Defining parameters
Level: | \( N \) | \(=\) | \( 486 = 2 \cdot 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 486.g (of order \(27\) and degree \(18\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 81 \) |
Character field: | \(\Q(\zeta_{27})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(162\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(486, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1566 | 162 | 1404 |
Cusp forms | 1350 | 162 | 1188 |
Eisenstein series | 216 | 0 | 216 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(486, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
486.2.g.a | $72$ | $3.881$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
486.2.g.b | $90$ | $3.881$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(486, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(486, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 2}\)