gp: [N,k,chi] = [490,4,Mod(1,490)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(490, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("490.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1,-2,1,4,5,-2,0,-8,-26,-10,-65]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 490 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(490)) S 4 n e w ( Γ 0 ( 4 9 0 ) ) :
T 3 − 1 T_{3} - 1 T 3 − 1
T3 - 1
T 11 + 65 T_{11} + 65 T 1 1 + 6 5
T11 + 65
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T − 1 T - 1 T − 1
T - 1
5 5 5
T − 5 T - 5 T − 5
T - 5
7 7 7
T T T
T
11 11 1 1
T + 65 T + 65 T + 6 5
T + 65
13 13 1 3
T + 13 T + 13 T + 1 3
T + 13
17 17 1 7
T − 73 T - 73 T − 7 3
T - 73
19 19 1 9
T − 142 T - 142 T − 1 4 2
T - 142
23 23 2 3
T − 130 T - 130 T − 1 3 0
T - 130
29 29 2 9
T − 111 T - 111 T − 1 1 1
T - 111
31 31 3 1
T + 256 T + 256 T + 2 5 6
T + 256
37 37 3 7
T + 266 T + 266 T + 2 6 6
T + 266
41 41 4 1
T − 424 T - 424 T − 4 2 4
T - 424
43 43 4 3
T − 534 T - 534 T − 5 3 4
T - 534
47 47 4 7
T − 269 T - 269 T − 2 6 9
T - 269
53 53 5 3
T + 132 T + 132 T + 1 3 2
T + 132
59 59 5 9
T − 224 T - 224 T − 2 2 4
T - 224
61 61 6 1
T − 572 T - 572 T − 5 7 2
T - 572
67 67 6 7
T + 108 T + 108 T + 1 0 8
T + 108
71 71 7 1
T − 560 T - 560 T − 5 6 0
T - 560
73 73 7 3
T + 586 T + 586 T + 5 8 6
T + 586
79 79 7 9
T − 57 T - 57 T − 5 7
T - 57
83 83 8 3
T + 252 T + 252 T + 2 5 2
T + 252
89 89 8 9
T − 184 T - 184 T − 1 8 4
T - 184
97 97 9 7
T − 605 T - 605 T − 6 0 5
T - 605
show more
show less