Properties

Label 486.2
Level 486
Weight 2
Dimension 1728
Nonzero newspaces 5
Newform subspaces 28
Sturm bound 26244
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 28 \)
Sturm bound: \(26244\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(486))\).

Total New Old
Modular forms 6939 1728 5211
Cusp forms 6184 1728 4456
Eisenstein series 755 0 755

Trace form

\( 1728 q + 18 q^{19} + 18 q^{20} + 18 q^{22} + 54 q^{23} + 36 q^{25} + 54 q^{26} + 18 q^{28} + 54 q^{29} + 36 q^{31} + 18 q^{34} + 54 q^{35} + 18 q^{37} + 9 q^{38} + 18 q^{41} + 18 q^{43} + 54 q^{47} + 36 q^{49}+ \cdots - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(486))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
486.2.a \(\chi_{486}(1, \cdot)\) 486.2.a.a 1 1
486.2.a.b 1
486.2.a.c 1
486.2.a.d 1
486.2.a.e 1
486.2.a.f 1
486.2.a.g 3
486.2.a.h 3
486.2.c \(\chi_{486}(163, \cdot)\) 486.2.c.a 2 2
486.2.c.b 2
486.2.c.c 2
486.2.c.d 2
486.2.c.e 2
486.2.c.f 2
486.2.c.g 6
486.2.c.h 6
486.2.e \(\chi_{486}(55, \cdot)\) 486.2.e.a 6 6
486.2.e.b 6
486.2.e.c 6
486.2.e.d 6
486.2.e.e 12
486.2.e.f 12
486.2.e.g 12
486.2.e.h 12
486.2.g \(\chi_{486}(19, \cdot)\) 486.2.g.a 72 18
486.2.g.b 90
486.2.i \(\chi_{486}(7, \cdot)\) 486.2.i.a 702 54
486.2.i.b 756

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(486))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(486)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(243))\)\(^{\oplus 2}\)