Properties

Label 486.2.g
Level $486$
Weight $2$
Character orbit 486.g
Rep. character $\chi_{486}(19,\cdot)$
Character field $\Q(\zeta_{27})$
Dimension $162$
Newform subspaces $2$
Sturm bound $162$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.g (of order \(27\) and degree \(18\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 81 \)
Character field: \(\Q(\zeta_{27})\)
Newform subspaces: \( 2 \)
Sturm bound: \(162\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(486, [\chi])\).

Total New Old
Modular forms 1566 162 1404
Cusp forms 1350 162 1188
Eisenstein series 216 0 216

Trace form

\( 162 q + 18 q^{20} + 54 q^{23} + 54 q^{26} + 54 q^{29} + 54 q^{35} + 9 q^{38} + 18 q^{41} + 54 q^{47} + 54 q^{53} + 63 q^{59} - 18 q^{65} - 54 q^{67} - 18 q^{68} - 54 q^{70} - 144 q^{71} - 144 q^{74} - 27 q^{76}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(486, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
486.2.g.a 486.g 81.g $72$ $3.881$ None 162.2.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{27}]$
486.2.g.b 486.g 81.g $90$ $3.881$ None 162.2.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{27}]$

Decomposition of \(S_{2}^{\mathrm{old}}(486, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(486, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 2}\)