Properties

Label 486.g
Modulus $486$
Conductor $81$
Order $27$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(486, base_ring=CyclotomicField(54)) M = H._module chi = DirichletCharacter(H, M([52])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(19,486)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(486\)
Conductor: \(81\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(27\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 81.g
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 27 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{486}(19,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{7}{27}\right)\)
\(\chi_{486}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{23}{27}\right)\)
\(\chi_{486}(73,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{1}{27}\right)\)
\(\chi_{486}(91,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{17}{27}\right)\)
\(\chi_{486}(127,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{22}{27}\right)\)
\(\chi_{486}(145,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{11}{27}\right)\)
\(\chi_{486}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{16}{27}\right)\)
\(\chi_{486}(199,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{5}{27}\right)\)
\(\chi_{486}(235,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{10}{27}\right)\)
\(\chi_{486}(253,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{26}{27}\right)\)
\(\chi_{486}(289,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{4}{27}\right)\)
\(\chi_{486}(307,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{20}{27}\right)\)
\(\chi_{486}(343,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{25}{27}\right)\)
\(\chi_{486}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{14}{27}\right)\)
\(\chi_{486}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{19}{27}\right)\)
\(\chi_{486}(415,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{8}{27}\right)\)
\(\chi_{486}(451,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{13}{27}\right)\)
\(\chi_{486}(469,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{2}{27}\right)\)