Defining parameters
Level: | \( N \) | = | \( 486 = 2 \cdot 3^{5} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 5 \) | ||
Newform subspaces: | \( 28 \) | ||
Sturm bound: | \(26244\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(486))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6939 | 1728 | 5211 |
Cusp forms | 6184 | 1728 | 4456 |
Eisenstein series | 755 | 0 | 755 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(486))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
486.2.a | \(\chi_{486}(1, \cdot)\) | 486.2.a.a | 1 | 1 |
486.2.a.b | 1 | |||
486.2.a.c | 1 | |||
486.2.a.d | 1 | |||
486.2.a.e | 1 | |||
486.2.a.f | 1 | |||
486.2.a.g | 3 | |||
486.2.a.h | 3 | |||
486.2.c | \(\chi_{486}(163, \cdot)\) | 486.2.c.a | 2 | 2 |
486.2.c.b | 2 | |||
486.2.c.c | 2 | |||
486.2.c.d | 2 | |||
486.2.c.e | 2 | |||
486.2.c.f | 2 | |||
486.2.c.g | 6 | |||
486.2.c.h | 6 | |||
486.2.e | \(\chi_{486}(55, \cdot)\) | 486.2.e.a | 6 | 6 |
486.2.e.b | 6 | |||
486.2.e.c | 6 | |||
486.2.e.d | 6 | |||
486.2.e.e | 12 | |||
486.2.e.f | 12 | |||
486.2.e.g | 12 | |||
486.2.e.h | 12 | |||
486.2.g | \(\chi_{486}(19, \cdot)\) | 486.2.g.a | 72 | 18 |
486.2.g.b | 90 | |||
486.2.i | \(\chi_{486}(7, \cdot)\) | 486.2.i.a | 702 | 54 |
486.2.i.b | 756 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(486))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(486)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(243))\)\(^{\oplus 2}\)