Properties

Label 486.2.g.b.73.1
Level $486$
Weight $2$
Character 486.73
Analytic conductor $3.881$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [486,2,Mod(19,486)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(486, base_ring=CyclotomicField(54)) chi = DirichletCharacter(H, H._module([52])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("486.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [90] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 162)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 73.1
Character \(\chi\) \(=\) 486.73
Dual form 486.2.g.b.253.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.893633 + 0.448799i) q^{2} +(0.597159 - 0.802123i) q^{4} +(-0.891212 + 2.97686i) q^{5} +(0.275210 - 0.638009i) q^{7} +(-0.173648 + 0.984808i) q^{8} +(-0.539594 - 3.06019i) q^{10} +(-5.37847 - 1.27472i) q^{11} +(-2.73022 + 1.79570i) q^{13} +(0.0404011 + 0.693660i) q^{14} +(-0.286803 - 0.957990i) q^{16} +(4.35745 + 1.58598i) q^{17} +(-2.23534 + 0.813599i) q^{19} +(1.85561 + 2.49252i) q^{20} +(5.37847 - 1.27472i) q^{22} +(-2.79341 - 6.47585i) q^{23} +(-3.88998 - 2.55848i) q^{25} +(1.63391 - 2.83001i) q^{26} +(-0.347418 - 0.601745i) q^{28} +(-0.0802101 + 1.37715i) q^{29} +(-3.53161 - 0.412786i) q^{31} +(0.686242 + 0.727374i) q^{32} +(-4.60574 + 0.538334i) q^{34} +(1.65399 + 1.38786i) q^{35} +(-0.935772 + 0.785206i) q^{37} +(1.63243 - 1.73028i) q^{38} +(-2.77687 - 1.39460i) q^{40} +(-10.1420 - 5.09352i) q^{41} +(-6.37841 + 6.76072i) q^{43} +(-4.23428 + 3.55299i) q^{44} +(5.40264 + 4.53335i) q^{46} +(-10.4074 + 1.21645i) q^{47} +(4.47238 + 4.74044i) q^{49} +(4.62445 + 0.540521i) q^{50} +(-0.190007 + 3.26229i) q^{52} +(2.11764 + 3.66786i) q^{53} +(8.58802 - 14.8749i) q^{55} +(0.580527 + 0.381818i) q^{56} +(-0.546388 - 1.26667i) q^{58} +(5.60397 - 1.32817i) q^{59} +(1.03387 + 1.38873i) q^{61} +(3.34122 - 1.21611i) q^{62} +(-0.939693 - 0.342020i) q^{64} +(-2.91232 - 9.72783i) q^{65} +(-0.0594932 - 1.02146i) q^{67} +(3.87424 - 2.54813i) q^{68} +(-2.10093 - 0.497930i) q^{70} +(2.04677 + 11.6078i) q^{71} +(1.49312 - 8.46788i) q^{73} +(0.483836 - 1.12166i) q^{74} +(-0.682248 + 2.27887i) q^{76} +(-2.29349 + 3.08070i) q^{77} +(-7.86088 + 3.94788i) q^{79} +3.10740 q^{80} +11.3492 q^{82} +(8.11371 - 4.07486i) q^{83} +(-8.60465 + 11.5580i) q^{85} +(2.66575 - 8.90423i) q^{86} +(2.18932 - 5.07541i) q^{88} +(0.642803 - 3.64552i) q^{89} +(0.394285 + 2.23610i) q^{91} +(-6.86253 - 1.62645i) q^{92} +(8.75447 - 5.75790i) q^{94} +(-0.429800 - 7.37939i) q^{95} +(0.260981 + 0.871736i) q^{97} +(-6.12417 - 2.22901i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 18 q^{13} + 9 q^{20} - 27 q^{23} - 18 q^{25} + 27 q^{26} - 18 q^{28} + 27 q^{29} + 54 q^{31} + 27 q^{35} + 18 q^{38} + 9 q^{41} - 36 q^{43} + 18 q^{46} + 27 q^{47} + 36 q^{52} + 27 q^{53} - 54 q^{55}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(e\left(\frac{23}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.893633 + 0.448799i −0.631894 + 0.317349i
\(3\) 0 0
\(4\) 0.597159 0.802123i 0.298579 0.401062i
\(5\) −0.891212 + 2.97686i −0.398562 + 1.33129i 0.489675 + 0.871905i \(0.337116\pi\)
−0.888237 + 0.459385i \(0.848070\pi\)
\(6\) 0 0
\(7\) 0.275210 0.638009i 0.104020 0.241145i −0.858256 0.513223i \(-0.828452\pi\)
0.962275 + 0.272078i \(0.0877108\pi\)
\(8\) −0.173648 + 0.984808i −0.0613939 + 0.348182i
\(9\) 0 0
\(10\) −0.539594 3.06019i −0.170635 0.967717i
\(11\) −5.37847 1.27472i −1.62167 0.384343i −0.683345 0.730096i \(-0.739475\pi\)
−0.938325 + 0.345753i \(0.887623\pi\)
\(12\) 0 0
\(13\) −2.73022 + 1.79570i −0.757227 + 0.498036i −0.868461 0.495758i \(-0.834890\pi\)
0.111233 + 0.993794i \(0.464520\pi\)
\(14\) 0.0404011 + 0.693660i 0.0107976 + 0.185388i
\(15\) 0 0
\(16\) −0.286803 0.957990i −0.0717008 0.239497i
\(17\) 4.35745 + 1.58598i 1.05684 + 0.384657i 0.811239 0.584715i \(-0.198794\pi\)
0.245597 + 0.969372i \(0.421016\pi\)
\(18\) 0 0
\(19\) −2.23534 + 0.813599i −0.512823 + 0.186652i −0.585453 0.810707i \(-0.699083\pi\)
0.0726295 + 0.997359i \(0.476861\pi\)
\(20\) 1.85561 + 2.49252i 0.414927 + 0.557344i
\(21\) 0 0
\(22\) 5.37847 1.27472i 1.14669 0.271771i
\(23\) −2.79341 6.47585i −0.582466 1.35031i −0.913558 0.406709i \(-0.866676\pi\)
0.331092 0.943598i \(-0.392583\pi\)
\(24\) 0 0
\(25\) −3.88998 2.55848i −0.777995 0.511695i
\(26\) 1.63391 2.83001i 0.320436 0.555011i
\(27\) 0 0
\(28\) −0.347418 0.601745i −0.0656558 0.113719i
\(29\) −0.0802101 + 1.37715i −0.0148946 + 0.255731i 0.982638 + 0.185532i \(0.0594007\pi\)
−0.997533 + 0.0701997i \(0.977636\pi\)
\(30\) 0 0
\(31\) −3.53161 0.412786i −0.634296 0.0741386i −0.207133 0.978313i \(-0.566413\pi\)
−0.427164 + 0.904174i \(0.640487\pi\)
\(32\) 0.686242 + 0.727374i 0.121312 + 0.128583i
\(33\) 0 0
\(34\) −4.60574 + 0.538334i −0.789879 + 0.0923236i
\(35\) 1.65399 + 1.38786i 0.279576 + 0.234592i
\(36\) 0 0
\(37\) −0.935772 + 0.785206i −0.153840 + 0.129087i −0.716459 0.697629i \(-0.754238\pi\)
0.562619 + 0.826716i \(0.309794\pi\)
\(38\) 1.63243 1.73028i 0.264816 0.280688i
\(39\) 0 0
\(40\) −2.77687 1.39460i −0.439062 0.220505i
\(41\) −10.1420 5.09352i −1.58392 0.795474i −0.584052 0.811716i \(-0.698534\pi\)
−0.999868 + 0.0162419i \(0.994830\pi\)
\(42\) 0 0
\(43\) −6.37841 + 6.76072i −0.972699 + 1.03100i 0.0268093 + 0.999641i \(0.491465\pi\)
−0.999508 + 0.0313600i \(0.990016\pi\)
\(44\) −4.23428 + 3.55299i −0.638342 + 0.535633i
\(45\) 0 0
\(46\) 5.40264 + 4.53335i 0.796575 + 0.668406i
\(47\) −10.4074 + 1.21645i −1.51808 + 0.177438i −0.833916 0.551892i \(-0.813906\pi\)
−0.684162 + 0.729330i \(0.739832\pi\)
\(48\) 0 0
\(49\) 4.47238 + 4.74044i 0.638911 + 0.677206i
\(50\) 4.62445 + 0.540521i 0.653996 + 0.0764412i
\(51\) 0 0
\(52\) −0.190007 + 3.26229i −0.0263492 + 0.452398i
\(53\) 2.11764 + 3.66786i 0.290880 + 0.503819i 0.974018 0.226470i \(-0.0727185\pi\)
−0.683138 + 0.730289i \(0.739385\pi\)
\(54\) 0 0
\(55\) 8.58802 14.8749i 1.15801 2.00573i
\(56\) 0.580527 + 0.381818i 0.0775762 + 0.0510226i
\(57\) 0 0
\(58\) −0.546388 1.26667i −0.0717442 0.166322i
\(59\) 5.60397 1.32817i 0.729575 0.172913i 0.150991 0.988535i \(-0.451754\pi\)
0.578584 + 0.815623i \(0.303605\pi\)
\(60\) 0 0
\(61\) 1.03387 + 1.38873i 0.132374 + 0.177809i 0.863368 0.504575i \(-0.168351\pi\)
−0.730994 + 0.682384i \(0.760943\pi\)
\(62\) 3.34122 1.21611i 0.424336 0.154446i
\(63\) 0 0
\(64\) −0.939693 0.342020i −0.117462 0.0427525i
\(65\) −2.91232 9.72783i −0.361229 1.20659i
\(66\) 0 0
\(67\) −0.0594932 1.02146i −0.00726825 0.124791i −0.999990 0.00436439i \(-0.998611\pi\)
0.992722 0.120427i \(-0.0384263\pi\)
\(68\) 3.87424 2.54813i 0.469821 0.309006i
\(69\) 0 0
\(70\) −2.10093 0.497930i −0.251109 0.0595140i
\(71\) 2.04677 + 11.6078i 0.242907 + 1.37759i 0.825304 + 0.564688i \(0.191004\pi\)
−0.582397 + 0.812904i \(0.697885\pi\)
\(72\) 0 0
\(73\) 1.49312 8.46788i 0.174756 0.991090i −0.763669 0.645608i \(-0.776604\pi\)
0.938425 0.345482i \(-0.112285\pi\)
\(74\) 0.483836 1.12166i 0.0562448 0.130390i
\(75\) 0 0
\(76\) −0.682248 + 2.27887i −0.0782593 + 0.261404i
\(77\) −2.29349 + 3.08070i −0.261368 + 0.351078i
\(78\) 0 0
\(79\) −7.86088 + 3.94788i −0.884418 + 0.444171i −0.832207 0.554465i \(-0.812923\pi\)
−0.0522107 + 0.998636i \(0.516627\pi\)
\(80\) 3.10740 0.347418
\(81\) 0 0
\(82\) 11.3492 1.25331
\(83\) 8.11371 4.07486i 0.890596 0.447274i 0.0561870 0.998420i \(-0.482106\pi\)
0.834409 + 0.551146i \(0.185809\pi\)
\(84\) 0 0
\(85\) −8.60465 + 11.5580i −0.933305 + 1.25365i
\(86\) 2.66575 8.90423i 0.287455 0.960168i
\(87\) 0 0
\(88\) 2.18932 5.07541i 0.233382 0.541040i
\(89\) 0.642803 3.64552i 0.0681370 0.386424i −0.931600 0.363485i \(-0.881587\pi\)
0.999737 0.0229387i \(-0.00730225\pi\)
\(90\) 0 0
\(91\) 0.394285 + 2.23610i 0.0413323 + 0.234407i
\(92\) −6.86253 1.62645i −0.715469 0.169569i
\(93\) 0 0
\(94\) 8.75447 5.75790i 0.902954 0.593882i
\(95\) −0.429800 7.37939i −0.0440966 0.757109i
\(96\) 0 0
\(97\) 0.260981 + 0.871736i 0.0264986 + 0.0885113i 0.970216 0.242241i \(-0.0778826\pi\)
−0.943717 + 0.330753i \(0.892697\pi\)
\(98\) −6.12417 2.22901i −0.618634 0.225165i
\(99\) 0 0
\(100\) −4.37515 + 1.59242i −0.437515 + 0.159242i
\(101\) 11.7954 + 15.8440i 1.17368 + 1.57653i 0.735294 + 0.677748i \(0.237044\pi\)
0.438391 + 0.898785i \(0.355549\pi\)
\(102\) 0 0
\(103\) 5.78007 1.36990i 0.569527 0.134980i 0.0642442 0.997934i \(-0.479536\pi\)
0.505283 + 0.862954i \(0.331388\pi\)
\(104\) −1.29432 3.00056i −0.126918 0.294229i
\(105\) 0 0
\(106\) −3.53852 2.32732i −0.343692 0.226050i
\(107\) 1.62313 2.81135i 0.156914 0.271783i −0.776840 0.629698i \(-0.783179\pi\)
0.933754 + 0.357914i \(0.116512\pi\)
\(108\) 0 0
\(109\) 4.22282 + 7.31415i 0.404473 + 0.700568i 0.994260 0.106991i \(-0.0341215\pi\)
−0.589787 + 0.807559i \(0.700788\pi\)
\(110\) −0.998698 + 17.1470i −0.0952221 + 1.63490i
\(111\) 0 0
\(112\) −0.690137 0.0806655i −0.0652119 0.00762217i
\(113\) 7.98089 + 8.45925i 0.750779 + 0.795779i 0.984287 0.176576i \(-0.0565020\pi\)
−0.233508 + 0.972355i \(0.575020\pi\)
\(114\) 0 0
\(115\) 21.7672 2.54422i 2.02980 0.237250i
\(116\) 1.05675 + 0.886718i 0.0981168 + 0.0823297i
\(117\) 0 0
\(118\) −4.41181 + 3.70195i −0.406140 + 0.340792i
\(119\) 2.21109 2.34361i 0.202690 0.214839i
\(120\) 0 0
\(121\) 17.4731 + 8.77531i 1.58846 + 0.797755i
\(122\) −1.54717 0.777016i −0.140074 0.0703478i
\(123\) 0 0
\(124\) −2.44004 + 2.58629i −0.219122 + 0.232256i
\(125\) −0.819020 + 0.687239i −0.0732553 + 0.0614685i
\(126\) 0 0
\(127\) −7.51805 6.30840i −0.667119 0.559780i 0.245092 0.969500i \(-0.421182\pi\)
−0.912211 + 0.409720i \(0.865626\pi\)
\(128\) 0.993238 0.116093i 0.0877907 0.0102613i
\(129\) 0 0
\(130\) 6.96838 + 7.38606i 0.611168 + 0.647800i
\(131\) 18.3590 + 2.14586i 1.60403 + 0.187484i 0.870499 0.492169i \(-0.163796\pi\)
0.733533 + 0.679654i \(0.237870\pi\)
\(132\) 0 0
\(133\) −0.0961063 + 1.65008i −0.00833347 + 0.143080i
\(134\) 0.511595 + 0.886109i 0.0441951 + 0.0765481i
\(135\) 0 0
\(136\) −2.31855 + 4.01585i −0.198814 + 0.344356i
\(137\) −12.2593 8.06304i −1.04738 0.688872i −0.0955257 0.995427i \(-0.530453\pi\)
−0.951853 + 0.306555i \(0.900824\pi\)
\(138\) 0 0
\(139\) 5.07402 + 11.7629i 0.430373 + 0.997716i 0.986070 + 0.166331i \(0.0531921\pi\)
−0.555697 + 0.831385i \(0.687549\pi\)
\(140\) 2.10093 0.497930i 0.177561 0.0420828i
\(141\) 0 0
\(142\) −7.03863 9.45452i −0.590669 0.793406i
\(143\) 16.9734 6.17782i 1.41939 0.516616i
\(144\) 0 0
\(145\) −4.02811 1.46611i −0.334516 0.121754i
\(146\) 2.46608 + 8.23728i 0.204094 + 0.681722i
\(147\) 0 0
\(148\) 0.0710276 + 1.21950i 0.00583843 + 0.100242i
\(149\) −14.8005 + 9.73443i −1.21250 + 0.797476i −0.984363 0.176153i \(-0.943635\pi\)
−0.228140 + 0.973628i \(0.573264\pi\)
\(150\) 0 0
\(151\) 15.3504 + 3.63812i 1.24920 + 0.296066i 0.801434 0.598084i \(-0.204071\pi\)
0.447768 + 0.894150i \(0.352219\pi\)
\(152\) −0.413075 2.34266i −0.0335048 0.190015i
\(153\) 0 0
\(154\) 0.666927 3.78233i 0.0537425 0.304789i
\(155\) 4.37622 10.1452i 0.351507 0.814884i
\(156\) 0 0
\(157\) 0.902664 3.01511i 0.0720404 0.240632i −0.914384 0.404848i \(-0.867324\pi\)
0.986424 + 0.164216i \(0.0525096\pi\)
\(158\) 5.25293 7.05591i 0.417901 0.561338i
\(159\) 0 0
\(160\) −2.77687 + 1.39460i −0.219531 + 0.110253i
\(161\) −4.90043 −0.386208
\(162\) 0 0
\(163\) −10.6732 −0.835986 −0.417993 0.908450i \(-0.637266\pi\)
−0.417993 + 0.908450i \(0.637266\pi\)
\(164\) −10.1420 + 5.09352i −0.791960 + 0.397737i
\(165\) 0 0
\(166\) −5.42188 + 7.28285i −0.420820 + 0.565259i
\(167\) 0.546468 1.82533i 0.0422870 0.141248i −0.934239 0.356647i \(-0.883920\pi\)
0.976526 + 0.215399i \(0.0691051\pi\)
\(168\) 0 0
\(169\) −0.919445 + 2.13151i −0.0707265 + 0.163963i
\(170\) 2.50215 14.1904i 0.191906 1.08835i
\(171\) 0 0
\(172\) 1.61401 + 9.15350i 0.123067 + 0.697948i
\(173\) −1.41829 0.336142i −0.107831 0.0255564i 0.176346 0.984328i \(-0.443572\pi\)
−0.284177 + 0.958772i \(0.591720\pi\)
\(174\) 0 0
\(175\) −2.70289 + 1.77772i −0.204320 + 0.134383i
\(176\) 0.321393 + 5.51811i 0.0242259 + 0.415943i
\(177\) 0 0
\(178\) 1.06168 + 3.54624i 0.0795759 + 0.265802i
\(179\) −3.40456 1.23916i −0.254469 0.0926191i 0.211636 0.977349i \(-0.432121\pi\)
−0.466105 + 0.884729i \(0.654343\pi\)
\(180\) 0 0
\(181\) −20.8444 + 7.58675i −1.54935 + 0.563919i −0.968266 0.249922i \(-0.919595\pi\)
−0.581088 + 0.813841i \(0.697373\pi\)
\(182\) −1.35591 1.82130i −0.100506 0.135004i
\(183\) 0 0
\(184\) 6.86253 1.62645i 0.505913 0.119904i
\(185\) −1.50347 3.48544i −0.110538 0.256255i
\(186\) 0 0
\(187\) −21.4147 14.0847i −1.56600 1.02997i
\(188\) −5.23914 + 9.07445i −0.382103 + 0.661822i
\(189\) 0 0
\(190\) 3.69595 + 6.40157i 0.268132 + 0.464418i
\(191\) −0.340269 + 5.84219i −0.0246210 + 0.422726i 0.963366 + 0.268190i \(0.0864254\pi\)
−0.987987 + 0.154536i \(0.950612\pi\)
\(192\) 0 0
\(193\) −14.3530 1.67762i −1.03315 0.120758i −0.417418 0.908714i \(-0.637065\pi\)
−0.615731 + 0.787957i \(0.711139\pi\)
\(194\) −0.624455 0.661884i −0.0448333 0.0475205i
\(195\) 0 0
\(196\) 6.47314 0.756601i 0.462367 0.0540429i
\(197\) 3.66493 + 3.07525i 0.261116 + 0.219102i 0.763941 0.645286i \(-0.223262\pi\)
−0.502825 + 0.864388i \(0.667706\pi\)
\(198\) 0 0
\(199\) 11.9225 10.0042i 0.845166 0.709178i −0.113554 0.993532i \(-0.536223\pi\)
0.958719 + 0.284354i \(0.0917790\pi\)
\(200\) 3.19509 3.38660i 0.225927 0.239469i
\(201\) 0 0
\(202\) −17.6515 8.86492i −1.24196 0.623733i
\(203\) 0.856563 + 0.430182i 0.0601189 + 0.0301929i
\(204\) 0 0
\(205\) 24.2014 25.6520i 1.69030 1.79161i
\(206\) −4.55045 + 3.81828i −0.317045 + 0.266032i
\(207\) 0 0
\(208\) 2.50329 + 2.10051i 0.173572 + 0.145644i
\(209\) 13.0598 1.52648i 0.903368 0.105589i
\(210\) 0 0
\(211\) −10.1033 10.7089i −0.695542 0.737231i 0.279282 0.960209i \(-0.409904\pi\)
−0.974824 + 0.222978i \(0.928422\pi\)
\(212\) 4.20664 + 0.491686i 0.288913 + 0.0337691i
\(213\) 0 0
\(214\) −0.188754 + 3.24077i −0.0129029 + 0.221535i
\(215\) −14.4412 25.0129i −0.984880 1.70586i
\(216\) 0 0
\(217\) −1.23530 + 2.13960i −0.0838575 + 0.145245i
\(218\) −7.05624 4.64096i −0.477909 0.314325i
\(219\) 0 0
\(220\) −6.80308 15.7713i −0.458664 1.06330i
\(221\) −14.7447 + 3.49457i −0.991838 + 0.235070i
\(222\) 0 0
\(223\) 6.19591 + 8.32255i 0.414909 + 0.557319i 0.959618 0.281306i \(-0.0907675\pi\)
−0.544710 + 0.838625i \(0.683360\pi\)
\(224\) 0.652932 0.237648i 0.0436259 0.0158785i
\(225\) 0 0
\(226\) −10.9285 3.97765i −0.726952 0.264589i
\(227\) −2.85714 9.54350i −0.189635 0.633424i −0.998940 0.0460357i \(-0.985341\pi\)
0.809305 0.587389i \(-0.199844\pi\)
\(228\) 0 0
\(229\) −1.21402 20.8439i −0.0802247 1.37740i −0.762821 0.646609i \(-0.776186\pi\)
0.682597 0.730795i \(-0.260851\pi\)
\(230\) −18.3100 + 12.0427i −1.20733 + 0.794072i
\(231\) 0 0
\(232\) −1.34230 0.318132i −0.0881266 0.0208864i
\(233\) 2.00393 + 11.3648i 0.131282 + 0.744535i 0.977377 + 0.211504i \(0.0678361\pi\)
−0.846095 + 0.533031i \(0.821053\pi\)
\(234\) 0 0
\(235\) 5.65402 32.0655i 0.368827 2.09172i
\(236\) 2.28111 5.28820i 0.148488 0.344233i
\(237\) 0 0
\(238\) −0.924086 + 3.08666i −0.0598996 + 0.200079i
\(239\) −1.72538 + 2.31759i −0.111606 + 0.149913i −0.854416 0.519589i \(-0.826085\pi\)
0.742810 + 0.669502i \(0.233492\pi\)
\(240\) 0 0
\(241\) 0.0473887 0.0237995i 0.00305257 0.00153306i −0.447272 0.894398i \(-0.647604\pi\)
0.450325 + 0.892865i \(0.351308\pi\)
\(242\) −19.5529 −1.25691
\(243\) 0 0
\(244\) 1.73132 0.110837
\(245\) −18.0975 + 9.08888i −1.15620 + 0.580667i
\(246\) 0 0
\(247\) 4.64201 6.23530i 0.295364 0.396743i
\(248\) 1.01977 3.40628i 0.0647557 0.216299i
\(249\) 0 0
\(250\) 0.423470 0.981715i 0.0267826 0.0620891i
\(251\) −1.45888 + 8.27374i −0.0920839 + 0.522234i 0.903518 + 0.428550i \(0.140975\pi\)
−0.995602 + 0.0936838i \(0.970136\pi\)
\(252\) 0 0
\(253\) 6.76936 + 38.3910i 0.425586 + 2.41362i
\(254\) 9.54958 + 2.26329i 0.599194 + 0.142012i
\(255\) 0 0
\(256\) −0.835488 + 0.549509i −0.0522180 + 0.0343443i
\(257\) −0.825207 14.1683i −0.0514750 0.883792i −0.920917 0.389758i \(-0.872559\pi\)
0.869442 0.494034i \(-0.164478\pi\)
\(258\) 0 0
\(259\) 0.243434 + 0.813128i 0.0151263 + 0.0505253i
\(260\) −9.54203 3.47302i −0.591772 0.215387i
\(261\) 0 0
\(262\) −17.3693 + 6.32189i −1.07308 + 0.390568i
\(263\) 14.3710 + 19.3035i 0.886151 + 1.19031i 0.980843 + 0.194801i \(0.0624060\pi\)
−0.0946919 + 0.995507i \(0.530187\pi\)
\(264\) 0 0
\(265\) −12.8060 + 3.03507i −0.786664 + 0.186443i
\(266\) −0.654671 1.51770i −0.0401405 0.0930561i
\(267\) 0 0
\(268\) −0.854863 0.562252i −0.0522191 0.0343450i
\(269\) −4.00049 + 6.92906i −0.243914 + 0.422472i −0.961826 0.273662i \(-0.911765\pi\)
0.717911 + 0.696134i \(0.245098\pi\)
\(270\) 0 0
\(271\) 1.88940 + 3.27253i 0.114773 + 0.198792i 0.917689 0.397300i \(-0.130053\pi\)
−0.802916 + 0.596092i \(0.796719\pi\)
\(272\) 0.269623 4.62925i 0.0163483 0.280690i
\(273\) 0 0
\(274\) 14.5740 + 1.70345i 0.880445 + 0.102909i
\(275\) 17.6608 + 18.7193i 1.06498 + 1.12882i
\(276\) 0 0
\(277\) −9.30469 + 1.08756i −0.559064 + 0.0653453i −0.390933 0.920419i \(-0.627847\pi\)
−0.168132 + 0.985765i \(0.553773\pi\)
\(278\) −9.81349 8.23449i −0.588574 0.493872i
\(279\) 0 0
\(280\) −1.65399 + 1.38786i −0.0988449 + 0.0829407i
\(281\) 5.32890 5.64830i 0.317895 0.336949i −0.548646 0.836055i \(-0.684856\pi\)
0.866541 + 0.499105i \(0.166338\pi\)
\(282\) 0 0
\(283\) −17.1311 8.60354i −1.01834 0.511427i −0.140344 0.990103i \(-0.544821\pi\)
−0.877992 + 0.478676i \(0.841117\pi\)
\(284\) 10.5331 + 5.28994i 0.625026 + 0.313900i
\(285\) 0 0
\(286\) −12.3954 + 13.1384i −0.732956 + 0.776888i
\(287\) −6.04091 + 5.06892i −0.356584 + 0.299209i
\(288\) 0 0
\(289\) 3.44925 + 2.89427i 0.202897 + 0.170251i
\(290\) 4.25764 0.497647i 0.250017 0.0292228i
\(291\) 0 0
\(292\) −5.90065 6.25433i −0.345310 0.366007i
\(293\) −17.5250 2.04838i −1.02382 0.119668i −0.412425 0.910991i \(-0.635318\pi\)
−0.611398 + 0.791324i \(0.709392\pi\)
\(294\) 0 0
\(295\) −1.04057 + 17.8659i −0.0605844 + 1.04019i
\(296\) −0.610782 1.05790i −0.0355010 0.0614895i
\(297\) 0 0
\(298\) 8.85739 15.3415i 0.513095 0.888706i
\(299\) 19.2553 + 12.6644i 1.11356 + 0.732401i
\(300\) 0 0
\(301\) 2.55800 + 5.93011i 0.147441 + 0.341806i
\(302\) −15.3504 + 3.63812i −0.883319 + 0.209350i
\(303\) 0 0
\(304\) 1.42052 + 1.90809i 0.0814726 + 0.109437i
\(305\) −5.05546 + 1.84004i −0.289475 + 0.105360i
\(306\) 0 0
\(307\) −12.9189 4.70209i −0.737320 0.268363i −0.0540601 0.998538i \(-0.517216\pi\)
−0.683260 + 0.730175i \(0.739438\pi\)
\(308\) 1.10152 + 3.67933i 0.0627649 + 0.209649i
\(309\) 0 0
\(310\) 0.642433 + 11.0301i 0.0364877 + 0.626470i
\(311\) −14.9898 + 9.85896i −0.849995 + 0.559050i −0.898100 0.439792i \(-0.855052\pi\)
0.0481050 + 0.998842i \(0.484682\pi\)
\(312\) 0 0
\(313\) 4.64166 + 1.10009i 0.262362 + 0.0621810i 0.359692 0.933071i \(-0.382882\pi\)
−0.0973294 + 0.995252i \(0.531030\pi\)
\(314\) 0.546528 + 3.09951i 0.0308423 + 0.174916i
\(315\) 0 0
\(316\) −1.52750 + 8.66290i −0.0859288 + 0.487326i
\(317\) 1.95397 4.52981i 0.109746 0.254420i −0.854489 0.519470i \(-0.826129\pi\)
0.964235 + 0.265050i \(0.0853886\pi\)
\(318\) 0 0
\(319\) 2.18690 7.30474i 0.122443 0.408987i
\(320\) 1.85561 2.49252i 0.103732 0.139336i
\(321\) 0 0
\(322\) 4.37918 2.19931i 0.244042 0.122563i
\(323\) −11.0307 −0.613767
\(324\) 0 0
\(325\) 15.2147 0.843962
\(326\) 9.53788 4.79010i 0.528254 0.265299i
\(327\) 0 0
\(328\) 6.77729 9.10348i 0.374213 0.502655i
\(329\) −2.08812 + 6.97481i −0.115122 + 0.384534i
\(330\) 0 0
\(331\) 8.20945 19.0316i 0.451232 1.04607i −0.529071 0.848577i \(-0.677460\pi\)
0.980304 0.197497i \(-0.0632812\pi\)
\(332\) 1.57663 8.94153i 0.0865290 0.490730i
\(333\) 0 0
\(334\) 0.330865 + 1.87643i 0.0181041 + 0.102674i
\(335\) 3.09376 + 0.733234i 0.169030 + 0.0400609i
\(336\) 0 0
\(337\) 23.4132 15.3991i 1.27540 0.838843i 0.282670 0.959217i \(-0.408780\pi\)
0.992729 + 0.120374i \(0.0384095\pi\)
\(338\) −0.134975 2.31744i −0.00734169 0.126052i
\(339\) 0 0
\(340\) 4.13264 + 13.8040i 0.224124 + 0.748626i
\(341\) 18.4685 + 6.72198i 1.00012 + 0.364016i
\(342\) 0 0
\(343\) 8.82581 3.21233i 0.476549 0.173450i
\(344\) −5.55041 7.45550i −0.299258 0.401973i
\(345\) 0 0
\(346\) 1.41829 0.336142i 0.0762480 0.0180711i
\(347\) −4.31805 10.0104i −0.231805 0.537384i 0.762121 0.647435i \(-0.224158\pi\)
−0.993926 + 0.110050i \(0.964899\pi\)
\(348\) 0 0
\(349\) 13.5397 + 8.90522i 0.724765 + 0.476685i 0.857512 0.514465i \(-0.172009\pi\)
−0.132747 + 0.991150i \(0.542380\pi\)
\(350\) 1.61755 2.80169i 0.0864619 0.149756i
\(351\) 0 0
\(352\) −2.76373 4.78692i −0.147307 0.255144i
\(353\) 1.59059 27.3094i 0.0846586 1.45353i −0.642090 0.766629i \(-0.721933\pi\)
0.726749 0.686903i \(-0.241030\pi\)
\(354\) 0 0
\(355\) −36.3789 4.25208i −1.93079 0.225677i
\(356\) −2.54030 2.69256i −0.134636 0.142705i
\(357\) 0 0
\(358\) 3.59856 0.420611i 0.190190 0.0222300i
\(359\) 4.66035 + 3.91050i 0.245964 + 0.206388i 0.757432 0.652914i \(-0.226454\pi\)
−0.511468 + 0.859302i \(0.670898\pi\)
\(360\) 0 0
\(361\) −10.2200 + 8.57562i −0.537896 + 0.451348i
\(362\) 15.2223 16.1347i 0.800068 0.848023i
\(363\) 0 0
\(364\) 2.02908 + 1.01904i 0.106353 + 0.0534123i
\(365\) 23.8770 + 11.9915i 1.24978 + 0.627662i
\(366\) 0 0
\(367\) −12.3462 + 13.0862i −0.644468 + 0.683096i −0.964431 0.264334i \(-0.914848\pi\)
0.319963 + 0.947430i \(0.396329\pi\)
\(368\) −5.40264 + 4.53335i −0.281632 + 0.236317i
\(369\) 0 0
\(370\) 2.90782 + 2.43995i 0.151170 + 0.126847i
\(371\) 2.92293 0.341641i 0.151751 0.0177371i
\(372\) 0 0
\(373\) 16.3827 + 17.3646i 0.848262 + 0.899106i 0.995948 0.0899288i \(-0.0286639\pi\)
−0.147686 + 0.989034i \(0.547182\pi\)
\(374\) 25.4581 + 2.97562i 1.31641 + 0.153866i
\(375\) 0 0
\(376\) 0.609257 10.4605i 0.0314200 0.539461i
\(377\) −2.25396 3.90397i −0.116085 0.201065i
\(378\) 0 0
\(379\) −11.8242 + 20.4801i −0.607367 + 1.05199i 0.384305 + 0.923206i \(0.374441\pi\)
−0.991673 + 0.128785i \(0.958892\pi\)
\(380\) −6.17584 4.06191i −0.316814 0.208372i
\(381\) 0 0
\(382\) −2.31789 5.37348i −0.118594 0.274931i
\(383\) 13.8773 3.28898i 0.709097 0.168059i 0.139787 0.990182i \(-0.455358\pi\)
0.569311 + 0.822123i \(0.307210\pi\)
\(384\) 0 0
\(385\) −7.12681 9.57296i −0.363216 0.487883i
\(386\) 13.5792 4.94242i 0.691163 0.251563i
\(387\) 0 0
\(388\) 0.855086 + 0.311226i 0.0434104 + 0.0158001i
\(389\) −10.2329 34.1803i −0.518829 1.73301i −0.667964 0.744193i \(-0.732834\pi\)
0.149135 0.988817i \(-0.452351\pi\)
\(390\) 0 0
\(391\) −1.90156 32.6485i −0.0961658 1.65110i
\(392\) −5.44504 + 3.58126i −0.275016 + 0.180881i
\(393\) 0 0
\(394\) −4.65527 1.10332i −0.234529 0.0555845i
\(395\) −4.74656 26.9191i −0.238826 1.35445i
\(396\) 0 0
\(397\) 4.23676 24.0278i 0.212637 1.20592i −0.672324 0.740257i \(-0.734704\pi\)
0.884961 0.465666i \(-0.154185\pi\)
\(398\) −6.16449 + 14.2909i −0.308998 + 0.716338i
\(399\) 0 0
\(400\) −1.33534 + 4.46033i −0.0667668 + 0.223017i
\(401\) −23.3072 + 31.3070i −1.16391 + 1.56340i −0.402093 + 0.915599i \(0.631717\pi\)
−0.761812 + 0.647798i \(0.775690\pi\)
\(402\) 0 0
\(403\) 10.3833 5.21470i 0.517230 0.259763i
\(404\) 19.7525 0.982725
\(405\) 0 0
\(406\) −0.958518 −0.0475705
\(407\) 6.03394 3.03036i 0.299091 0.150209i
\(408\) 0 0
\(409\) −10.6428 + 14.2958i −0.526254 + 0.706882i −0.983183 0.182621i \(-0.941542\pi\)
0.456929 + 0.889503i \(0.348949\pi\)
\(410\) −10.1146 + 33.7850i −0.499523 + 1.66852i
\(411\) 0 0
\(412\) 2.35279 5.45437i 0.115914 0.268718i
\(413\) 0.694889 3.94091i 0.0341933 0.193920i
\(414\) 0 0
\(415\) 4.89923 + 27.7849i 0.240494 + 1.36391i
\(416\) −3.17973 0.753611i −0.155899 0.0369488i
\(417\) 0 0
\(418\) −10.9856 + 7.22536i −0.537324 + 0.353404i
\(419\) 0.463457 + 7.95725i 0.0226414 + 0.388737i 0.990524 + 0.137336i \(0.0438542\pi\)
−0.967883 + 0.251401i \(0.919109\pi\)
\(420\) 0 0
\(421\) 8.16468 + 27.2719i 0.397922 + 1.32915i 0.888948 + 0.458008i \(0.151437\pi\)
−0.491026 + 0.871145i \(0.663378\pi\)
\(422\) 13.8348 + 5.03546i 0.673468 + 0.245122i
\(423\) 0 0
\(424\) −3.97986 + 1.44855i −0.193279 + 0.0703479i
\(425\) −12.8927 17.3179i −0.625386 0.840039i
\(426\) 0 0
\(427\) 1.17056 0.277427i 0.0566473 0.0134257i
\(428\) −1.28578 2.98077i −0.0621505 0.144081i
\(429\) 0 0
\(430\) 24.1309 + 15.8711i 1.16369 + 0.765373i
\(431\) 13.7252 23.7728i 0.661122 1.14510i −0.319200 0.947688i \(-0.603414\pi\)
0.980321 0.197409i \(-0.0632526\pi\)
\(432\) 0 0
\(433\) 1.90681 + 3.30270i 0.0916356 + 0.158717i 0.908199 0.418538i \(-0.137457\pi\)
−0.816564 + 0.577255i \(0.804124\pi\)
\(434\) 0.143652 2.46642i 0.00689553 0.118392i
\(435\) 0 0
\(436\) 8.38854 + 0.980480i 0.401738 + 0.0469565i
\(437\) 11.5130 + 12.2030i 0.550740 + 0.583750i
\(438\) 0 0
\(439\) −5.47284 + 0.639683i −0.261204 + 0.0305304i −0.245687 0.969349i \(-0.579014\pi\)
−0.0155172 + 0.999880i \(0.504939\pi\)
\(440\) 13.1576 + 11.0405i 0.627265 + 0.526337i
\(441\) 0 0
\(442\) 11.6080 9.74029i 0.552137 0.463298i
\(443\) −17.7115 + 18.7731i −0.841499 + 0.891937i −0.995366 0.0961548i \(-0.969346\pi\)
0.153868 + 0.988091i \(0.450827\pi\)
\(444\) 0 0
\(445\) 10.2793 + 5.16246i 0.487286 + 0.244724i
\(446\) −9.27202 4.65658i −0.439043 0.220496i
\(447\) 0 0
\(448\) −0.476825 + 0.505405i −0.0225279 + 0.0238781i
\(449\) 7.95557 6.67552i 0.375447 0.315037i −0.435465 0.900206i \(-0.643416\pi\)
0.810912 + 0.585168i \(0.198972\pi\)
\(450\) 0 0
\(451\) 48.0558 + 40.3236i 2.26286 + 1.89877i
\(452\) 11.5512 1.35014i 0.543324 0.0635054i
\(453\) 0 0
\(454\) 6.83635 + 7.24610i 0.320846 + 0.340076i
\(455\) −7.00794 0.819111i −0.328537 0.0384005i
\(456\) 0 0
\(457\) 2.03404 34.9231i 0.0951485 1.63364i −0.526384 0.850247i \(-0.676452\pi\)
0.621532 0.783389i \(-0.286511\pi\)
\(458\) 10.4396 + 18.0819i 0.487811 + 0.844914i
\(459\) 0 0
\(460\) 10.9577 18.9793i 0.510905 0.884913i
\(461\) 13.1697 + 8.66185i 0.613374 + 0.403423i 0.817836 0.575452i \(-0.195174\pi\)
−0.204461 + 0.978875i \(0.565544\pi\)
\(462\) 0 0
\(463\) 1.50290 + 3.48411i 0.0698456 + 0.161920i 0.949563 0.313577i \(-0.101527\pi\)
−0.879717 + 0.475497i \(0.842268\pi\)
\(464\) 1.34230 0.318132i 0.0623149 0.0147689i
\(465\) 0 0
\(466\) −6.89131 9.25663i −0.319234 0.428805i
\(467\) −37.6811 + 13.7148i −1.74367 + 0.634645i −0.999446 0.0332831i \(-0.989404\pi\)
−0.744226 + 0.667928i \(0.767181\pi\)
\(468\) 0 0
\(469\) −0.668073 0.243159i −0.0308488 0.0112280i
\(470\) 9.33836 + 31.1923i 0.430747 + 1.43879i
\(471\) 0 0
\(472\) 0.334869 + 5.74947i 0.0154136 + 0.264641i
\(473\) 42.9241 28.2317i 1.97365 1.29809i
\(474\) 0 0
\(475\) 10.7770 + 2.55420i 0.494483 + 0.117195i
\(476\) −0.559498 3.17307i −0.0256446 0.145438i
\(477\) 0 0
\(478\) 0.501726 2.84543i 0.0229484 0.130147i
\(479\) −8.98549 + 20.8307i −0.410558 + 0.951780i 0.579992 + 0.814622i \(0.303056\pi\)
−0.990549 + 0.137157i \(0.956203\pi\)
\(480\) 0 0
\(481\) 1.14487 3.82415i 0.0522018 0.174366i
\(482\) −0.0316669 + 0.0425360i −0.00144239 + 0.00193746i
\(483\) 0 0
\(484\) 17.4731 8.77531i 0.794231 0.398878i
\(485\) −2.82762 −0.128396
\(486\) 0 0
\(487\) −27.0825 −1.22723 −0.613613 0.789607i \(-0.710285\pi\)
−0.613613 + 0.789607i \(0.710285\pi\)
\(488\) −1.54717 + 0.777016i −0.0700369 + 0.0351739i
\(489\) 0 0
\(490\) 12.0934 16.2442i 0.546324 0.733840i
\(491\) 2.03944 6.81222i 0.0920388 0.307431i −0.899557 0.436803i \(-0.856111\pi\)
0.991596 + 0.129372i \(0.0412960\pi\)
\(492\) 0 0
\(493\) −2.53365 + 5.87367i −0.114110 + 0.264537i
\(494\) −1.34985 + 7.65540i −0.0607328 + 0.344433i
\(495\) 0 0
\(496\) 0.617433 + 3.50164i 0.0277236 + 0.157228i
\(497\) 7.96918 + 1.88873i 0.357466 + 0.0847211i
\(498\) 0 0
\(499\) −24.8765 + 16.3615i −1.11362 + 0.732442i −0.966498 0.256676i \(-0.917373\pi\)
−0.147127 + 0.989118i \(0.547002\pi\)
\(500\) 0.0621658 + 1.06735i 0.00278014 + 0.0477331i
\(501\) 0 0
\(502\) −2.40954 8.04843i −0.107543 0.359219i
\(503\) −0.405417 0.147560i −0.0180767 0.00657936i 0.332966 0.942939i \(-0.391951\pi\)
−0.351043 + 0.936359i \(0.614173\pi\)
\(504\) 0 0
\(505\) −57.6774 + 20.9928i −2.56661 + 0.934169i
\(506\) −23.2792 31.2693i −1.03488 1.39009i
\(507\) 0 0
\(508\) −9.54958 + 2.26329i −0.423694 + 0.100417i
\(509\) −8.75229 20.2901i −0.387939 0.899343i −0.994542 0.104338i \(-0.966728\pi\)
0.606603 0.795005i \(-0.292532\pi\)
\(510\) 0 0
\(511\) −4.99166 3.28307i −0.220818 0.145234i
\(512\) 0.500000 0.866025i 0.0220971 0.0382733i
\(513\) 0 0
\(514\) 7.09614 + 12.2909i 0.312997 + 0.542127i
\(515\) −1.07327 + 18.4273i −0.0472939 + 0.812004i
\(516\) 0 0
\(517\) 57.5266 + 6.72390i 2.53002 + 0.295717i
\(518\) −0.582472 0.617384i −0.0255924 0.0271263i
\(519\) 0 0
\(520\) 10.0858 1.17886i 0.442290 0.0516963i
\(521\) −0.934191 0.783879i −0.0409276 0.0343424i 0.622094 0.782942i \(-0.286282\pi\)
−0.663022 + 0.748600i \(0.730726\pi\)
\(522\) 0 0
\(523\) 7.65711 6.42508i 0.334822 0.280949i −0.459839 0.888002i \(-0.652093\pi\)
0.794661 + 0.607053i \(0.207648\pi\)
\(524\) 12.6845 13.4448i 0.554124 0.587337i
\(525\) 0 0
\(526\) −21.5058 10.8006i −0.937696 0.470929i
\(527\) −14.7341 7.39977i −0.641829 0.322339i
\(528\) 0 0
\(529\) −18.3499 + 19.4498i −0.797822 + 0.845642i
\(530\) 10.0817 8.45954i 0.437921 0.367459i
\(531\) 0 0
\(532\) 1.26618 + 1.06245i 0.0548958 + 0.0460630i
\(533\) 36.8364 4.30556i 1.59556 0.186495i
\(534\) 0 0
\(535\) 6.92243 + 7.33734i 0.299283 + 0.317221i
\(536\) 1.01627 + 0.118785i 0.0438962 + 0.00513074i
\(537\) 0 0
\(538\) 0.465216 7.98745i 0.0200569 0.344363i
\(539\) −18.0118 31.1974i −0.775823 1.34377i
\(540\) 0 0
\(541\) −1.46755 + 2.54188i −0.0630951 + 0.109284i −0.895847 0.444362i \(-0.853430\pi\)
0.832752 + 0.553646i \(0.186764\pi\)
\(542\) −3.15714 2.07648i −0.135611 0.0891925i
\(543\) 0 0
\(544\) 1.83666 + 4.25786i 0.0787462 + 0.182554i
\(545\) −25.5366 + 6.05228i −1.09387 + 0.259251i
\(546\) 0 0
\(547\) 9.40820 + 12.6374i 0.402266 + 0.540336i 0.956388 0.292099i \(-0.0943535\pi\)
−0.554123 + 0.832435i \(0.686946\pi\)
\(548\) −13.7883 + 5.01852i −0.589006 + 0.214380i
\(549\) 0 0
\(550\) −24.1835 8.80206i −1.03119 0.375321i
\(551\) −0.941154 3.14367i −0.0400945 0.133925i
\(552\) 0 0
\(553\) 0.355390 + 6.10181i 0.0151127 + 0.259475i
\(554\) 7.82687 5.14782i 0.332532 0.218710i
\(555\) 0 0
\(556\) 12.4653 + 2.95433i 0.528646 + 0.125291i
\(557\) 2.45674 + 13.9329i 0.104095 + 0.590354i 0.991578 + 0.129512i \(0.0413412\pi\)
−0.887482 + 0.460841i \(0.847548\pi\)
\(558\) 0 0
\(559\) 5.27429 29.9120i 0.223079 1.26514i
\(560\) 0.855189 1.98255i 0.0361383 0.0837780i
\(561\) 0 0
\(562\) −2.22712 + 7.43911i −0.0939455 + 0.313800i
\(563\) 14.2152 19.0944i 0.599101 0.804732i −0.394354 0.918959i \(-0.629032\pi\)
0.993455 + 0.114226i \(0.0364390\pi\)
\(564\) 0 0
\(565\) −32.2946 + 16.2190i −1.35865 + 0.682338i
\(566\) 19.1701 0.805781
\(567\) 0 0
\(568\) −11.7869 −0.494566
\(569\) 1.76778 0.887811i 0.0741091 0.0372190i −0.411359 0.911474i \(-0.634946\pi\)
0.485468 + 0.874255i \(0.338649\pi\)
\(570\) 0 0
\(571\) 5.08064 6.82448i 0.212618 0.285596i −0.683001 0.730417i \(-0.739326\pi\)
0.895619 + 0.444822i \(0.146733\pi\)
\(572\) 5.18046 17.3039i 0.216606 0.723513i
\(573\) 0 0
\(574\) 3.12342 7.24091i 0.130369 0.302230i
\(575\) −5.70202 + 32.3378i −0.237791 + 1.34858i
\(576\) 0 0
\(577\) −6.90467 39.1583i −0.287445 1.63018i −0.696418 0.717636i \(-0.745224\pi\)
0.408973 0.912546i \(-0.365887\pi\)
\(578\) −4.38131 1.03839i −0.182239 0.0431913i
\(579\) 0 0
\(580\) −3.58142 + 2.35554i −0.148710 + 0.0978084i
\(581\) −0.366821 6.29807i −0.0152183 0.261288i
\(582\) 0 0
\(583\) −6.71417 22.4269i −0.278072 0.928826i
\(584\) 8.07995 + 2.94086i 0.334351 + 0.121694i
\(585\) 0 0
\(586\) 16.5802 6.03472i 0.684924 0.249292i
\(587\) −6.53316 8.77555i −0.269652 0.362206i 0.646585 0.762842i \(-0.276197\pi\)
−0.916237 + 0.400636i \(0.868789\pi\)
\(588\) 0 0
\(589\) 8.23021 1.95060i 0.339120 0.0803729i
\(590\) −7.08832 16.4326i −0.291821 0.676518i
\(591\) 0 0
\(592\) 1.02060 + 0.671260i 0.0419465 + 0.0275886i
\(593\) 6.95035 12.0384i 0.285417 0.494356i −0.687293 0.726380i \(-0.741201\pi\)
0.972710 + 0.232024i \(0.0745347\pi\)
\(594\) 0 0
\(595\) 5.00605 + 8.67074i 0.205228 + 0.355466i
\(596\) −1.03002 + 17.6848i −0.0421914 + 0.724398i
\(597\) 0 0
\(598\) −22.8909 2.67556i −0.936079 0.109412i
\(599\) −8.55657 9.06943i −0.349612 0.370567i 0.528573 0.848888i \(-0.322727\pi\)
−0.878185 + 0.478321i \(0.841246\pi\)
\(600\) 0 0
\(601\) −33.8011 + 3.95078i −1.37877 + 0.161156i −0.772962 0.634452i \(-0.781226\pi\)
−0.605813 + 0.795607i \(0.707152\pi\)
\(602\) −4.94734 4.15131i −0.201638 0.169195i
\(603\) 0 0
\(604\) 12.0849 10.1404i 0.491726 0.412607i
\(605\) −41.6951 + 44.1942i −1.69515 + 1.79675i
\(606\) 0 0
\(607\) −0.126803 0.0636828i −0.00514677 0.00258481i 0.446224 0.894921i \(-0.352768\pi\)
−0.451371 + 0.892337i \(0.649065\pi\)
\(608\) −2.12578 1.06760i −0.0862116 0.0432971i
\(609\) 0 0
\(610\) 3.69192 3.91321i 0.149481 0.158441i
\(611\) 26.2302 22.0097i 1.06116 0.890419i
\(612\) 0 0
\(613\) 5.46537 + 4.58599i 0.220744 + 0.185226i 0.746453 0.665438i \(-0.231755\pi\)
−0.525709 + 0.850665i \(0.676200\pi\)
\(614\) 13.6550 1.59605i 0.551073 0.0644111i
\(615\) 0 0
\(616\) −2.63563 2.79361i −0.106193 0.112558i
\(617\) 12.3620 + 1.44491i 0.497674 + 0.0581698i 0.361228 0.932478i \(-0.382358\pi\)
0.136447 + 0.990647i \(0.456432\pi\)
\(618\) 0 0
\(619\) −0.942223 + 16.1773i −0.0378711 + 0.650222i 0.924951 + 0.380086i \(0.124106\pi\)
−0.962822 + 0.270136i \(0.912931\pi\)
\(620\) −5.52442 9.56858i −0.221866 0.384283i
\(621\) 0 0
\(622\) 8.97070 15.5377i 0.359692 0.623005i
\(623\) −2.14897 1.41340i −0.0860966 0.0566266i
\(624\) 0 0
\(625\) −10.5365 24.4263i −0.421460 0.977054i
\(626\) −4.64166 + 1.10009i −0.185518 + 0.0439686i
\(627\) 0 0
\(628\) −1.87945 2.52454i −0.0749984 0.100740i
\(629\) −5.32290 + 1.93738i −0.212238 + 0.0772482i
\(630\) 0 0
\(631\) 30.2871 + 11.0236i 1.20571 + 0.438843i 0.865214 0.501402i \(-0.167182\pi\)
0.340497 + 0.940246i \(0.389405\pi\)
\(632\) −2.52288 8.42700i −0.100355 0.335208i
\(633\) 0 0
\(634\) 0.286844 + 4.92493i 0.0113920 + 0.195594i
\(635\) 25.4794 16.7580i 1.01112 0.665023i
\(636\) 0 0
\(637\) −20.7230 4.91143i −0.821074 0.194598i
\(638\) 1.32408 + 7.50923i 0.0524208 + 0.297293i
\(639\) 0 0
\(640\) −0.539594 + 3.06019i −0.0213293 + 0.120965i
\(641\) −2.93257 + 6.79846i −0.115829 + 0.268523i −0.966262 0.257561i \(-0.917081\pi\)
0.850432 + 0.526084i \(0.176340\pi\)
\(642\) 0 0
\(643\) −2.09220 + 6.98845i −0.0825085 + 0.275597i −0.989281 0.146022i \(-0.953353\pi\)
0.906773 + 0.421619i \(0.138538\pi\)
\(644\) −2.92633 + 3.93074i −0.115314 + 0.154893i
\(645\) 0 0
\(646\) 9.85743 4.95059i 0.387835 0.194778i
\(647\) −25.8659 −1.01689 −0.508446 0.861094i \(-0.669780\pi\)
−0.508446 + 0.861094i \(0.669780\pi\)
\(648\) 0 0
\(649\) −31.8339 −1.24959
\(650\) −13.5964 + 6.82836i −0.533294 + 0.267830i
\(651\) 0 0
\(652\) −6.37357 + 8.56119i −0.249608 + 0.335282i
\(653\) −0.658203 + 2.19855i −0.0257575 + 0.0860360i −0.969902 0.243496i \(-0.921706\pi\)
0.944144 + 0.329532i \(0.106891\pi\)
\(654\) 0 0
\(655\) −22.7497 + 52.7397i −0.888903 + 2.06071i
\(656\) −1.97077 + 11.1768i −0.0769457 + 0.436381i
\(657\) 0 0
\(658\) −1.26428 7.17007i −0.0492866 0.279518i
\(659\) 32.6804 + 7.74540i 1.27305 + 0.301718i 0.810952 0.585113i \(-0.198950\pi\)
0.462095 + 0.886830i \(0.347098\pi\)
\(660\) 0 0
\(661\) 15.0448 9.89512i 0.585175 0.384875i −0.222124 0.975018i \(-0.571299\pi\)
0.807299 + 0.590143i \(0.200929\pi\)
\(662\) 1.20515 + 20.6917i 0.0468396 + 0.804206i
\(663\) 0 0
\(664\) 2.60402 + 8.69804i 0.101056 + 0.337549i
\(665\) −4.82640 1.75667i −0.187160 0.0681206i
\(666\) 0 0
\(667\) 9.14230 3.32753i 0.353991 0.128842i
\(668\) −1.13781 1.52835i −0.0440232 0.0591335i
\(669\) 0 0
\(670\) −3.09376 + 0.733234i −0.119522 + 0.0283273i
\(671\) −3.79041 8.78717i −0.146327 0.339225i
\(672\) 0 0
\(673\) 7.51146 + 4.94036i 0.289545 + 0.190437i 0.685969 0.727631i \(-0.259378\pi\)
−0.396424 + 0.918068i \(0.629749\pi\)
\(674\) −14.0117 + 24.2690i −0.539710 + 0.934806i
\(675\) 0 0
\(676\) 1.16068 + 2.01036i 0.0446416 + 0.0773215i
\(677\) 1.07919 18.5289i 0.0414765 0.712124i −0.911913 0.410383i \(-0.865395\pi\)
0.953390 0.301741i \(-0.0975679\pi\)
\(678\) 0 0
\(679\) 0.628000 + 0.0734027i 0.0241004 + 0.00281694i
\(680\) −9.88827 10.4810i −0.379198 0.401926i
\(681\) 0 0
\(682\) −19.5209 + 2.28166i −0.747493 + 0.0873694i
\(683\) −6.63544 5.56779i −0.253898 0.213046i 0.506951 0.861975i \(-0.330773\pi\)
−0.760849 + 0.648929i \(0.775217\pi\)
\(684\) 0 0
\(685\) 34.9281 29.3082i 1.33453 1.11981i
\(686\) −6.44534 + 6.83166i −0.246084 + 0.260834i
\(687\) 0 0
\(688\) 8.30605 + 4.17146i 0.316665 + 0.159035i
\(689\) −12.3680 6.21144i −0.471183 0.236637i
\(690\) 0 0
\(691\) 25.2925 26.8085i 0.962172 1.01984i −0.0376168 0.999292i \(-0.511977\pi\)
0.999789 0.0205505i \(-0.00654189\pi\)
\(692\) −1.11657 + 0.936917i −0.0424458 + 0.0356162i
\(693\) 0 0
\(694\) 8.35139 + 7.00765i 0.317015 + 0.266007i
\(695\) −39.5385 + 4.62139i −1.49978 + 0.175299i
\(696\) 0 0
\(697\) −36.1152 38.2798i −1.36796 1.44995i
\(698\) −16.0962 1.88138i −0.609250 0.0712111i
\(699\) 0 0
\(700\) −0.188105 + 3.22964i −0.00710969 + 0.122069i
\(701\) 18.8835 + 32.7071i 0.713218 + 1.23533i 0.963643 + 0.267194i \(0.0860965\pi\)
−0.250425 + 0.968136i \(0.580570\pi\)
\(702\) 0 0
\(703\) 1.45293 2.51655i 0.0547983 0.0949134i
\(704\) 4.61813 + 3.03739i 0.174052 + 0.114476i
\(705\) 0 0
\(706\) 10.8350 + 25.1184i 0.407782 + 0.945344i
\(707\) 13.3548 3.16515i 0.502259 0.119038i
\(708\) 0 0
\(709\) −9.95354 13.3699i −0.373813 0.502118i 0.574914 0.818214i \(-0.305035\pi\)
−0.948727 + 0.316096i \(0.897628\pi\)
\(710\) 34.4177 12.5270i 1.29167 0.470130i
\(711\) 0 0
\(712\) 3.47851 + 1.26608i 0.130363 + 0.0474482i
\(713\) 7.19209 + 24.0233i 0.269346 + 0.899678i
\(714\) 0 0
\(715\) 3.26356 + 56.0332i 0.122050 + 2.09552i
\(716\) −3.02702 + 1.99090i −0.113125 + 0.0744035i
\(717\) 0 0
\(718\) −5.91967 1.40299i −0.220920 0.0523590i
\(719\) 0.219237 + 1.24336i 0.00817617 + 0.0463694i 0.988623 0.150415i \(-0.0480611\pi\)
−0.980447 + 0.196785i \(0.936950\pi\)
\(720\) 0 0
\(721\) 0.716725 4.06475i 0.0266922 0.151379i
\(722\) 5.28422 12.2502i 0.196658 0.455905i
\(723\) 0 0
\(724\) −6.36192 + 21.2503i −0.236439 + 0.789761i
\(725\) 3.83543 5.15188i 0.142444 0.191336i
\(726\) 0 0
\(727\) 5.85101 2.93849i 0.217002 0.108982i −0.336978 0.941513i \(-0.609405\pi\)
0.553980 + 0.832530i \(0.313108\pi\)
\(728\) −2.27060 −0.0841539
\(729\) 0 0
\(730\) −26.7190 −0.988915
\(731\) −38.5160 + 19.3434i −1.42456 + 0.715443i
\(732\) 0 0
\(733\) 4.97694 6.68519i 0.183827 0.246923i −0.700651 0.713504i \(-0.747107\pi\)
0.884478 + 0.466581i \(0.154514\pi\)
\(734\) 5.15990 17.2353i 0.190455 0.636166i
\(735\) 0 0
\(736\) 2.79341 6.47585i 0.102966 0.238703i
\(737\) −0.982093 + 5.56972i −0.0361759 + 0.205163i
\(738\) 0 0
\(739\) 2.08267 + 11.8114i 0.0766121 + 0.434489i 0.998853 + 0.0478740i \(0.0152446\pi\)
−0.922241 + 0.386615i \(0.873644\pi\)
\(740\) −3.69357 0.875391i −0.135778 0.0321800i
\(741\) 0 0
\(742\) −2.45869 + 1.61711i −0.0902615 + 0.0593659i
\(743\) 1.67970 + 28.8393i 0.0616222 + 1.05801i 0.877435 + 0.479696i \(0.159253\pi\)
−0.815813 + 0.578316i \(0.803710\pi\)
\(744\) 0 0
\(745\) −15.7876 52.7344i −0.578414 1.93204i
\(746\) −22.4333 8.16506i −0.821342 0.298944i
\(747\) 0 0
\(748\) −24.0856 + 8.76645i −0.880658 + 0.320533i
\(749\) −1.34696 1.80929i −0.0492170 0.0661099i
\(750\) 0 0
\(751\) −6.59190 + 1.56231i −0.240542 + 0.0570094i −0.349118 0.937079i \(-0.613519\pi\)
0.108577 + 0.994088i \(0.465371\pi\)
\(752\) 4.15023 + 9.62132i 0.151343 + 0.350853i
\(753\) 0 0
\(754\) 3.76631 + 2.47714i 0.137161 + 0.0902122i
\(755\) −24.5107 + 42.4537i −0.892034 + 1.54505i
\(756\) 0 0
\(757\) −10.9210 18.9158i −0.396932 0.687506i 0.596414 0.802677i \(-0.296592\pi\)
−0.993346 + 0.115171i \(0.963258\pi\)
\(758\) 1.37503 23.6084i 0.0499433 0.857494i
\(759\) 0 0
\(760\) 7.34191 + 0.858146i 0.266319 + 0.0311282i
\(761\) −16.0381 16.9994i −0.581381 0.616228i 0.368201 0.929746i \(-0.379974\pi\)
−0.949582 + 0.313518i \(0.898492\pi\)
\(762\) 0 0
\(763\) 5.82866 0.681273i 0.211012 0.0246637i
\(764\) 4.48296 + 3.76165i 0.162188 + 0.136092i
\(765\) 0 0
\(766\) −10.9251 + 9.16727i −0.394741 + 0.331227i
\(767\) −12.9151 + 13.6892i −0.466338 + 0.494289i
\(768\) 0 0
\(769\) 34.6714 + 17.4126i 1.25028 + 0.627915i 0.945846 0.324617i \(-0.105235\pi\)
0.304437 + 0.952532i \(0.401532\pi\)
\(770\) 10.6651 + 5.35621i 0.384343 + 0.193024i
\(771\) 0 0
\(772\) −9.91666 + 10.5110i −0.356908 + 0.378301i
\(773\) −32.0265 + 26.8735i −1.15191 + 0.966571i −0.999763 0.0217863i \(-0.993065\pi\)
−0.152152 + 0.988357i \(0.548620\pi\)
\(774\) 0 0
\(775\) 12.6818 + 10.6413i 0.455543 + 0.382246i
\(776\) −0.903811 + 0.105640i −0.0324449 + 0.00379227i
\(777\) 0 0
\(778\) 24.4846 + 25.9521i 0.877814 + 0.930428i
\(779\) 26.8150 + 3.13423i 0.960748 + 0.112295i
\(780\) 0 0
\(781\) 3.78822 65.0413i 0.135553 2.32736i
\(782\) 16.3519 + 28.3223i 0.584742 + 1.01280i
\(783\) 0 0
\(784\) 3.25860 5.64406i 0.116379 0.201574i
\(785\) 8.17107 + 5.37420i 0.291638 + 0.191813i
\(786\) 0 0
\(787\) 13.6882 + 31.7327i 0.487930 + 1.13115i 0.967323 + 0.253549i \(0.0815977\pi\)
−0.479393 + 0.877601i \(0.659143\pi\)
\(788\) 4.65527 1.10332i 0.165837 0.0393041i
\(789\) 0 0
\(790\) 16.3230 + 21.9255i 0.580745 + 0.780076i
\(791\) 7.59350 2.76381i 0.269994 0.0982698i
\(792\) 0 0
\(793\) −5.31645 1.93503i −0.188793 0.0687149i
\(794\) 6.99757 + 23.3735i 0.248335 + 0.829495i
\(795\) 0 0
\(796\) −0.904952 15.5374i −0.0320752 0.550709i
\(797\) −2.47748 + 1.62946i −0.0877569 + 0.0577186i −0.592629 0.805476i \(-0.701910\pi\)
0.504872 + 0.863194i \(0.331540\pi\)
\(798\) 0 0
\(799\) −47.2791 11.2053i −1.67261 0.396417i
\(800\) −0.808494 4.58520i −0.0285846 0.162111i
\(801\) 0 0
\(802\) 6.77751 38.4372i 0.239322 1.35726i
\(803\) −18.8249 + 43.6409i −0.664315 + 1.54005i
\(804\) 0 0
\(805\) 4.36732 14.5879i 0.153928 0.514155i
\(806\) −6.93853 + 9.32006i −0.244399 + 0.328285i
\(807\) 0 0
\(808\) −17.6515 + 8.86492i −0.620978 + 0.311867i
\(809\) 49.0772 1.72546 0.862731 0.505663i \(-0.168752\pi\)
0.862731 + 0.505663i \(0.168752\pi\)
\(810\) 0 0
\(811\) −19.4023 −0.681307 −0.340654 0.940189i \(-0.610648\pi\)
−0.340654 + 0.940189i \(0.610648\pi\)
\(812\) 0.856563 0.430182i 0.0300595 0.0150964i
\(813\) 0 0
\(814\) −4.03210 + 5.41605i −0.141325 + 0.189833i
\(815\) 9.51205 31.7725i 0.333193 1.11294i
\(816\) 0 0
\(817\) 8.75743 20.3020i 0.306384 0.710277i
\(818\) 3.09484 17.5517i 0.108208 0.613681i
\(819\) 0 0
\(820\) −6.12398 34.7308i −0.213859 1.21285i
\(821\) −0.0542400 0.0128551i −0.00189299 0.000448646i 0.229669 0.973269i \(-0.426236\pi\)
−0.231562 + 0.972820i \(0.574384\pi\)
\(822\) 0 0
\(823\) 24.4081 16.0535i 0.850813 0.559588i −0.0475370 0.998869i \(-0.515137\pi\)
0.898350 + 0.439281i \(0.144767\pi\)
\(824\) 0.345391 + 5.93014i 0.0120323 + 0.206586i
\(825\) 0 0
\(826\) 1.14770 + 3.83359i 0.0399337 + 0.133388i
\(827\) −39.4672 14.3649i −1.37241 0.499516i −0.452541 0.891744i \(-0.649482\pi\)
−0.919868 + 0.392227i \(0.871705\pi\)
\(828\) 0 0
\(829\) −11.8020 + 4.29559i −0.409902 + 0.149192i −0.538737 0.842474i \(-0.681098\pi\)
0.128835 + 0.991666i \(0.458876\pi\)
\(830\) −16.8480 22.6307i −0.584801 0.785524i
\(831\) 0 0
\(832\) 3.17973 0.753611i 0.110237 0.0261268i
\(833\) 11.9699 + 27.7493i 0.414732 + 0.961457i
\(834\) 0 0
\(835\) 4.94673 + 3.25351i 0.171189 + 0.112592i
\(836\) 6.57437 11.3872i 0.227380 0.393833i
\(837\) 0 0
\(838\) −3.98537 6.90286i −0.137672 0.238455i
\(839\) 2.36536 40.6117i 0.0816613 1.40207i −0.669922 0.742432i \(-0.733672\pi\)
0.751583 0.659638i \(-0.229291\pi\)
\(840\) 0 0
\(841\) 26.9138 + 3.14577i 0.928062 + 0.108475i
\(842\) −19.5358 20.7068i −0.673250 0.713603i
\(843\) 0 0
\(844\) −14.6232 + 1.70920i −0.503350 + 0.0588331i
\(845\) −5.52579 4.63669i −0.190093 0.159507i
\(846\) 0 0
\(847\) 10.4075 8.73293i 0.357606 0.300067i
\(848\) 2.90643 3.08063i 0.0998071 0.105789i
\(849\) 0 0
\(850\) 19.2935 + 9.68958i 0.661763 + 0.332350i
\(851\) 7.69886 + 3.86651i 0.263914 + 0.132542i
\(852\) 0 0
\(853\) 17.4593 18.5058i 0.597795 0.633625i −0.355856 0.934541i \(-0.615811\pi\)
0.953651 + 0.300916i \(0.0972922\pi\)
\(854\) −0.921540 + 0.773264i −0.0315344 + 0.0264605i
\(855\) 0 0
\(856\) 2.48678 + 2.08666i 0.0849965 + 0.0713206i
\(857\) −45.3387 + 5.29934i −1.54874 + 0.181022i −0.847071 0.531480i \(-0.821636\pi\)
−0.701670 + 0.712502i \(0.747562\pi\)
\(858\) 0 0
\(859\) −11.0934 11.7583i −0.378501 0.401188i 0.509916 0.860224i \(-0.329676\pi\)
−0.888418 + 0.459036i \(0.848195\pi\)
\(860\) −28.6871 3.35304i −0.978221 0.114338i
\(861\) 0 0
\(862\) −1.59610 + 27.4040i −0.0543635 + 0.933385i
\(863\) 20.5808 + 35.6470i 0.700578 + 1.21344i 0.968264 + 0.249931i \(0.0804079\pi\)
−0.267685 + 0.963506i \(0.586259\pi\)
\(864\) 0 0
\(865\) 2.26465 3.92248i 0.0770003 0.133368i
\(866\) −3.18624 2.09562i −0.108273 0.0712121i
\(867\) 0 0
\(868\) 0.978553 + 2.26854i 0.0332143 + 0.0769993i
\(869\) 47.3120 11.2131i 1.60495 0.380380i
\(870\) 0 0
\(871\) 1.99666 + 2.68198i 0.0676542 + 0.0908754i
\(872\) −7.93631 + 2.88858i −0.268758 + 0.0978197i
\(873\) 0 0
\(874\) −15.7651 5.73802i −0.533262 0.194091i
\(875\) 0.213062 + 0.711677i 0.00720282 + 0.0240591i
\(876\) 0 0
\(877\) 1.27082 + 21.8191i 0.0429125 + 0.736778i 0.949308 + 0.314348i \(0.101786\pi\)
−0.906395 + 0.422430i \(0.861177\pi\)
\(878\) 4.60362 3.02785i 0.155365 0.102185i
\(879\) 0 0
\(880\) −16.7131 3.96107i −0.563397 0.133528i
\(881\) −9.44504 53.5655i −0.318212 1.80467i −0.553619 0.832770i \(-0.686753\pi\)
0.235407 0.971897i \(-0.424358\pi\)
\(882\) 0 0
\(883\) 7.67767 43.5423i 0.258374 1.46531i −0.528886 0.848693i \(-0.677390\pi\)
0.787260 0.616621i \(-0.211499\pi\)
\(884\) −6.00187 + 13.9139i −0.201865 + 0.467975i
\(885\) 0 0
\(886\) 7.40223 24.7252i 0.248683 0.830658i
\(887\) −12.8442 + 17.2527i −0.431265 + 0.579290i −0.963635 0.267222i \(-0.913894\pi\)
0.532370 + 0.846512i \(0.321302\pi\)
\(888\) 0 0
\(889\) −6.09386 + 3.06045i −0.204382 + 0.102644i
\(890\) −11.5028 −0.385576
\(891\) 0 0
\(892\) 10.3756 0.347402
\(893\) 22.2745 11.1867i 0.745386 0.374347i
\(894\) 0 0
\(895\) 6.72299 9.03054i 0.224725 0.301858i
\(896\) 0.199281 0.665645i 0.00665752 0.0222376i
\(897\) 0 0
\(898\) −4.11339 + 9.53592i −0.137266 + 0.318218i
\(899\) 0.851742 4.83047i 0.0284072 0.161105i
\(900\) 0 0
\(901\) 3.41035 + 19.3410i 0.113615 + 0.644344i
\(902\) −61.0415 14.4671i −2.03246 0.481702i
\(903\) 0 0
\(904\) −9.71660 + 6.39071i −0.323169 + 0.212552i
\(905\) −4.00786 68.8123i −0.133226 2.28740i
\(906\) 0 0
\(907\) 0.0159538 + 0.0532895i 0.000529738 + 0.00176945i 0.958254 0.285918i \(-0.0922986\pi\)
−0.957724 + 0.287688i \(0.907113\pi\)
\(908\) −9.36123 3.40721i −0.310663 0.113072i
\(909\) 0 0
\(910\) 6.63014 2.41318i 0.219787 0.0799960i
\(911\) 5.46199 + 7.33672i 0.180964 + 0.243076i 0.883344 0.468726i \(-0.155287\pi\)
−0.702380 + 0.711802i \(0.747879\pi\)
\(912\) 0 0
\(913\) −48.8337 + 11.5738i −1.61616 + 0.383037i
\(914\) 13.8558 + 32.1213i 0.458309 + 1.06248i
\(915\) 0 0
\(916\) −17.4443 11.4733i −0.576377 0.379089i
\(917\) 6.42166 11.1226i 0.212062 0.367302i
\(918\) 0 0
\(919\) 1.08222 + 1.87445i 0.0356990 + 0.0618325i 0.883323 0.468765i \(-0.155301\pi\)
−0.847624 + 0.530598i \(0.821968\pi\)
\(920\) −1.27427 + 21.8783i −0.0420113 + 0.721306i
\(921\) 0 0
\(922\) −15.6563 1.82996i −0.515613 0.0602665i
\(923\) −26.4322 28.0165i −0.870027 0.922175i
\(924\) 0 0
\(925\) 5.64906 0.660280i 0.185740 0.0217099i
\(926\) −2.90671 2.43902i −0.0955203 0.0801510i
\(927\) 0 0
\(928\) −1.05675 + 0.886718i −0.0346895 + 0.0291080i
\(929\) −1.40707 + 1.49140i −0.0461643 + 0.0489313i −0.750044 0.661388i \(-0.769968\pi\)
0.703880 + 0.710319i \(0.251449\pi\)
\(930\) 0 0
\(931\) −13.8541 6.95780i −0.454050 0.228033i
\(932\) 10.3127 + 5.17921i 0.337803 + 0.169651i
\(933\) 0 0
\(934\) 27.5178 29.1672i 0.900412 0.954380i
\(935\) 61.0131 51.1961i 1.99534 1.67429i
\(936\) 0 0
\(937\) 34.7783 + 29.1825i 1.13616 + 0.953350i 0.999306 0.0372415i \(-0.0118571\pi\)
0.136852 + 0.990592i \(0.456302\pi\)
\(938\) 0.706142 0.0825361i 0.0230563 0.00269490i
\(939\) 0 0
\(940\) −22.3441 23.6834i −0.728786 0.772468i
\(941\) −3.74125 0.437289i −0.121961 0.0142552i 0.0548933 0.998492i \(-0.482518\pi\)
−0.176855 + 0.984237i \(0.556592\pi\)
\(942\) 0 0
\(943\) −4.65403 + 79.9066i −0.151556 + 2.60212i
\(944\) −2.87961 4.98763i −0.0937232 0.162333i
\(945\) 0 0
\(946\) −25.6881 + 44.4930i −0.835191 + 1.44659i
\(947\) 13.4364 + 8.83729i 0.436626 + 0.287173i 0.748731 0.662874i \(-0.230664\pi\)
−0.312105 + 0.950048i \(0.601034\pi\)
\(948\) 0 0
\(949\) 11.1292 + 25.8004i 0.361269 + 0.837515i
\(950\) −10.7770 + 2.55420i −0.349652 + 0.0828691i
\(951\) 0 0
\(952\) 1.92406 + 2.58446i 0.0623591 + 0.0837628i
\(953\) 22.6638 8.24893i 0.734151 0.267209i 0.0522302 0.998635i \(-0.483367\pi\)
0.681921 + 0.731426i \(0.261145\pi\)
\(954\) 0 0
\(955\) −17.0881 6.21956i −0.552958 0.201260i
\(956\) 0.828667 + 2.76794i 0.0268010 + 0.0895216i
\(957\) 0 0
\(958\) −1.31908 22.6477i −0.0426175 0.731714i
\(959\) −8.51817 + 5.60249i −0.275066 + 0.180914i
\(960\) 0 0
\(961\) −17.8625 4.23349i −0.576209 0.136564i
\(962\) 0.693177 + 3.93120i 0.0223489 + 0.126747i
\(963\) 0 0
\(964\) 0.00920844 0.0522236i 0.000296584 0.00168201i
\(965\) 17.7856 41.2316i 0.572538 1.32729i
\(966\) 0 0
\(967\) −5.39397 + 18.0171i −0.173458 + 0.579392i 0.826408 + 0.563071i \(0.190380\pi\)
−0.999867 + 0.0163204i \(0.994805\pi\)
\(968\) −11.6762 + 15.6838i −0.375286 + 0.504097i
\(969\) 0 0
\(970\) 2.52685 1.26903i 0.0811324 0.0407462i
\(971\) 29.0121 0.931043 0.465522 0.885036i \(-0.345867\pi\)
0.465522 + 0.885036i \(0.345867\pi\)
\(972\) 0 0
\(973\) 8.90126 0.285361
\(974\) 24.2018 12.1546i 0.775477 0.389459i
\(975\) 0 0
\(976\) 1.03387 1.38873i 0.0330935 0.0444523i
\(977\) −0.146593 + 0.489655i −0.00468993 + 0.0156655i −0.960302 0.278961i \(-0.910010\pi\)
0.955613 + 0.294626i \(0.0951952\pi\)
\(978\) 0 0
\(979\) −8.10432 + 18.7879i −0.259015 + 0.600464i
\(980\) −3.51665 + 19.9439i −0.112335 + 0.637084i
\(981\) 0 0
\(982\) 1.23480 + 7.00292i 0.0394042 + 0.223472i
\(983\) 34.0298 + 8.06522i 1.08538 + 0.257241i 0.734109 0.679032i \(-0.237600\pi\)
0.351275 + 0.936272i \(0.385748\pi\)
\(984\) 0 0
\(985\) −12.4208 + 8.16929i −0.395760 + 0.260295i
\(986\) −0.371942 6.38600i −0.0118451 0.203372i
\(987\) 0 0
\(988\) −2.22946 7.44693i −0.0709287 0.236918i
\(989\) 61.5989 + 22.4202i 1.95873 + 0.712920i
\(990\) 0 0
\(991\) −7.26164 + 2.64302i −0.230674 + 0.0839583i −0.454771 0.890608i \(-0.650279\pi\)
0.224097 + 0.974567i \(0.428057\pi\)
\(992\) −2.12329 2.85207i −0.0674145 0.0905534i
\(993\) 0 0
\(994\) −7.96918 + 1.88873i −0.252767 + 0.0599069i
\(995\) 19.1555 + 44.4075i 0.607271 + 1.40781i
\(996\) 0 0
\(997\) 2.97274 + 1.95520i 0.0941476 + 0.0619218i 0.595710 0.803200i \(-0.296871\pi\)
−0.501562 + 0.865122i \(0.667241\pi\)
\(998\) 14.8874 25.7857i 0.471252 0.816233i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 486.2.g.b.73.1 90
3.2 odd 2 162.2.g.b.25.1 yes 90
81.13 even 27 inner 486.2.g.b.253.1 90
81.68 odd 54 162.2.g.b.13.1 90
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.2.g.b.13.1 90 81.68 odd 54
162.2.g.b.25.1 yes 90 3.2 odd 2
486.2.g.b.73.1 90 1.1 even 1 trivial
486.2.g.b.253.1 90 81.13 even 27 inner