Newspace parameters
| Level: | \( N \) | \(=\) | \( 49 = 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 7 \) |
| Character orbit: | \([\chi]\) | \(=\) | 49.h (of order \(42\), degree \(12\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(11.2726500974\) |
| Analytic rank: | \(0\) |
| Dimension: | \(324\) |
| Relative dimension: | \(27\) over \(\Q(\zeta_{42})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{42}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3.1 | −5.64737 | + | 14.3893i | 39.0389 | + | 2.92556i | −128.243 | − | 118.992i | 88.5491 | − | 129.878i | −262.564 | + | 545.219i | −318.627 | − | 126.988i | 1545.11 | − | 744.086i | 794.620 | + | 119.770i | 1368.77 | + | 2007.62i |
| 3.2 | −5.28359 | + | 13.4624i | 11.4646 | + | 0.859156i | −106.404 | − | 98.7284i | −126.721 | + | 185.865i | −72.1408 | + | 149.802i | 71.8347 | + | 335.393i | 1057.40 | − | 509.218i | −590.158 | − | 88.9520i | −1832.64 | − | 2688.00i |
| 3.3 | −5.28100 | + | 13.4558i | −41.7729 | − | 3.13045i | −106.253 | − | 98.5887i | 0.579414 | − | 0.849844i | 262.725 | − | 545.555i | −337.162 | − | 63.0124i | 1054.21 | − | 507.679i | 1014.32 | + | 152.884i | 8.37542 | + | 12.2845i |
| 3.4 | −4.73204 | + | 12.0571i | −20.1535 | − | 1.51030i | −76.0649 | − | 70.5779i | 43.5678 | − | 63.9023i | 113.577 | − | 235.845i | 342.839 | + | 10.5003i | 464.042 | − | 223.471i | −316.975 | − | 47.7763i | 564.308 | + | 827.688i |
| 3.5 | −4.21887 | + | 10.7495i | 22.3732 | + | 1.67664i | −50.8375 | − | 47.1703i | −46.9023 | + | 68.7930i | −112.413 | + | 233.427i | 65.6154 | − | 336.665i | 55.6673 | − | 26.8080i | −223.109 | − | 33.6282i | −541.616 | − | 794.405i |
| 3.6 | −3.59619 | + | 9.16295i | 6.31557 | + | 0.473286i | −24.1117 | − | 22.3724i | 88.0567 | − | 129.155i | −27.0487 | + | 56.1672i | −147.850 | + | 309.499i | −275.882 | + | 132.858i | −681.195 | − | 102.674i | 866.776 | + | 1271.33i |
| 3.7 | −3.19117 | + | 8.13097i | −23.4226 | − | 1.75528i | −9.01384 | − | 8.36362i | −44.5842 | + | 65.3931i | 89.0179 | − | 184.848i | −186.492 | − | 287.871i | −406.896 | + | 195.951i | −175.318 | − | 26.4250i | −389.433 | − | 571.194i |
| 3.8 | −3.12007 | + | 7.94981i | 45.1855 | + | 3.38619i | −6.54926 | − | 6.07683i | 24.2678 | − | 35.5943i | −167.901 | + | 348.651i | 341.606 | + | 30.8894i | −423.699 | + | 204.043i | 1309.41 | + | 197.361i | 207.251 | + | 303.981i |
| 3.9 | −2.24612 | + | 5.72303i | −33.4096 | − | 2.50371i | 19.2073 | + | 17.8218i | −77.8645 | + | 114.206i | 89.3709 | − | 185.581i | −16.1750 | + | 342.618i | −499.644 | + | 240.616i | 389.077 | + | 58.6439i | −478.712 | − | 702.142i |
| 3.10 | −1.80046 | + | 4.58749i | 34.7561 | + | 2.60461i | 29.1119 | + | 27.0119i | −64.1993 | + | 94.1630i | −74.5254 | + | 154.754i | −320.804 | + | 121.382i | −460.499 | + | 221.764i | 480.345 | + | 72.4004i | −316.384 | − | 464.049i |
| 3.11 | −1.66144 | + | 4.23327i | −49.8303 | − | 3.73426i | 31.7551 | + | 29.4644i | 72.7081 | − | 106.643i | 98.5979 | − | 204.741i | 331.343 | − | 88.6605i | −439.716 | + | 211.756i | 1748.25 | + | 263.507i | 330.650 | + | 484.974i |
| 3.12 | −1.34783 | + | 3.43420i | −1.28182 | − | 0.0960589i | 36.9382 | + | 34.2736i | 103.584 | − | 151.930i | 2.05755 | − | 4.27255i | −113.036 | − | 323.839i | −380.217 | + | 183.103i | −719.224 | − | 108.406i | 382.145 | + | 560.504i |
| 3.13 | −0.399133 | + | 1.01698i | −2.92834 | − | 0.219449i | 46.0404 | + | 42.7192i | −88.1806 | + | 129.337i | 1.39197 | − | 2.89046i | 305.864 | − | 155.229i | −124.816 | + | 60.1083i | −712.331 | − | 107.367i | −96.3370 | − | 141.300i |
| 3.14 | 0.314138 | − | 0.800410i | 19.5533 | + | 1.46532i | 46.3733 | + | 43.0282i | 43.3923 | − | 63.6448i | 7.31531 | − | 15.1904i | 268.107 | + | 213.933i | 98.5884 | − | 47.4777i | −340.671 | − | 51.3480i | −37.3108 | − | 54.7249i |
| 3.15 | 0.472580 | − | 1.20411i | −31.3476 | − | 2.34917i | 45.6888 | + | 42.3930i | 70.8216 | − | 103.876i | −17.6429 | + | 36.6359i | −336.701 | + | 65.4302i | 147.225 | − | 70.8999i | 256.293 | + | 38.6300i | −91.6099 | − | 134.367i |
| 3.16 | 1.12891 | − | 2.87641i | 48.9686 | + | 3.66969i | 39.9160 | + | 37.0366i | 69.9503 | − | 102.598i | 65.8366 | − | 136.711i | −159.163 | − | 303.836i | 329.771 | − | 158.809i | 1663.60 | + | 250.747i | −216.147 | − | 317.030i |
| 3.17 | 1.55186 | − | 3.95409i | 1.47718 | + | 0.110699i | 33.6888 | + | 31.2586i | −51.2166 | + | 75.1210i | 2.73010 | − | 5.66911i | −331.151 | + | 89.3766i | 420.812 | − | 202.652i | −718.688 | − | 108.325i | 217.554 | + | 319.093i |
| 3.18 | 2.25296 | − | 5.74046i | −30.3956 | − | 2.27784i | 19.0383 | + | 17.6650i | 25.7577 | − | 37.7795i | −81.5560 | + | 169.353i | 83.9581 | + | 332.566i | 499.884 | − | 240.732i | 197.847 | + | 29.8207i | −158.841 | − | 232.977i |
| 3.19 | 2.29501 | − | 5.84759i | −46.2118 | − | 3.46309i | 17.9881 | + | 16.6905i | −95.8768 | + | 140.625i | −126.307 | + | 262.280i | −87.9175 | − | 331.541i | 501.105 | − | 241.319i | 1402.68 | + | 211.419i | 602.282 | + | 883.385i |
| 3.20 | 2.90184 | − | 7.39377i | 22.3918 | + | 1.67803i | 0.668154 | + | 0.619956i | −33.9718 | + | 49.8275i | 77.3843 | − | 160.690i | −28.4067 | − | 341.822i | 464.522 | − | 223.702i | −222.282 | − | 33.5037i | 269.833 | + | 395.772i |
| See next 80 embeddings (of 324 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 49.h | odd | 42 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 49.7.h.a | ✓ | 324 |
| 49.h | odd | 42 | 1 | inner | 49.7.h.a | ✓ | 324 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 49.7.h.a | ✓ | 324 | 1.a | even | 1 | 1 | trivial |
| 49.7.h.a | ✓ | 324 | 49.h | odd | 42 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(49, [\chi])\).