-0.603259\pi\)
−0.318738 + 0.947843i \(0.603259\pi\)
\(992\) 4.11238e6 0.132683
\(993\) −6.91396e6 −0.222512
\(994\) 0 0
\(995\) −1.88630e7 −0.604022
\(996\) −36288.0 −0.00115908
\(997\) −3.31940e7 −1.05760 −0.528800 0.848747i \(-0.677358\pi\)
−0.528800 + 0.848747i \(0.677358\pi\)
\(998\) −2.83883e7 −0.902222
\(999\) 1.00771e7 0.319464
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.6.a.e.1.1 1
7.6 odd 2 70.6.a.c.1.1 1
21.20 even 2 630.6.a.n.1.1 1
28.27 even 2 560.6.a.d.1.1 1
35.13 even 4 350.6.c.e.99.2 2
35.27 even 4 350.6.c.e.99.1 2
35.34 odd 2 350.6.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.a.c.1.1 1 7.6 odd 2
350.6.a.k.1.1 1 35.34 odd 2
350.6.c.e.99.1 2 35.27 even 4
350.6.c.e.99.2 2 35.13 even 4
490.6.a.e.1.1 1 1.1 even 1 trivial
560.6.a.d.1.1 1 28.27 even 2
630.6.a.n.1.1 1 21.20 even 2