gp: [N,k,chi] = [486,2,Mod(19,486)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(486, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([52]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("486.19");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [90]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{90} + 9 T_{5}^{88} - 30 T_{5}^{87} + 45 T_{5}^{86} - 1377 T_{5}^{85} + 2673 T_{5}^{84} + \cdots + 21\!\cdots\!84 \)
T5^90 + 9*T5^88 - 30*T5^87 + 45*T5^86 - 1377*T5^85 + 2673*T5^84 - 10341*T5^83 + 18657*T5^82 - 199554*T5^81 + 401679*T5^80 - 1119420*T5^79 + 1084239*T5^78 + 24612417*T5^77 + 98528886*T5^76 + 65730204*T5^75 - 929247633*T5^74 - 1639840059*T5^73 + 24185855529*T5^72 + 42151663548*T5^71 + 256550208768*T5^70 - 505217165517*T5^69 - 310113318528*T5^68 - 14626993751289*T5^67 - 46862802103995*T5^66 - 98648407198593*T5^65 + 241283604609126*T5^64 + 2179837803028608*T5^63 + 2431845517854726*T5^62 - 17722648468233045*T5^61 - 83512317182777046*T5^60 - 82185776764317441*T5^59 + 366205736133129213*T5^58 + 1094104737479163285*T5^57 + 2008298410228848933*T5^56 + 16143925626605563065*T5^55 + 99310226536061712972*T5^54 + 314876374223690518785*T5^53 + 434559364641225455751*T5^52 + 60548283948033569529*T5^51 - 707149525081102433379*T5^50 - 2133896119490138973651*T5^49 - 3220125759018869838327*T5^48 - 5794485434190770233518*T5^47 + 19929529166113712619936*T5^46 + 147405157172736804808227*T5^45 + 163498481799491804973759*T5^44 + 31668841512366898040721*T5^43 + 153273797907869100335454*T5^42 - 836861199459883872543153*T5^41 - 467112100191177372223113*T5^40 - 151377945412765544333901*T5^39 - 4483674900541729648436337*T5^38 + 37558115046638207961898428*T5^37 + 39543162387433124901825798*T5^36 - 35909817816133618000250553*T5^35 + 285463096760160390000918627*T5^34 + 108181032051909813359804010*T5^33 - 744000885593744946674536440*T5^32 + 615473213179954777712304876*T5^31 - 213902949342769725630796398*T5^30 - 3746152965213370716483385773*T5^29 + 2848456034563110747036788709*T5^28 + 6513357017984872248246957444*T5^27 - 2641351231633686074707117176*T5^26 + 8220157629446437962791465475*T5^25 + 19987311860779359930380418600*T5^24 - 186072182037808652969492085*T5^23 + 10025537701520304834165724716*T5^22 + 19274893745098595880695693103*T5^21 + 22468899189394876965923342214*T5^20 + 9324570534844648648583017521*T5^19 + 13466359432484510396981260743*T5^18 + 13052959761107015672418190566*T5^17 + 18846158645335012763819787936*T5^16 + 7219160523294617290624580304*T5^15 + 14143023309965392116437798016*T5^14 + 3524514765645467317889355840*T5^13 + 7598161538874375068591376192*T5^12 + 4769047955389781332202675328*T5^11 + 3485221352150551854315641856*T5^10 + 3276843512126123653663371264*T5^9 + 675639319029391357274492928*T5^8 + 1071059594812861120105494528*T5^7 + 860783773094835233074532352*T5^6 + 293935089809926304086597632*T5^5 + 304525784995279173771411456*T5^4 + 57505636468225888844120064*T5^3 + 3839935105319228540780544*T5^2 + 9862674662200699668529152*T5 + 2163784203674077249142784
acting on \(S_{2}^{\mathrm{new}}(486, [\chi])\).