Properties

Label 2-490-1.1-c5-0-48
Degree $2$
Conductor $490$
Sign $-1$
Analytic cond. $78.5880$
Root an. cond. $8.86499$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 3·3-s + 16·4-s + 25·5-s − 12·6-s − 64·8-s − 234·9-s − 100·10-s + 405·11-s + 48·12-s + 391·13-s + 75·15-s + 256·16-s − 999·17-s + 936·18-s − 2.34e3·19-s + 400·20-s − 1.62e3·22-s + 2.43e3·23-s − 192·24-s + 625·25-s − 1.56e3·26-s − 1.43e3·27-s + 8.25e3·29-s − 300·30-s − 4.01e3·31-s − 1.02e3·32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.192·3-s + 1/2·4-s + 0.447·5-s − 0.136·6-s − 0.353·8-s − 0.962·9-s − 0.316·10-s + 1.00·11-s + 0.0962·12-s + 0.641·13-s + 0.0860·15-s + 1/4·16-s − 0.838·17-s + 0.680·18-s − 1.48·19-s + 0.223·20-s − 0.713·22-s + 0.957·23-s − 0.0680·24-s + 1/5·25-s − 0.453·26-s − 0.377·27-s + 1.82·29-s − 0.0608·30-s − 0.750·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(490\)    =    \(2 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.5880\)
Root analytic conductor: \(8.86499\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 490,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
5 \( 1 - p^{2} T \)
7 \( 1 \)
good3 \( 1 - p T + p^{5} T^{2} \)
11 \( 1 - 405 T + p^{5} T^{2} \)
13 \( 1 - 391 T + p^{5} T^{2} \)
17 \( 1 + 999 T + p^{5} T^{2} \)
19 \( 1 + 2342 T + p^{5} T^{2} \)
23 \( 1 - 2430 T + p^{5} T^{2} \)
29 \( 1 - 8259 T + p^{5} T^{2} \)
31 \( 1 + 4016 T + p^{5} T^{2} \)
37 \( 1 + 7042 T + p^{5} T^{2} \)
41 \( 1 + 3336 T + p^{5} T^{2} \)
43 \( 1 + 23518 T + p^{5} T^{2} \)
47 \( 1 + 10317 T + p^{5} T^{2} \)
53 \( 1 - 3084 T + p^{5} T^{2} \)
59 \( 1 - 18816 T + p^{5} T^{2} \)
61 \( 1 + 21668 T + p^{5} T^{2} \)
67 \( 1 - 52124 T + p^{5} T^{2} \)
71 \( 1 + 28560 T + p^{5} T^{2} \)
73 \( 1 - 70342 T + p^{5} T^{2} \)
79 \( 1 - 58823 T + p^{5} T^{2} \)
83 \( 1 + 756 T + p^{5} T^{2} \)
89 \( 1 + 135384 T + p^{5} T^{2} \)
97 \( 1 + 110435 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.561910017853326053759137647695, −8.612596001584738631398643227785, −8.455512631476923451027393046229, −6.72228596883890488555812744639, −6.40653777741689584979015214565, −5.06043265788305890726454122626, −3.66140012350253675739700761540, −2.47707829309665551466686833774, −1.38615340728587539547470615310, 0, 1.38615340728587539547470615310, 2.47707829309665551466686833774, 3.66140012350253675739700761540, 5.06043265788305890726454122626, 6.40653777741689584979015214565, 6.72228596883890488555812744639, 8.455512631476923451027393046229, 8.612596001584738631398643227785, 9.561910017853326053759137647695

Graph of the $Z$-function along the critical line