Defining parameters
Level: | \( N \) | \(=\) | \( 490 = 2 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 490.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 27 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(490, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 536 | 80 | 456 |
Cusp forms | 472 | 80 | 392 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(490, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(490, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(490, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)