Properties

Label 490.4.e.o
Level $490$
Weight $4$
Character orbit 490.e
Analytic conductor $28.911$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,4,Mod(361,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 490.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,1,-4,5,4,0,-16,26,-10,65] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.9109359028\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + ( - \zeta_{6} + 1) q^{3} + (4 \zeta_{6} - 4) q^{4} + 5 \zeta_{6} q^{5} + 2 q^{6} - 8 q^{8} + 26 \zeta_{6} q^{9} + (10 \zeta_{6} - 10) q^{10} + ( - 65 \zeta_{6} + 65) q^{11} + 4 \zeta_{6} q^{12}+ \cdots + 1690 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} - 4 q^{4} + 5 q^{5} + 4 q^{6} - 16 q^{8} + 26 q^{9} - 10 q^{10} + 65 q^{11} + 4 q^{12} + 26 q^{13} + 10 q^{15} - 16 q^{16} + 73 q^{17} - 52 q^{18} + 142 q^{19} - 40 q^{20} + 260 q^{22}+ \cdots + 3380 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 0.500000 0.866025i −2.00000 + 3.46410i 2.50000 + 4.33013i 2.00000 0 −8.00000 13.0000 + 22.5167i −5.00000 + 8.66025i
471.1 1.00000 1.73205i 0.500000 + 0.866025i −2.00000 3.46410i 2.50000 4.33013i 2.00000 0 −8.00000 13.0000 22.5167i −5.00000 8.66025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 490.4.e.o 2
7.b odd 2 1 490.4.e.n 2
7.c even 3 1 70.4.a.c 1
7.c even 3 1 inner 490.4.e.o 2
7.d odd 6 1 490.4.a.d 1
7.d odd 6 1 490.4.e.n 2
21.h odd 6 1 630.4.a.x 1
28.g odd 6 1 560.4.a.i 1
35.i odd 6 1 2450.4.a.bc 1
35.j even 6 1 350.4.a.r 1
35.l odd 12 2 350.4.c.h 2
56.k odd 6 1 2240.4.a.r 1
56.p even 6 1 2240.4.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.a.c 1 7.c even 3 1
350.4.a.r 1 35.j even 6 1
350.4.c.h 2 35.l odd 12 2
490.4.a.d 1 7.d odd 6 1
490.4.e.n 2 7.b odd 2 1
490.4.e.n 2 7.d odd 6 1
490.4.e.o 2 1.a even 1 1 trivial
490.4.e.o 2 7.c even 3 1 inner
560.4.a.i 1 28.g odd 6 1
630.4.a.x 1 21.h odd 6 1
2240.4.a.r 1 56.k odd 6 1
2240.4.a.v 1 56.p even 6 1
2450.4.a.bc 1 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(490, [\chi])\):

\( T_{3}^{2} - T_{3} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 65T_{11} + 4225 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 65T + 4225 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 73T + 5329 \) Copy content Toggle raw display
$19$ \( T^{2} - 142T + 20164 \) Copy content Toggle raw display
$23$ \( T^{2} + 130T + 16900 \) Copy content Toggle raw display
$29$ \( (T - 111)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 256T + 65536 \) Copy content Toggle raw display
$37$ \( T^{2} - 266T + 70756 \) Copy content Toggle raw display
$41$ \( (T + 424)^{2} \) Copy content Toggle raw display
$43$ \( (T - 534)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 269T + 72361 \) Copy content Toggle raw display
$53$ \( T^{2} - 132T + 17424 \) Copy content Toggle raw display
$59$ \( T^{2} - 224T + 50176 \) Copy content Toggle raw display
$61$ \( T^{2} - 572T + 327184 \) Copy content Toggle raw display
$67$ \( T^{2} - 108T + 11664 \) Copy content Toggle raw display
$71$ \( (T - 560)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 586T + 343396 \) Copy content Toggle raw display
$79$ \( T^{2} + 57T + 3249 \) Copy content Toggle raw display
$83$ \( (T - 252)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 184T + 33856 \) Copy content Toggle raw display
$97$ \( (T + 605)^{2} \) Copy content Toggle raw display
show more
show less